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Reliability analysis of a gravity-based foundation for wind turbines:
a code-based design assessment

M. ]. VAHDATIRAD, D. V. GRIFFITHSt§, L. V. ANDERSEN®*, J. D. SORENSEN* and G. A. FENTONS§

Deterministic code-based designs proposed for wind turbine foundations are typically biased on the
conservative side, and overestimate the probability of failure, which can lead to higher than necessary
construction cost. In this study reliability analysis of a gravity-based foundation, concerning its
bearing capacity, is used to calibrate a code-based design procedure. A probabilistic finite-element
model is developed to analyse the bearing capacity of a surface footing on soil with spatially variable
undrained strength. Monte Carlo simulation is combined with a re-sampling simulation technique to
perform the reliability analysis. The calibrated code-based design approach leads to savings of up to
20% in the concrete foundation volume, depending on the target annual reliability level. The study
can form the basis for future optimisation on deterministic-based designs for wind turbine founda-

tions.
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INTRODUCTION
Gravity-based foundations are regularly used for on- and
offshore wind turbine structures. Expenses related to gravity-
type foundations account for roughly 20-25% of the total
budget for an offshore wind farm (Nilsen, 2003; European
Wind Energy Association, 2009) and current deterministic,
code-based designs are quite conservative in most situations
(Vahdatirad er al, 2013). In the desigh process, expensive
measurements are performed in situ at each wind turbine.
The soil is considered to be a locally homogeneous material
within each detected layer and representative distributions
for the strength parameters are estimated from the measure-
ments; the characteristic values are chosen as conservative
values which correspond to 5% quantiles (DNV, 2013).
However, a realistic design should deal with several uncer-
tainties due to material properties, measurement techniques
and/or modelling procedures. Furthermore, the soil is a
heterogeneous material, and failure mechanisms in hetero-
geneous and homogeneous materials can be markedly differ-
ent. Uncertainties are usually not accounted for or are
conservatively neglected by the inclusion of some partial
safety factors and quantile values in deterministic code-based
designs. As a result, a conservative design is provided
leading to a higher reliability level, thus causing unnecessa-
rily high construction costs. This overestimation implies bias
in the deterministic design or standards-based design equa-
tion. To account for the bias and uncertainties in these
equations, a probabilistic model accounting for the uncer-
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tainties can be developed. This model can be used through a
reliability analysis to calibrate the design equation and the
partial safety factors, including possible biases.

Several studies have been conducted on probabilistic
models, either for general foundations or wind turbine
foundations specifically. Among the probabilistic models for
general foundation issues, Griffiths & Fenton (2000, 2001)
developed the random finite-clement model (RFEM) to
investigate the bearing capacity of undrained clays with
spatially varying shear strength. They performed sensitivity
analyses to illustrate the importance of variance and spatial
correlation length of the soil’s undrained shear strength, and
to demonstrate how they impact the statistics of the bearing
capacity.

Popescu et al. (2005) studied the effects of random
heterogeneity of soil undrained shear strength on bearing
capacity. They considered spatial variability and undrained
shear strength mean value as two major sources of uncer-
tainties and conducted a mnon-linear finite-element (FE)
analysis in conjunction with Monte Carlo simulation (MCS).
Griffiths et al. (2002) performed a parametric study of the
bearing capacity of a rough, rigid strip footing on weightless
cohesive soil using RFEM. They investigated the effect of
the spatial variation of cohesion on the mean bearing
capacity and compared rough and smooth footing conditions.
In a similar study, Griffiths et al. (2006) studied a probabil-
istic model using RFEM at the interface of two parallel rigid
strip footings on weightless cohesive soil with randomly
distributed undrained shear strength.

To estimate the bearing capacity of a strip footing on
weightless soil, Paice & Griffiths (1999) performed a relia-
bility analysis of the bearing capacity of an undrained clay
block having spatially random properties, whereas Fenton &
Griffiths (2003) analysed a two-dimensional (2D) RFEM and
derived a theoretical prediction of the bearing capacity,
which they verified by MCS. Fenton et al. (2007) developed
a code-based theoretical model to predict the probability of
failure for the bearing capacity of a shallow foundation.
They verified the theoretical model using 2D RFEM and
proposed it for developing resistance factors for use in code
provisions. In another study, Fenton et al (2008) assessed
the load resistance factor design approach for the bearing
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capacity of a strip footing, using load factors as proposed by
structural codes. Resistance factors were calibrated to
achieve an acceptable target probability of failure. Cassidy
et al. (2013) identified probabilistic failure envelopes of a
strip footing under combined loading. The Abaqus finite-
element package (Dassault Systtmes Simulia Corp, 2012)
was used for the stochastic FE modelling with spatially
variable undrained shear strength. The RFEM used in studies
for bearing capacity problems was also adopted for use in
foundation settlement issues, and its efficiency was evaluated
(see, e.g. Fenton er al, 2005; Fenton & Griffiths, 2005;
Phoon, 2008; Griffiths & Fenton, 2009).

In association with specific studies on the probabilistic
analysis for wind turbine foundations, Andersen et al. (2011)
developed a probabilistic finite-difference model to estimate
the stiffness of an offshore wind turbine mounted on a
monopile foundation in clay. They used a lognormally
distributed random field for the shear strength of undrained
soil. In a similar study, Andersen et al. (2012) proposed an
advanced reliability method to predict the low-probability
events for the natural frequency of an offshore wind turbine
founded on a monopile. Vahdatirad et al. (2011) studied the
dynamic stiffness of a surface footing for offshore wind
turbines on elastic soil. Elastic properties and soil depth
were treated as random variables with lognormal distribu-
tions. The authors found that the stiffness of the footing was
lognormally distributed. Vahdatirad et al. (2014) investigated
the efficiency of an advanced reliability method for use in
the probabilistic analysis of offshore foundations, using
MCS as the benchmark for assessments. Vahdatirad et al.
(2013) developed a probabilistic three-dimensional (3D) FE
model for an offshore monopile foundation. They considered
a spatially random field for the soil's undrained shear
strength and mapped random properties at each integration
point of the soil elements. The Abaqus numerical package
was used by way of scripting in the Python interface to
solve the probabilistic FE problem. A reliability analysis was
performed to investigate the failure probability at service-
ability and ultimate limit states.

Given that usually a conservative design is obtained using
a deterministic, code-based design, there is room for cali-
brating the design equations. The main contribution of this
study is the development of a framework for a deterministic,
code-based design using an acceptable reliability level for
the failure mode that the foundation will exceed its support-
ing soil-bearing capacity. A deterministic design is per-
formed against the bearing failure of a gravity-based
foundation, according to the offshore standard (DNV, 2013).
However, the use of inclination factors and effective area

modelling in the Abaqus numerical package, as proposed by
Vahdatirad et al. (2013), is used in this study. The founda-
tion is considered to be on cohesive soil with spatially
varying undrained shear strength. Reliability analysis is
performed with a re-sampling simulation technique (Efron &
Tibshirani, 1993) to model the uncertainty of the bearing
capacity. Reliability levels for the DNV code-based design
are relatively high, indicating the presence of biases in the
deterministic design, which are assessed for the resistance
part of the design equation.

DETERMINISTIC DESIGN

A gravity-based foundation for a wind turbine is designed
against bearing failure using the DNV standard (DNV,
2013). The foundation is designed with the properties shown
in Table 1, for the loads given in Table 2 (Serensen, 2013)
and for the soil conditions listed in Table 3. The value
obtained for the effective foundation width, by, defined as
the width of the foundation—soil interface under pressure,
was used to construct the FE model.

DNV approach

According to DNV, an effective area, Aqr, is needed to
determine the bearing capacity. This area closely follows the
nearest corner of the true area of the foundation base, and
its geomefrical centre coincides with the centre of the
applied load. Fig. 1 illustrates the effective area for a
circular and an octagonal foundation (DNV, 2013). The
elliptical effective area in Fig. | can be calculated as

Agr = Z[Rz arccos (%) —e\/Rl—ez} n

where R is the foundation radius and e = M /¥ is the load
eccentricity with bending moment M (kNm) and vertical
load ¥ (kN).

To use the effective area in the classical bearing capacity
equation, A is represented by a rectangle (Fig. 1) with an
effective width by and effective length o, given in equa-
tion (2) and equation (3), respectively

Aerr (R — €)

bt = R? —¢2

@

Table 1. Wind turbine properties

method, as assumed in this paper, are being replaced with Property Value
equations that write capacity directly in terms of the verti- 5
cal-horizontal-moment loading conditions (Randolph et al., i‘}"mr"we‘g‘f“ 540 KN
2004), The strength of the paper is the muotivation to acelle weight 820 kN

: : 2 oy Tower weight 2050 kN
calibrate against a design guideline. The results are used to Transiti it 590 k

i E del representing the code- S EOr R N

create anﬁj calibrate an ,F mo P o Height from foundation base 85m
based design. A stochastic FE model based on probabilistic
Table 2. Load conditions at the foundation base (distribution and COV data from Serensen (2013))
Load type at the foundation base Distribution Mean cov Quantile
Horizontal, A: kN . Weibull 1000 0-15 98%
Moment, M = HL: kNm Weibull 1000 X 85 0-15 98%
Vertical, ¥: kN — 4000 + 28 ZR* & =

® L = 85 m is the height of wind turbine, see Table 1. Therefore, M and H are fully correlated.
1 The vertical load is a function of foundation radius, R (m), and weight of the wind turbine. Rough values of 2 m for the foundation height and

14 kN/m?* for the foundation submerged unit weight are considered.
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Table 3. Soil properties !
Deterministic property Value
Friction angle: degrees 0-00
Dilation angle: degrees 0:00
Poisson ratio 0-49
‘Stochastic property Distribution | Mean (JCSS, | COV (JCSS, | Quantile Horizontal correlation léngth, Vertical Cross
2006; Lee et | 2006; Lee ef | (DNV, 2013) | &, (m), in terms of foundation | correlation |correlation,
al., 1983) | al,1983) effective width, besr length, d,: m P
Undrained shear strength | Lognormal 100-00 0-40 5% i
for DNV method, c,: [ it
KN/m?
Undrained shear strength | Lognormal 11135 0-40 5% {0-5besr, berr, 2betr, 4bese, Bbesr } 1-00 0:90
for FEM, cyppn: KN/m?
Elastic modulus: kN/m? | Lognormal 20297-00 0-40 5% {0-5betr, betr, 2berr, 4berr, 8besr} 1:00
RV — M
%=&@+ﬁ(“ﬁ®————7)
VRVE M
&
0-5+0-5
X |1- HM
o 2 [R2 arccos (~—> St} VR? - Mz] Cu
: (5

Fig. 1. Effective area for bearing capacity calculation in circular
and octagonal foundation (after DNV, 2013)

Acf}‘ \J‘R2 - €2

for = ([P 3)

The bearing capacity of a gravity-based foundation for
undrained conditions can be determined from equation (4)

ga=ca N 5?0 4 p, (4a)
M=z4+2 (4b)
b
0=1+022C (4c)
Lesr
H
A 05405./1—
£=05+05/1 R (4d)

where ¢, (kN/mz) is the undrained shear strength at the
depth of the potential failure surface, N° is the bearing
capacity factor, 50 is the shape factor, il is the inclination
factor, / (kN) is the horizontal force at the foundation base
and p, =0 is the effective overburden pressure. Substituting
all parameters into equation (4a) based on ¢,, R, H, M and

¥, the bearing capacity is given by

In the case of loading with an extremely high eccentricity,
an additional bearing capacity failure mode should be
checked. This checking is for a failure mode that involves
failure of the soil under the unloaded area of the foundation.
For example, this is the area under the heel of the founda-
tion. In this case, the load inclination factor, ig, is changed
and a factor of 1-05 + tan® ¢ is multiplied with the bearing
capacity formula in equation (4a). For the undrained case
(¢ = 0), the capacity is given by

H
= 105, N%5%4/0:5 + 0 1/
qy Cy csc\/ - 0-5 1+Aeﬂ'cu

Substituting parameters based on ¢, R, H, M and V,
equation (6) can be written as

(6)

RV —M
g, =1-05¢cy(T+2) (1 +0‘2W}
05+0.5 |1+ : 7 HM
2[]?2 arccos (—)HHV-,-VREW—MZ] Cu

RV
| )

The bearing capacity g, should be taken as the smallest
value from equation (5) and equation (7).

Design equation !

To determine the required foundation radius R, a determi-
nistic, code-based design equation is established according
to the appropriate standard (see, e.g. IEC 61400-1, (IEC,
2005))

Ya—yrHL =0 ; (8
where y; is the partial safety factor for the load, H, is the
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characteristic value for the horizontal load H from Table 2,
L = 85 m is the height of the wind turbine from the founda-
tion base and Y4 is the characteristic value for the resistance
part, obtained from equation (9)

Yy = Ocqudee i ®

Here, 0. is the characteristic value of uncertainty related
to the bearing capacity model (see Table 5), and g, is the
characteristic value for the bearing capacity, determined by
substituting the characteristic values for the parameters into
the bearing capacity equations. The characteristic value of ¢
is reduced by a factor of 1/y,, where y, is the partial
safety factor for the material (see Table 4).

For the load part, this study considers uncertainty related
to the wind which is the dominant load, acting horizontally
at the centre of the rotor, whereas the vertical force from
self-weight is considered deterministic in as much as the
wind turbines are horizontally loaded structures with accu-
rate fabrication; that is, there is low variability in the weight
and consequently in the vertical load. When the character-
istic and deterministic values for the loads (see Table 2),
increased by the factor of y;, and the characteristic value for
¢y (see Table 3), multiplied by 1/y,,, are substituted into
equation (5) and equation (7), g,, becomes two parametric
equations in terms of the foundation radius R, which is
considered to be the design parameter. By substituting g,
into equation (8), two parametric design equations are
obtained in terms of R. The foundation radius can be
obtained by solving these design equations for R and con-
sidering the minimum value of g, from equation (5) and
equation (7). Table 6 illustrates the solution for the gravity-
based foundation in the present study.

|

Table 4. Partial safety factors for the design equation (partly
based on IEC (2005)) '

Variable Value
Partial safety factor for load effect, y; 1-35
Partial safety factors for material properties, y, 13

Table 5. Stochastic models for physical, model and statistical
uncertainties (IEC, 2005; Sorensen, 2013)

Variable Distribution Mean COV | Quantile
g Lognormal - 1-00 0-10 | 5%
Kiya Lognormal - 1-00 0-05 | Mean
Kexp Lognormal 1-00 0-20 | Mean
Kaero Gumbel 1:00 0:10 | Mean
Xee Lognormal 1-00 0:10 Mean

Table 6. Design values for the gravity-based foundation in the
present study

Parameter Value

Foundation radius, R: m 11-59
Load eccentricity, e: m | 6-78
Effective area, Aef: m? 126-70
Effective width, begrz m 8-05
Characteristic bearing capacity, g ., DNV: kN/m? 19962
Characteristic bearing capacity, g, FE: KN/m? 19969

DETERMINISTIC AND PROBABILISTIC FINITE-
ELEMENT MODELS

To perform reliability analyses, a probabilistic FE model
is created within the Abaqus numerical package using
Python scripting. The model is calibrated such that the
deterministic FE analysis provides the same characteristic
bearing capacity as that obtained by the DNV method (i.e.
the design equation is appropriately satisfied). For this
reason, the characteristic value of the strength parameter,
here the undrained shear strength, is slightly changed such
that the same bearing capacity is obtained using the FE
model, As a result, cyrgm in Table 3 has the calibrated
characteristic value (5% quantile value of resistance distribu-
tion, see DNV (2013)). It is usually proposed in codes for
engineering design to use a 5% quantile of the mean value
distribution (e.g. BS EN 1997-1 (BSI, 2004)), and the 2D
assumption may not be very accurate. However, in the
present paper a direct comparison with the DNV (2013)
approach has been the main consideration and the motivation
for the present study is to examine the influence of soil
variability; that is, the model uncertainties related to the use
of a strip footing model with corrections due to shape and
load conditions are not the focus. Hence, in order to enable
a direct comparison with the capacity determined by the
DNV approach, a rigid footing with width by = 8 m is laid
on the soil elements and a 2D model is applied. Eight-node
plane strain elements with rectangular shape (I m X 0-5m)
are employed for the weightless soil,. A Mohr-Coulomb
elastic—perfectly plastic constitutive model is used for the
soil elements. It should be noted that the Mohr—Coulomb
criterion simplifies to the Tresca criterion under undrained
conditions (¢ = 0). To avoid having yielded elements close
to boundaries, the overall mesh dimensions are set to a
width of 9-5b¢sr and a depth of 2b.. The footing boundary
is tied to the soil nodes implying a rough interface, so the
soil cannot slide under the footing. Furthermore, a load-
controlled method allowing foundation rotations is utilised
within the FE analyses.

To obtain the same characteristic bearing capacity as the
deterministic design, the FE model is calibrated with the
material properties in Table 3. The calibration is performed
by using deterministic properties and the characteristic value
for the elastic modulus in Table 3 and changing the char-
acteristic value for c,. Once the calibrated characteristic
value for ¢, is known, Table 3 can be used to obtain the
calibrated distribution for the undrained shear strength with
the considered coefficient of wvariation (COV) in the FE
ITlOdBl, CuFEM -

Table 6 presents the characteristic values of the bearing
capacities obtained by Abaqus. This value is close to the
value from deterministic design (the DNV method). Results
of the deterministic FE analyses are displayed in Fig. 2,
which illustrates the failure mechanism in terms of the
displacement vector field. The load—displacement curve for
the deterministic analysis is presented in Fig. 3. As shown in
this figure, the load—displacement curve meets the same
bearing capacity as obtained using DNV,

Generating the random field

To create a probabilistic FE model, the undrained shear
strength cypem and the elastic modulus £ in Table 3 are
modelled as cross-correlated random fields. A Markovian
correlation function (equation (10)) is used for the random
field, The correlation between points in the field is con-
sidered to decay exponentially with absolute distance be-
tween the points. In equation (10}, Ax and Ay are spatial
distances in the horizontal and vertical directions, respec-
tively, and d; and 6, are correlation lengths from Table 3.
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Fig.2. An illustration of the failure mechanism using a displacement vector field in Abaqus

2001 @

180
160 |
140

-
N
o

100

Pressure: kN/m?
3

5 O
o o

— Abaqus, g, = 199-69
®  Failure

n
o

0 01 02 03 0-4 0-5 08 07 08
Displacement: m

Fig. 3. Load-displacement curves for FE model in the determi-
nistic design
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For the probabilistic FE model, random fields are gener-
ated with the matrix decomposition method. For each rea-
lisation, a vector of standard Gaussian random seeds, U(x),
the same size as the number of integration points, is gener-
ated for each random field. The correlation matrix R is
constructed with the correlation function specified in equa-
tion (10) and decomposed through equation (11a), where L
is the lower triangular matrix used for transferring U(x) to
the correlated field with zero mean G(x), as in equation
(11b).

IxI"=Fk
GX) =L XU

(11a)
(11b)

Having (he standard correlated random fields with zero
mean, Gi(x)={G\(x1), ..., Gi(x»)} for eyrem and Gi(x) =
{Ga(x1), .., Galx,)} for E (n is number of integration
points), cross-correlation between the two random fields can
be applied as shown in equation (12)

G

e(x) _ 10 i G1(x) (12)

Ge(x) p1=p? Ga(x)
where G.(x) and Gg(x) are cross-correlated random fields
with zero mean for cypem and E, respectively. The multiplier
matrix to random fields is the lower triangular matrix
produced by the Cholesky decomposition on the cross-

correlation matrix, where p is the cross-correlation between
the random fields (see Table 3). Once the cross-correlated

S e tve

random fields from equation (12) are known for each
random variable, transformation to the random fields with
real distribution for eurem and E can be performed as
YC = eXp (#lﬂf-'nl-'EM b Ulnc..nm Gc)
Yp = exp (ulnE - O’mEGE)

(13a)
(13b)

where g, and p, p are lognormal mean values for curem
and E, respectively, and ey, and oz are lognormal
standard deviations for ¢,pem and E, respectively, from Table 3.

To map the random ficld to the integration points in the
Abaqus models, the procedure proposed by Vahdatirad et al,
(2013) is applied. A user-defined material subroutine
(UMAT) has been developed, in which the random material
properties (random ficlds) are mapped as solution-dependent
state variables (SDVs) in each integration point of the soil
elements (see Abaqus (2011) and Clausen et al. (2007) for
more details). Fig. 4 shows a sample of correlated random
fields used in the Abaqus model. This figure presents the
high positive correlation between undrained shear strength
and elastic modulus as considered in Table 3.

Running the probabilistic FE models by MCS, numerous
realisations for the bearing capacity can be obtained and
used for the reliability analysis, Fig. 5 presents a sample of
the deformed mesh at the failure step with the mapped
random field for the undrained shear strength. Darker parts
in this figure represent the stiffer areas with higher undrained
shear strength, whereas lighter parts represent weaker zones
with lower stiffness and strength. The footing may rotate in
this model (see Fig. 5) due to presence of strength and

7. Properties for the generated
random fields:

Number of seeds = 2432

6 | Mean Cypem = 10491

COV gy = 0-321

5} | Mean E = 19806:19

E
4
-
k= COVE=0312
x i L
G 4
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=
g3t
<1
E
2
T 2f
8
w H
1k i
0 . . L . . i s
0 50 100 150, 200 250 300 350

Undrained shear strength, ¢,eey: kN/m?

Fig. 4. A sample of cross-correlated integration point-mapped
random fields using Cholesky decomposition method. Horizontal
correlation length = 0+5h.y



}
|

b

640 ! \}AHDATIRAD, GRIFFITHS, ANDERSEN, S@RENSEN AND FENTON

Fig. 5. Mapped random field for the undrained shear strength with a horizontal correlation length of 0-5b.r

stiffness variability and, as a result of this, differential
settlement under the foundation.

Figure 6 illustrates a sample for the developed failure
mechanism, presented by the displacement vectors. The
random fields shown in Fig. 5 were also used in this
realisation, As illustrated in Fig. 6, the failure mechanism
differs significantly from that in a homogeneous soil (Fig. 2)
because the failure mechanism is able to ‘seek out’ a path
through the weaker parts of the soil.

Model for the bearing capacity distribution and related
uncertainties !

For each horizontal correlation length in Table 3, prob-
abilistic models have been run by MCS, with 1000 realisa-
tions for each simulation, Using the realisations from MCS,
the cumulative distribution function can be obtained and
plotted (Fig. 7). A lognormal distribution, y, for the model-
ling of the bearing capacity can be considered using curve
fitting. However, there can be uncertainty related to the
choice of probability distribution type and the insufficiency
of data for the distribution parameters. This model/statistical
uncertainty can be estimated and added to the resistance part
in the reliability analysis (see next section on ‘Reliability
analysis’).

The lower tail of the resistance distribution is important in
the reliability analysis; therefore, curve fitting is performed
on samples at this tail (i.e. data points below the 5%
quantile). To estimate uncertainties related to parameters of
the fitted distribution, ‘bootstrapping’ is used (Effon &
Tibshirani, 1993). Original points at the lower tail of the
lognormal distribution are resampled with bootstrapping and
used for the new curve fitting. This process is repeated many
(10000) times. For the fitted distribution, y, parameters (i.e.
lognormal mean value g, and standard deviation oyyy) are
estimated for each resampled data set. Once the estimated
parameters are obfained (10000 samples), the correlation
between parameters and histograms for each of them can be
determined. Uncertainties related to the fitting parameters

10p
09t
08}
07¢
06
05
04+
03 -

o2r

Cumulative distribution function (CDF)

= MCS using 1000 realisations
~——— Lognormal distribution

01}

0

350 400 450 500 550 600
Bearing capacity, g, kN/m?

Fig. 7. CDF using MCS and fitted lognormal distribution as a
model for bearing capacity. The horizontal correlation length of
besr

are presented as normal distributions in each histogram.
These distributions, together with the correlation between
the estimated parameters, arc added as uncertainties in the
model for estimating the bearing capacities during reliability
analysis (see next section on ‘Reliability analysis’).

In summary, the steps for estimating the statistical uncer-
tainty of the fitted statistical parameters for the bearing
capacity are as follows.

1. Identify data (points) in the lower tail of the bearing
capacity distribution (i.e. <5% quantile).

2. Create 10000 sets of resampled points using boot-
strapping on the original samples from step 1.

3. Fit a lognormal distribution to each set of bootstrapped
samples in step 2. Find fu,, and o1y, Perform curve
fitting by the non-linear least-squares method.

Fig. 6. An illustration of the failure mechanism for the same random field in Fig. 5 using a displacement vector field
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4, Estimate the correlation between samples of iy, and
Ony Obtained from step 3.

5. Fit a normal distribution to the samples of g, , and Ty
obtained from step 3. Estimate the mean value and
standard deviation of s, and gyy.

Figure 8 shows the lognormal distribution fitted on one
set of resampled points, which has been appropriately fitted
with a high goodness of fit (R? value), Fig. 9 illustrates an
instance of fitted lognormal distributions for the entire
resampling process. Figs 10 and 11 present the histograms
and fitted normal distributions based on samples of p,, and
Oy Obtained from the bootstrapping method. Table 7 pre-
sents the uncertainties related to the estimated lognormal
parameters for the bearing capacity distribution (model) and
the results for different horizontal correlation lengths.

RELIABILITY ANALYSIS

Once uncertainties for resistance » and load s are known,
the generic form for the limit state function can be written
as

gE=r—s

(14)

10° ¢

¢ Resampled point
—— Lognormal fit, R? == 0:99

10—1 L

1072 L

Cumulative distribution function (CDF)
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Bearing capacity, g, kN/m?
Fig. 8. Fitting a lognormal distribution to a set of resampled

points at the tail of the distribution. The horizontal correlation
length of berf
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Fig. 9. Fitted lognormal distributions for the entire bootstrapping
process using a resampling of 10 000. The horizontal correlation
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Positive values for g correspond to the safety region with
no failure; negative values represent the failure states. In
order to account for uncertainties in the load (from Tables 2
and 5), a representative simple model for the wind turbine
load is used (see, e.g. Serensen & Toft, 2010):

5= XdynXepraemetrHL (15)

where X4n models the uncertainty for modelling the dy-
namic response, including uncertainty in damping ratios and
natural frequencies; Xy, models the uncertainty related to
modelling exposure, such as terrain roughness and land-
space topography (i.e. uncertainties related to site assess-
ment). Further, X models the uncertainty related to
assessment of lift and drag coefficients; Xy models the
uncertainty related to computation of the load effects given
external load; A models the uncertainty related to the annual
extreme load effect, due to wind load; and L = 85 m is the
wind turbine height (Table 1). Considering uncertainties for
the resistance part, » can be expressed as shown in equation
(16) (equivalent to the deterministic model in equation (9))

(16)

where 8 accounts for the model uncertainty from Table 5,
Aerr is the effective area of the foundation, e is the load

¥ = GyAdere
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Table 7. Uncertainties related to the estimated lognormal parameters for the bearing capacity (kN /mz) using resampling method

(bootstrapping)

Horizontal Uncertainty for the estimated lognormal Uncertainty for the estimated lognormal standard Cotrelation

correlation ¢ mean, fy, deviation, 01y between uy,,

length - — and oy,
Mean value, u PRl Standard deviation, o Hi Mean value, Hay,, Standard deviation, g, L I——

05 besr 6154 0-0039 0-092 0-0021 0.997

berr 6113 0:0043 0-092 0-0023 0-995

2 besy 6-146 | 0-0026 0-130 0-0017 0-991

4 bey 6-089 0-0045 0117 0-0025 0-997

8 berr 6-088 0-0070 0111 0-0037 0-997

cccentricity (from Table 6), and y is the model for estimat- Y = €xp [(,u#m + O gy X ) + (,u,,m - UUWX o)X 1] (20)

ing the bearing capacity, which contains the fitting uncer-
tainty in the previous subsection on the ‘Model for the
bearing capacity distribution and related uncertainties’.
Finally, considering the lognormal model and relevant uncer-
tainties to estimate the bearing capacity from the same

previous subsection, y can be; determined as
]

Y= h(Qu‘)“lny’ 0-ll.'ty) i

| V)]
where A(.) is the lognormal d15tr1but1on and gy, and oy
are the mean value and standard deviation, respectlvely, for
the lognormal model y from that subsection.

As the limit state equation g is differentiable, the first-
order reliability method (FORM) (Hasofer & Lind, 1974)
can be used to find the exact value of the reliability index .
By normalising the stochastic variables in the bearing capa-
city in equation (17), this function can be written as

yzexp(;zmy+r11n).X1j ; i (18)

in the normal space, where X; is the standard normal
variable. As presented in the subsection on the ‘Model for
the bearing capacity distribution and related uncertainties’,
there are uncertainties related to &, and o, that must be
considered in the model shown in equation (18). As Hiny
and oy,, are correlated (see also Table 7), this correlation
must be applied through the analysis. For this reason, the
correlated random variables for Hiny and O,y can be deter-
mined from

Xy

X
Here, X, and X; are realisations for the standard normal
variables, [ is the correlation between Hiny and ayny
in Table 7, and )Z' and X, are correlated random variables
for and orlny, respectively. Because py,, and o),y are

assumed to be normally distributed (see ‘Model for the
bearing capacity distribution and related uncertainties’), y in

1 110 X, }
} p.limy-"hy \," p“]ny.ﬂmy {X3

where i, and o, are the mean value and standard deviation
for the fz)gnormal mean p, ,, respectively. Furthermore, p,,
and 0,,, are the mean value and standard deviation for the
lognorma] standard deviation 1y, respectively (cf. Table 7).

Once functions for the resistance part r and the load part
s in the normal space are known, FORM can be implemen-
ted on the normalised limit state function g through equation
(14). Table 8 illustrates the results of the reliability analysis
using FORM. For different stochastic FE models and differ-
ent correlation lengths, this table presents the corresponding
values for the annual reliability index 8 and the design point
u*, which is the most probable failure point.

Figure 12 shows the trend of the annual reliability index
with respect to the horizontal correlation length ratio,
Oy /berr. The reliability index is seen to decrease rapidly for
short correlation lengths, but is almost constant for long
correlation lengths, Thus, the reliability index has an inverse
proportionality with the field’s correlation (i.e., a less corre-
lated field has a larger reliability index).

520
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5051
500
495}
490}

485}

Annual reliability index,

480 r
4751

4,70 1 1 1 A, 1 I 1
0 1 2 3 4 5 6 7 8

Horizontal correlation length ratio, 8, /b.y

Fig. 12. Annual reliability index plotted against horizontal

equation (18) becomes | correlation length ratio, d,/berr

Table 8. Results for reliability analysis using FORM

O m Design point, u* Annual

- - reliability

0* Hiyt KN/mM? | o KN/ | gl KNAm? Xin | Xio | Xiw X5 H*:kN index,

0-Sbegr 0-853 6-154 0-092 411-929 1-038 1-803 1-364 1-161 1:197 x 10° 5-052

begr 0-855 6-113 0-092 397457 1-037 1-780 1-345 1-158 1:195 x 103 4-930

by 0-862 6-146 0:130 365608 1-035 1-728 1-149 1-130 1:189 x 10° 4839

4bey 0-862 6-089 0117 361-881 1-035 1725 1-294 1-148 1:188 x 107 4-736

8ber 0-861 6-088 0111 367.993 1-036 | 1-732 | 1:306 | 1-149 1:190 % 10° 4762
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Interpreting biases in the model

Table 8 and Fig. 12 demonstrate that the estimated annual
reliability indices were high (>3-4) for bearing capacity
problems in wind turbine foundations (IEC, 2005; DNV,
2013; Vahdatirad et al., 2013). These high values explain
the existence of bias to estimate higher annual reliability
indices in the model proposed by the DNV standard (cali-
brated FE model) for the deterministic design. It is noted
that the target annual failure probability proposed by DNV
is 10~* (DNV, 2013), corresponding to an annual reliability
index of 3-72. Bias could have strong contributions to the
code-based design for conservative models and load-bearing
capacity formulae, or when very conservative strength
parameters (i.e. 5% quantile) are chosen. Biases for the
resistance part and for the strength parameter (i.e. undrained
shear strength) have been interpreted in this study., Con-
sidering these biases, the design equation in equation (8) can
be reformulated as

Cl.ll:
104y (vc“ y—, “U)Aeﬂ‘e —yeH L =0 20
m

Here, , and #, are biases for the resistance part and
strength parameter, respectively, and w represents other deter-
ministic parameters in the FE model for the characteristic
bearing capacity g,,(.). Considering a pair of (7, #,,) and
solving equation (21) for H.,, a new distribution for the load H
can be obtained and used in the reliability analysis to deter-
mine the target reliability index. On the other hand (,, .,
are chosen to determine H., such that the annual reliability
index obtained by considered load distribution A is equal to
the target annual reliability index. An infinite number of pairs
of (n,, 7,,) may satisfy the design equation for a considered
value of H. and give the same target reliability index. Fig, 13
presents an instance of the equal annual reliability index lines
for the considered horizontal correlation length and limited
ranges of #, and 7, . Values for n, and 7, increase as the
target reliability index decreases.

Optimising the foundation radius

The DNV method described in the deterministic design
section has been utilised with the bias-reformulated design
equation to obtain optimised values for foundation radii
corresponding to a target annual reliability index. A pair of
biases (i, 17,,) corresponding to a target annual reliability
index has been chosen from the equal annual reliability

22t
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Bias in the resistance, y,
N

\
B =
1.6
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3-70

OB F
10 12 1-4

Bias in the strength parameter, 1,

18 20

Fig. 13. Equal target annual reliability, f, curves for 7, and 7.
The horizontal correlation length of b

index lines (e.g. Fig. 13) and applied as multipliers to the
resistance part Y4 and strength parameter ¢y, in equation
(8). Consequently, a foundation radius Roptim corresponding
to the considered target annual reliability index is obtained.
A single target annual reliability index results in several
foundation radius values because different values of (3, Me,)
exist for one annual reliability index (cf. Fig. 13). To
interpret the results, the ratio between the optimised value of
the foundation radius Rupim and the radius Rpny obtained
from the no-bias situation (7, = ., = 1) is defined.

Figure 14 illustrates an instance of the relationship be-
tween the radius ratio Ropim/Rpnv and the target annual
reliability index f in the range of considered biases. Differ-
ences between the maximum and minimum values for the
Ropim/Rpny tatio are too small at each reliability level.
Optimal combinations for », and #¢,» Which minimise the
optimised foundation radius, are shown as solid lines in the
figure. Table 9 and Fig. 15 present the minimum value for

Roptim/Ronv with respect to the annual reliability index at
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Fig. 14. Relation between optimum foundation radius, target
annual reliability index, f, and biases. A horizontal correlation
length of by is considered

Table 9. Foundation radius ratio for different target annual
reliability indices

Oy m Annual Best combinations for the | Radius ratio,
reliability biases Roptim/Ronv
index, 8
e Neu

0-5besr 2-33 1181 2:000 0-902
3-10 0929 2-000 0920
3-30 0-873 2000 0-926
3-70 0:770 2000 0-938

berr 233 1:135 2-000 0-905
3-10 0-893 2:000 0924
3-30 0-839 2-000 0:930
3.70 0-740 2-000 0:942

2besy 2:33 1:137 2:000 0905
3:10 0-886 2-000 0925
3:30 0-830 2-000 0931
370 0:728 2-000 0-944

4besr 2:33 1:086 2-000 0908
3:10 0-849 2000 0929
3:30 0-797 2:000 0935
370 0-700 2-000 0-948

8besr 2:33 1-090 - 2-000 0-908
3:10 0-854 2000 0-928
3:30 0-801 2-000 0-934
3:70 0-705 2-000 0-948
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0, = 0-5bgy
Lsx = beﬂ

x = 2bgy
8, = 4byg
0, = Bbeg

Annual reliability index, 8

0-80 0-91 092 | 083 0:94 095 096
Minimum radius ratio, min(Rqym/Row)

Fig. 15, Annual reliability index with respect to the minimum
value of radius ratio obtained from the best combination of biases

different correlation lengths. The best choice for #, is
always the maximum value in the considered range (7,, = 2)
(Table 9). Thus, the global minimum for the optimised
foundation radius might drop out of the considered range for
1, and 77, . ;

Theoretically, it would be interesting to find the global
minimum for the optimised foundation radius. However,
considering very large or very small biases may lead to
unrealistic results due to errors in the FE modelling of the
bearing capacity. On the other hand, changes in the opti-
mised value for the foundation radius seem very small (see
Fig. 14), such that the presented values in Table 9 are very
close to the solutions. From the results in Table 9 and Fig,
15, savings in the foundation radius of 5% to 10%, depend-
ing on the target annual reliability index, are obtained by
considering bias in the model. Apart from the cost of
installation and transportation, considering a direct relation-
ship between the volume of the material and the foundation
radius squared, these results roughly corresponded to 10-
20% savings in material consumption, which is significant
regarding the total cost of the foundation.

CONCLUSION {1 ]

A code-based method for design of a gravity-based foun-
dation has been assessed with focus on the reliability level
regarding bearing capacity. In this context, a footing on
undrained cohesive soil has been analysed. The random
finite-element method (RFEM) has been used to perform the
probabilistic modelling, The Monte Carlo simulations were
complemented by a re-sampling technique, which focused
on samples at the tail of the bearing capacity distribution. It
has been shown that the reliability index decays with in-
creasing correlation length. Furthermore, it has been found
that the code-based design: method overestimates failure
probability. To perform more realistic and less conservative
design, biases in the strength parameter and total resistance
have been re-interpreted and used to calibrate the design
equation. Optimal bias values are proposed to achieve
acceptable target reliability indices. Optimised results using
the calibrated design equation allow savings in material
consumption of up to 20%, depending on the target annual
reliability level.
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NOTATION
Aer  foundation effective area
by foundation effective width
¢, undrained shear strength used in DNV method
cyc characteristic value for undrained shear strength
cyrem  calibrated undrained shear strength used in FE models
£ soil elastic modulus
e load eccentricity
G(x) correlated random field with zero mean
G(x) cross-correlated random fields with zero mean for cyppm
Gg(x). cross-corrclated random fields with zero mean for £
g limit state function
H horizontal load at foundation base
H. characteristic value for horizontal load H
h(.) lognormal distribution
i inclination factor
L -height of wind turbine from foundation base
L lower triangular matrix
lor  foundation effective length
M bending moment
N?  bearing capacity factor
py effective overburden pressure
g, bearing capacity
q,. characteristic value for bearing capacity
FE model for the characteristic bearing capacity
foundation radius
design value for foundation radius obtained from DNV at
the no-bias situation
optimum foundation radius corresponding to target annual
_ reliability
R correlation matrix
r resistance part in limit state function
s load part in limit state function
shape factor
U(x) standard Gaussian random seeds
¥ vertical load
w  deterministic parameters in FE model g,.(.)
X, standard normal variable
X, standard normal variable
X3 standard normal variable
uncertainty for assessiment of lift and drag coefficients
Xgyn uncertainty for modelling dynamic response
Xexp uncertainty for modelling exposure
X uncertainty for computation of load effects given external
load
X, correlated random variable for g, in normal space
X, correlated random variable for oy,, in normal space
Y. random field with real distribution for cyrpym
Yq characteristic value for resistance part in design equation
Yg random field with real distribution for E
y fiited lognormal distribution to bearing capacity
B annual reliability index
Ax  horizontal spatial distance
Ay vertical spatial distance
&, horizontal correlation length
&y vertical correlation length
y¢ partial safety factor for load
¥m Dartial safety factor for material
7,, bias for strength parameter
7, biases for resistance part
6 model uncertainty
6. characteristic value of model uncertainty for bearing
capacity
lognormal mean value for cypem
tne lognormal mean value for £
My lognormal mean value for y
#y,, mean value for g,
mean value for oy,



RELIABILITY ANALYSIS OF A GRAVITY-BASED FOUNDATION FOR WIND TURBINES 645

p cross correlation
Prelg  correlation function
Pty iy correlation between Hiny a_nd Clny
Omesew  l0gnormal standard deviation for cyrpm
Uinge  lognormal standard deviation for £
Otny lognormal standard deviation for y
Op,, standard deviation for u,,
Oy, Standard deviation for oy,
¢ soil friction angle

REFERENCES

Abaqus (2011). Section 1.1.17: Define initial solution-dependent
state variable fields; Section 1.1,40: Define a material’s mechani-
cal behavior. In Abaqus user subroutine reference manual. Paris,
France: Dassault Systémes Simulia Corp.

Andersen, L. V, Vahdatirad, M. J. & Serensen, J. D. (2011). Relia-
bility-based assessment of the natural frequency of an offshore
wind turbine founded on a monopile. In Proceedings of 13th
international conference on civil, structural and environmental
engineering computing (eds B. H. V. Topping and Y. Tsompana-
kis), paper 83. Stirlingshire, Scotland: Civil-Comp Press.

Andersen, L. V,, Vahdatirad, M. I, Sichani, M. T. & Serensen, J. D.
(2012). Natural frequencies of wind turbines on monopile
foundations in clayey soils: a probabilistic approach. Comput.
Geotech. 43, 1-11,

BSI (2004). BS EN 1997-1: Eurocode 7: Geotechnical design —
Part 1: General rules. BSI, London, UK.

Cassidy, M. I, Uzielli, M. & Tian, Y. (2013). Probabilistic com-
bined loading failure envelopes of a strip footing on spatially
variable soil. Comput. Geotech. 49, 191-205.

Clausen, J., Damkilde, L. & Andersen, L. V. (2007). An efficient
return algorithm for non-associated plasticity with linear yield
criteria in principal stress space. Comput. Structs 85, No. 23-24,
1795-1807.

Dassault Systéemes Simulia Corp (2012). Abaqus 6.12 analysis
user’s manual. Providence, RI, USA: Dassault Systémes Simulia
Corp.

DNV (Det Norske Veritas) (2013). DNV-0OS-J101: Offshore stan-
dard: design of offshore wind turbine structures, DNV, Oslo,
Norway.

Efron, B. & Tibshirani, R. (1993). An introduction to the bootstrap,
Boca Raton, FL, USA: CRC Press.

European Wind Energy Association (2009). Wind energy — the
Jucts: A guide to the technology, economics and future of wind
power, pp. 212-218. London, UK: Earthscan.

Fenton, G. A. & Griffiths, D. V. (2003). Bearing capacity prediction
of spatially random c—¢ soils. Can. Geotech. J. 40, No. 1,
54-65.

Fenton, G. A. & Griffiths, D. V. (2005). Three-dimensional prob-
abilistic foundation settlement. J. Geotech. Geoenviron. Engng,
ASCE 131, No. 2, 232-239.

Fenton, G. A., Griffiths, D. V. & Cavers, W. (2003). Resistance factors
for settlement design. Can. Geotech. J. 42, No, 5, 1422-1436.
Fenton, G. A.. Zhang, X. & Griffiths, D. V. (2007). Reliability
of shallow foundations designed against bearing failure
using LRFD. Georisk: Assessment Mgmt Risk Engd Systems
Geohazards 1, No. 4, 202-215, http://dx.doi.org/10.1080/

17499510701812844.

Fenton, G. A., Griffiths, D. V. & Zhang, X. (2008). Load and
resistance factor design of shallow foundations against bearing
failure. Can. Geotech. J. 45, No. 11, 1556-1571.

Griffiths, D. V. & Fenton, G. A. (2000). Bearing capacity of
heterogeneous soils by finite elements. In Proceedings of the 5th
international congress on numerical methods in engineering and
scientific applications (eds N. Troyani and M. Cerrolaza), pp.
27-37. Caracas, Venezuela: Sociedad Venezolana de Métodos
Numéricos en Ingenieria,

Griffiths, D. V. & Tenton, G. A, (2001). Bearing capacity of

spatially random soil: the undrained clay Prandtl problem revis-
ited. Géotechnigue 51, No. 4, 351-359, http:/dx.doi.org/
10.1680/geot.2001.51.4.351. ‘

Griffiths, D. V. & Fenton, G. A. (2009). Probabilistic settlement
analysis by stochastic and random finite-element methods.
J. Geotech. Geoenviron. Engng, ASCE 135, No. 11, 1629-1637.

Griffiths, D. V, Fenton, G. A. & Manoharan, N. (2002). Bearing
capacity of rough rigid strip footing on cohesive soil: probabil-
istic study. J Geotech. Geoenviron. Engng, ASCE 128, No. 9,
743-755.

Griffiths, D. V, Fenton, G. A. & Manoharan, N. (2006). Undrained
bearing capacity of two-strip footings on spatially random soil.
Int. J. Geomech., ASCE 6, No. 6, 421-427.

Hasofer, A. M. & Lind, N. C. (1974). An exact and invariant first
order reliability format. J, Engng Mech. Div, ASCE, 100, No. 1,
111-121.

IEC (International Electrotechnical Commission) (2005). IEC
61400-1: Wind turbines ~ Part 1: Design requirements, 3rd edn.
Geneva, Switzerland; IEC.

JCSS (Joint Committee on Structural Safety) (2006). JCSS-Cl:
probabilistic model code. Section 3.7: Soil properties, revised
version. Technical University of Denmark, Denmark: Joint Com-
mittee on Structural Safety.

Lee, I. K., White, W. & Ingles, O." G. (1983). Geotechnical
engineering. London, UK: Pitman,

Nilsen, P. (2003). Offshore wind energy projects feasibility study
guidelines SEAWIND, Altener project 4, 1030/Z/01-103/2001.
Aalborg, Denmark: Energi- og Miljedata.

Paice, G. M. & Griffiths, D. V. (1999). Bearing capacity reliability
of an undrained clay block formed from spatially random soil.
In Proceedings of 7th conference on association of computa-
tional mechanics in engineering (ACME) (ed. P. Bettess), pp.
203-206. Sunderland, UK: Penshaw Press.

Phoon, K. K. (ed.) (2008). Reliability-based design in geotechnical
engineering: Computations and applications. Oxford, UK: Tay-
lor & Francis.

Popescu, R., Deodatis, G. & Nobahar, A. (2005). Effects of random
heterogeneity of soil properties on bearing capacity. Probabilis-
tic Engng Mech. 20, No. 4, 324-34].

Randolph, M. E, Jamiolkowski, M. B. & Zdravkovic, L. (2004).
Load catrying capacity of foundations. In Proceedings of
Skempton memorial conference, London, vol. 1, pp. 207-240,
London, UK: Thomas Telfotd.

Serensen, J. D. (2013). Reliability assessment of wind turbines.
Proceedings of European Safety and Reliability Association
(ESREL) conference, Amsterdam (eds R. D. J. M. Steenbergen,
P. H. A J M. van Gelder, S. Miraglia and A. C. W. M.
Vrouwenvelder). London, UK: CRC Press.

Serensen, J. D. & Toft, H. 8. (2010). Probabilistic design of wind
turbines. Energies 3, No. 2, 241-257, http://dx.doi.org/10.3390/
en3020241,

Vahdatirad, M. I, Andersen, L. V, Clausen, J. & Serensen, J. D.
(2011). The dynamic stiffness of surface footings for offshore
wind turbines: reliability based assessment. In Proceedings of
13th international conference on civil, structural and environmen-
tal engineering computing (eds B. H. V. Topping and Y. Tsompa-
nakis), paper 82. Stirlingshire, Scotland, UK: Civil-Comp Press.

Vahdatirad, M. J, Andersen, L. V, Ibsen, L. B., Clausen, J. &
Serensen, J. D. (2013). Probabilistic three-dimensional model of
an offshore monopile foundation: reliability based approach. In
Proceedings of 7th international conference on case stories in
geotechnical engineering: and symposium in honor of Clyde
Baker (ed. S. Prakash), Missouri University of Science and
Technology, paper 8-09a. Chicago, IL, USA: Missouri University
of Science and Technology.

Vahdatirad, M. J, Bayat, M., Andersen, L. V. & Ibsen, L. B.
(2014). Probabilistic finite element stiffness of a laterally loaded
monopile based on an improved asymptotic sampling method.
J Civ. Engng Manage, in press,






