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Rainfall induced landslides vary in depth and the deeper the landslide, the greater the damage it causes. This
paper investigates, quantitatively, the risk of rainfall induced landslides by assessing the consequence of each fail-
ure. The influence of the spatial variability of the saturated hydraulic conductivity and the nature of triggering
mechanisms on the risk of rainfall-induced landslides (for an infinite slope) are studied. It is shown that a critical
spatial correlation length exists at which the risk is a maximum and the risk is higher when the failure occurs due
to a generation of positive pore water pressure.
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1. Introduction

Landslides cause damage to buildings, infrastructure, agricultural
land and crops. In the majority of cases the main trigger for landslides
is heavy or prolonged rainfall (Brand, 1984; Fourie, 1996). Rainfall-
induced landslides are common in tropical and subtropical regions
where residual soils exist in slopes and there are negative pare water
pressures in the unsaturated zone above the water table (Rahardjo
et al,, 1995). In an unsaturated soil, these negative pore water pressures
contribute towards its shear strength and thus help to maintain stability
(Frediund and Rahardjo, 1993). The infiltration of rainwater causes a
reduction in this negative pore water pressure and an increase in the
soil unit weight (due to an increased saturation), both of which have a
destabilizing influence.

Research on rainfall-induced slope failure indicates that several
factors affect the stability of a slope subjected to rainfall infiltration,
Published research in the area (Zhang et al,, 2011; Zhan et al., 2012: Li
et al, 2013) shows that the rainfall characteristics (duration, intensity
and pattern), the saturated hydraulic conductivity of the soil, the slope
geometry, the initial conditions, and the boundary conditions are the
factors that influence the stability of a slope subjected to rainfall.
Among these factors, the hydraulic conductivity is a very important
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parameter in seepage and stability problems involving unsaturated
soils (Tsaparas et al, 2002; Rahardjo et al., 2007; Rahimj et al., 2010).

Most studies involving rainfall-induced landslides are deterministic
in nature, where the soil is assumed to be homogeneous and averaged
(or design) soil properties are considered in the analysis (Gui et al.,
2000). The uncertainties associated with the soil parameters are usually
dealt with by adopting “reasonably averaged” parameters, coupled with
practical experience (Duncan, 1996). In reality, soil is inherently hetero-
geneous with its properties varying from point to point due to different
depositional and post-depositional pracesses (DeGroot and Baecher,
1993; Lacasse and Nadim, 1996), A few studies focused on the effects
of the spatial variability of the hydraulic conductivity on rainfall infiltra-
tion and subsequent slope stability by using random field theory
(e.g. Santoso et al,, 2011; Zhu et al., 2013; Cho, 2014), but those studies
did not investigate the nature of the triggering mechanism or quantified
the risk associated with a rainfall-induced landslide when the saturated
hydraulic conductivity varies spatially.

It is now commonly believed that there are two mechanisms that
trigger failure in slopes subject to rainfall infiltration (Lietal, 2013);
loss of suction during propagation of the wetting front and the rise of
the water table (which generates a positive pore water pressure),

Generally, a loss of suction (i.e. reduction in negative pore water
pressure) causes a shallow failure while a rise in the water table
(ie. generation of a positive pore water pressure) causes a deep failure,
However, this may not be true when the saturated hydraulic conductiv-
ity varies spatially, as the water may accumulate at shallow depths
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(Huang et al., 2010) leading to a positive pore water pressure and a
shallow failure. To the authors' knowledge, this important effect has
not been studied systematically. Another key aspect of the risk assess-
ment of rainfall-induced landslides is the assessment of consequence.
Rainfall-induced landslides can be shallow or deep. It is clear that a
deep-seated landslide will tend to cause more damage and thus has a
more severe consequence. Therefore, the consequence associated with
a shallow or deep failure should be assessed individually.

The changes in the near-surface pore water pressures caused by
rainfall may be determined using field-observations, analytical solu-
tions or numerical methods. This steady-state pore-pressure field is
then used to determine the slope stability either analytically or numer-
ically. Among these uncoupled approaches, the infinite slope model
combined with a one-dimensional hydrological model is popular
(e.g. Collins and Znidarcic, 2004; Tsai and Chen, 2010; Tsai, 2011;
White and Singham, 2012; Zhan et al., 2012; Zhang et al., 2012; Li
et al,, 2013; Zhang et al., 2014) and will be adopted in this study. In
the infinite slope model, the landslide is characterized as a slope failure
occurring along a plane parallel to the ground surface. It assumes that
each slice of an infinitely long slope receives the same amount and in-
tensity of rainfall (Collins and Znidarcic, 2004); that the time required
for infiltration normal to the slope is much less than the infiltration
time required for flow parallel to the slope; that the wetting front prop-
agates in a direction normal to the slope' (White and Singham, 2012);
and that the depth of failure is small compared to the length of the fail-
ing soil mass. The validity of these assumptions has been checked
against the predictions of two-dimensional numerical models, with
the conclusion that an infinite slope approximation may be adopted
as a simplified framework to assess failures due to the infiltration of
rainfall (Zhan et al,, 2012; Li et al,, 2013).

In this study, the saturated hydraulic conductivity is modelled
as a random field and coupled with Monte-Carlo simulations for
the determination of failure probability, consequence and risk. The
rainfall-induced landslide risks of two slopes having different triggering
mechanism are studied by adopting the quantitative risk assessment
framework proposed by Huang et al. (2013). To obtain the pore water
distributions, the modified form of one-dimensional Richards equation
(Richards, 1931) is solved numerically by the HYDRUS 1D software
(Simunek et al,, 2013).

2. Seepage analysis

Assuming that the effect of pore-air pressure is insignificant and that
water flow due to thermal gradients is negligible, one-dimensicnal uni-
form flow in a variably saturated soil can be described by a modified
form of Richards equation (Richards, 1931). Therefore, the flow in an
unsaturated infinite soil slope can be described by the 1D equation
(e.g. Zhan et al,, 2012):

%:%(K[f—é+ cosaD M

where 6 is the volumetric water content, t is time, u is the pore water
pressure head, ¢ is the inclination of the slope to the horizontal, K is
the hydraulic conductivity and z is the spatial coordinate as shown in
Fig. 1, To solve the above equation numerically, the water content 8 is

! The use of an infinite slope model implies that the pore water pressure at a certain
depth is same along all lateral extents of the slope i.e. the pore pressure contours are par-
allel to the ground surface when the slope is subjected to rainfall (e.g. Zhan et al,, 2012).
Pore pressure contours parallel to the ground surface also imply that any variability in
the hydraulic conductivity (parallel to the slope surface) is neglected., If flow is not strictly
one-dimensional, then the pore water pressures will vary along the lateral extent of the
slope, even at the same depth. The problem in such a case will no longer be one-
dimensional in nature and the use of an infinite slope model would be inappropriate.
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Fig. 1. Limit-equilibrium set up.

assumed to vary with the pore water pressure head u according to the
van Genuchten (1980) model as:

6—6, 1 m

Se . Bs_ﬁr = [] + (HU)N} (2)
where S, is the effective degree of saturation, 6, and 8, are the saturated
and residual water content respectively, a is the suction scaling param-
eter and N, m are the parameters of the van Genuchten model. Noting
that the volumetric water content is related to the degree of saturation
S and the porosity n (by the relation 8 = nS), the effective degree of sat-
uration can also be expressed in terms of the degree of saturation S in
the following form:

S-S
SE = 1—5: (3)

where S, is the residual degree of saturation. To complete the descrip-
tion, the hydraulic conductivity K can be estimated as:

K = KK, 4

where K; is the saturated hydraulic conductivity and K, is the relative
hydraulic conductivity given by van Genuchten (1980):

K. 5P [1—(1—32’"’)’"]2. (5)

In this study, the saturated hydraulic conductivity is modelled as a
random field and Eq. (1) is solved by HYDRUS 1D. The distribution of
pore water pressure and the degree of saturation are then used in the
infinite slope model to assess the slope stability.

2.1, Slope stability assessment

Once the pore water pressure distribution is obtained through
seepage analysis, the factor of safety FS at any given time ¢t can then be
determined by limit-equilibrium techniques. The stability of an infinite
slope is estimated by using a closed form solution similar to that pro-
posed by White and Singham (2012), where the failure is considered
to occur along a plane parallel to the ground surface. A soil column of
a unit width is considered, where the self-weight W is used to obtain
the normal force Fy and tangential force Frat any depth. The expression
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for the factor of safety is derived along the same lines as White and
Singham (2012).

Referring to Fig. 1, resolving equilibrium of the normal forces on the
slip plane gives:

Fy=Wcos (6)

where W is the self-weight of the soil column above the failure plane.
The unit weight of soil during rainfall infiltration will increase due to
an increase in water content; neglecting this effect (i.e. assuming a
constant unit weight) could lead to a higher (and thus false) estimate
of stability (Tsai and Chen, 2010; Zhan et al., 2012). Therefore, to
account for the variation in unit weight due to the variation in the
water content with depth, W is determined as:

D,/ cosar

W:f ! yi:#
0
1

Dy/ cosex

Cose — Cosct Jy [(1=n)y, + nSy,]dz

D/ cosax
- cosa_[ 0

where Dyis the failure depth, s the bulk unit weight of soil, v, is the unit
weight of soil solids, and ,, is the unit weight of water and the water
content 6 is defined in Eq. (2). Note that the integration takes place
along the vertical direction as illustrated in Fig. 1. From simple statics,
the total nortnal stress o on the failure surface can be computed as:

)

[(1—n)y + Oy, )dz

o= Fycosc (8)

o=Wcos’a (2
while the corresponding shear force is given by:
Fr = Wsina. (10)

Hence the shear stress on the failure surface is:

T = Frcosa (11)
or
T=Wcosasina. (12)

In this study, the shear strength of soil 7 (in terms of effective stress)
is assumed to be described by the Mohr-Coulomb model:

=0+ U"tan(qb’) (13)

where ¢ is the effective cohesion, o’ is the effective normal stress, and ¢
is the effective friction angle. To consider the influence of pore water
pressure on the shear strength of a variably saturated soil, Terzaghi's
effective stress principle is modified according to the formulation of
Bishop (1959):

0’ = (0—1) + x(t,—u,) (14)

where i, is the pore-air pressure, u,, = y,u is the pore water pressure,
(ug — uy,) is known as matric suction and y is called the coefficient of
effective stress and is a constitutive property of the soil that depends
on the degree of saturation. For a variably saturated soil, ¥ denotes
the proportion of matric suction that contributes to the effective stress
and generally varies between 0 (for a perfectly dry soil) and 1 (for a
completely saturated soil). Though many mathematical forms of y
have been proposed in the past, in the present study y is considered
equal to the effective degree of saturation, S, (Vanapalli et al., 1996):

06, S-S, _

Se- (15)

Substituting u, = 0 in Eq, (14) and substituting Eq. (15) in Eq. (14)
gives:

¢ =a=S,u,. (16)

Slope failure occurs when the applied shear stress T exceeds the
mobilized soil shear strength 7. The factor of safety FS can then be
computed as:

Tr  tang’ ¢ —S,u, tang’
=t eHw
= T tana W cos asin o (19)

where FS = 1 corresponds to a limiting condition for equilibrium, and
failure occurs when FS is less than 1.

3. Probabilistic analysis
3.1. Random field theory

Random fields are characterized by a distribution (e.g. log-normal
type) and a spatial correlation structure, The present study considers
the saturated hydraulic conductivity, K;, to be log-normally distributed
which is consistent with field measurements (Hoeksema and
Kitanidis, 1985; Sudicky, 1986). A log-normal distribution can be easily
arrived at by a non-linear transformation of the normal (Gaussian) dis-
tribution and it ensures that the random variable is always positive
(Griffiths et al, 2011). Such a distribution has also been used by several
investigators for modelling saturated hydraulic conductivity statistically
(Fenton and Griffiths, 1993; Griffiths and Fentorn, 1993; Gui et al, 2000
Srivastava et al,, 2010; Santoso et al,, 2011; Cho, 2012). A log-normally
distributed K; is defined by two parameters, a mean (g, ) and coeffi-
cient of variation (v, ) which are related by:

K
Ve =—2 18

k= (18)
where Oy, is the standard deviation for the log-normally distributed K.
The equivalent parameters of the normally distributed Ink; — 1, x, and
U g, (le. the mean and standard deviation of InK)) are:

Ok, = In(1+7%,) (19)
Hing, = In (#x,) = %‘Uzan,' (20)

In addition to the mean and the coefficient of variation, a third pa-
rameter, the spatial correlation length @, k;» 1S required to completely
define a random field. The spatial correlation length defines the distance
over which the soil properties are significantly correlated; with proper-
ties separated by a distance greater than 6, k, being generally uncorre-
lated. A large spatial correlation length means that the soil properties
are highly correlated over a large distance, implying less spatial variabil-
ity and more uniformity in soil properties. Conversely, a small correla-
tion length implies a higher spatial variability and less uniformity in
the soil properties. In the context of random fields, the spatial correla-
tion lengths are generally incorporated through a correlation function.
The correlation function p assumed for the present study is an exponen-
tial one of the form:

p(2) = exp (—f,'i') 1)

InK,

Based on the log-normal distribution and the correlation function
defined above, one-dimensional randem fields for saturated hydraulic
conductivity K; can be generated. In the present study, the Karhunen
Loéve (KL) expansion method (Zhang and Lu, 2004) is used for this
purpose. Note that the required number of terms in the KL expansion
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increases when the spatial correlation length decreases and, for the
smallest 6k, considered in this study, more than 5000 terms were
used. The Karhunen Loéve expansion method generates a Gaussian
(normal) random field and K, being log-normal, requires a log-normal
random field. This is obtained through the transformation;

Ky = exp(Bing, + T i 8;) (22)

where K,; is the saturated hydraulic conductivity assigned to the jth
node (of the 1D finite element mesh) and g; is the Gaussian equivalent
of K obtained from a zero mean and unit standard deviation, The
dimensionless form of spatial correlation length © is defined as:

10k,
0= — = (23)
where D is the length of the random field.

The exponential correlation function produces many small scale var-
iations. In order to capture these small-scale variations, the element size
needs to be sufficiently small. In the present study the smallest correla-
tion length was 0.125 m and the element size was 0.01 m. This means
that element size is 8 times smaller than the smallest spatial correlation
length. It was observed that stable results can be obtained by this mesh
density.

3.2. Risk assessment

During rainfall, water infiltrates into the soil from the top and can
cause shallow or deep failures. It is clear that a deep failure will tend
to cause more damage and thus has a more severe consequence. There-
fore, the consequence associated with shallow and deep failures should
be assessed individually. In the present study, consequence is assumed
to be directly related to the failure depth Dy. The risk R is defined as:

Wi
R=3ppxC (24)

i=1

where pj; and C; are the probability and consequence of failure mode i,
and nyis the number of failures.? In applications, an additional vulnera-
bility component would be added to Eq. (24). However, it has been
assumed to be one here for simplicity and to concentrate the paper on
the novel developments (e.g. Cassidy et al., 2008). Eq. (24) can be
rewritten in the traditional form as:

ny 1o 26 (25)

iy 1 ne 4
R= xC =Y —xC=—-9 C=AE__pr
; P ' ; Msim ! Nsim ; ' Ngm N 5

where C is the consequence and n,;,, is the number of Monte-Carlo
simulations.

ny
- 26
py 73 (26)
and
ny
2
_ =
C= e (27)

2 For the Monte-Carlo simulations conducted in this study the rainfall duration was
fixed, The factor of safety (FS) was calculated for each time step and at all depths, When-
ever F5 < 1, failure occurs and simulation stops. The time and depth of failure are then re-
corded, If FS is greater than 1 when rainfall stops, slope is said to be safe. The number of
failures (ny) is the sum of failures. Each failure is treated as an independent failure mode,
so the probability of one single failure mede is constant, i.e. ps = 1/ ngim. As the simulation
stops whenever FS < 1, it is impossible for another failure to occur after one failure has hap-
pened, This means that failures are disjoint.

It can be seen from Eq. (27) that consequence C in the traditional
risk definition should be redefined as the average consequence of all
failures.

4, Examples

The risks associated with the failure of two slopes are assessed in this
section. “Example 1" considers a purely frictional soil slope while
“Example 2" considers a cohesive-frictional soil slope. It is shown that
shallow failures are more likely to occur in the first example.

A hypothetical slope, at an inclination of & = 36° to the horizontal,
is considered as shown in Fig. 1. A 1 m thick homogeneous soil layer
is underlain by rock (i.e. D = 1 m). The water table is initially 2 m
(all distances measured normal to the slope) below the ground surface
and is assumed to be constant throughout the analysis. The initial pore
water pressure profile is hydrostatic and, as rainfall occurs, the water
is assumed to infiltrate in a wetting front normal to the slope. The rain-
fall intensity is I, and the flux q infiltrating the soil at the top is given by
Icos o. No ponding of water is allowed at the ground surface at any time.
The mechanical and hydraulic properties of the soil are given in Table 1
(White and Singham, 2012). In this section, the landslide risk of the
slope described above is assessed for the two examples,

4,1, Example 1

In this example it is assumed that ¢’ = 0. Based on the expression
for the factor of safety (Eq. (17)) with the parameters described in
Table 1 and considering o = 36°, the factor of the safety before rainfall
(considering a hydrostatic distribution) is 1.285.

4.1.1. Estimation of pore water pressure distribution at failure

Assuming that soil is fully saturated (i.e. S, = 1) at failure, the pore
water pressure required to cause failure at different depths can be esti-
mated analytically. Substituting FS = 1 and S, = 1 into Eq. (17) gives:

tan ¢’ .
c’—(l— d’)Wcosasma
tan

Uy, =

tan ¢’ a8

The initial and failure profiles of the pore water pressure are shown
in Fig. 2. In this figure, “Initial condition” represents the initial hydro-
static pore water pressure distribution and “FS = 1.00” represents
the pore water pressure (corresponding to different depths of failure)
estimated from Eq. (28). The pore water pressure at failure is shown
on a magnified scale in the inset. It can be observed that failures occur
due to loss of suction only. The residual negative pore water pressure
(at failure) increases with an increase in depth. This implies that the
failure depth will depend on the reduction in the negative pore water
pressure and will be the deepest when the reduction in the negative
pore water pressure is the least. This is because with an increase in
depth, the destabilizing force due to the weight component increases
and, therefore in case of a deep failure, the negative pore water pressure
need not be reduced to the same extent as that required for a shallow
failure.

4,1.2, Preliminary deterministic analysis

A series of deterministic analyses is performed where I is kept
constant (I = 0.25p ) and K; is varied. Fig. 3 shows the relationship
between Dyand K.. The first passing time of failure is shown in Fig. 4. If
the mean value of saturated hydraulic conductivity Uy, is considered,
the depth of failure D; = 1.00 m and the first passing time of failure
tr = 0.0855 days. If the rainfall duration is restricted to 0.0855 days,
then failures would occur enly for some values of K, which are denoted
by the (red) solid lines in Figs. 3 and 4. Initially, when the failure depth is
the same (i.e. Dy = 0.01 m), an increase in K, will allow the flux to
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Table 1

Material properties of the soil (White and Singham, 2012) considered in the present study.
Parameter Symbol Value Units
Porosity n 0.4
Unit weight of soil solids Ve 20 kN/m?
Unit weight of water Yw 10 kN/m?
Mean saturated hydraulic conductivity Hy, 8.64 m/day
Residual water content 6, 0.128
Saturated water content A 04
Scaling suction a 5 1/m
Van Genuchten model parameter N 1.5
Van Genuchten model parameter m (N —1)N
Effective cohesion (Example 1/Example 2) {4 0/0.15 kPa
Effective friction angle &' 35 °

infiltrate quickly and this explains why with an increase in K, the failure
time decreases. However, around K; = 2.35 my/day, the failure depth
starts increasing with an increase in K. Therefore the failure time also
increases until K; = 6 m/day after which the failure time decreases
again. This is because, when K; =~ 6 m/day, the failure occurs at the im-
permeable boundary. Increasing K; any further will not affect the failure
depth (i.e. the failure will still occur at the boundary) but, will reduce
the time required for the flux to infiltrate to the bottom and cause

failure,

i. From Figs. 3 and 4, it can be seen that there exists a range of saturated
hydraulic conductivity values between which the failure is always
shallow. K represents the lower bound and K, represents the
upper bound of this range. The depth of shallow failure is minimum
for Ksyy and maximum for Kgnn. In this range of KDy increases
when K; increases. If K is less than K;p; there is no failure.

ii. If K; is in between Kgmin and pi , there will be no failures. In other
words, no failure is observed in the soil profile between 0.77 m and
1.00 m and this shall be referred to as the “region of no failure”

later on,
If K; is greater than p, the failure will always be deep (Dy=1.00 m).

ii.
Fig. 5 illustrates situations of deep and shallow failures, respectively,
as observed in the deterministic study.

4.1.3. Analytical estimation of probability of failure

Based on the observations presented in the previous subsection,
the probability of failure can be estimated analytically. Fig. 6 shows
the saturated hydraulic conductivity, K;, distributed log-normally
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Fig. 2, Profiles of pore water pressure — initially and at failure (Example 1); inset, profile of

pore water pressure at failure on a magnified scale,

with mean ;= 8.64 m/day and v, = 1. The critical values of Kenps
Kemin and g are also illustrated when the rainfall duration, t =
0.0855 days and the rainfall intensity I = 0.251 % For the time t, and
rainfall intensity I, the probability of the saturated hydraulic conductiv-
ity K being below a certain value K, can then be determined analytically,
by transforming the log-normal to normal as:

InK—
P(K, <K) = P( InK,<Ink) = P Z<ﬁ)

O-lni(,
- InK—f .
Y ink,

where & is the cumulative standard normal distribution and Z is the
standard normal variate. The log-normal parameters Fink, and o
are obtained from the parameters Mg, and e as explained in Section 3.1.

The probability of failure pycan be determined analytically as a sum
of the probabilities of shallow failure py (Dy<1.00 m) and deep failure
Pra (Dy = 1.00 m). This can be written as:

(29)

Pr=Pg+Pu (30)

where

pp=P (Ksnf <K, <Ksmln)
=P(K; < Ksmfn)—P(KS 5 Kmf)

—plz< ansmin_luinIQ —p|z< anSnf_uij
Uk, T Ink,

— ansmin_.”an, . ansnf"'P']nK,
UInK, Uink’,

(31

P = P(Ko> 1, )
= 1-P(K; <p,)

1—p( 7 < 10Hk~H g, (32)
u InK;

— 1= 11—1“}(j —H InK, )
Uan,

Substituting Ky = 0.1705 m/day, Kgmin = 5.863 m/day and i, =
8.64 m/day in the above formulae (Egs. (30), (31) and (32)), the prob-
ability of failure pycan be determined analytically for a range of Vk,.

# Itis should be noted that the zoning in Fig. 6 (‘No failure', ‘Only shallow failure’, ‘Only
deep failure’) has been done from the results of preliminary deterministic analysis (Figs. 3
and 4), where the rainfall duration and intensity were fixed. For a given soil slope, the
width of the zones will vary if the rainfall duration/intensity is changed.
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Fig. 4. Variation of first passing time of failure ty with saturated hydraulic conductivity K, for I = 0.254, (Example 1).

4.1.4. Single-random-variable approach

To validate the analytical prediction presented in the previous sub-
section, a single-random-variable (SRV) analysis is conducted. The
single-random-variable approach implies a very large spatial correla-
tion length 6 1, ¢, (= =) i.e. the saturated hydraulic conductivity is a con-
stant in the soil profile. The saturated hydraulic conductivity K, is drawn
at random from a log-normal distribution and assigned to the slope. For
the SRV analysis, two thousand Monte Carlo simulations were per-
formed. For each realization of K;, seepage analysis is performed for a
rainfall duration t = 0.0855 days. The factor of safety (FS) for every
time step and depth was recorded. Whenever FS < 1, failure occurs
and the corresponding time and depth of failure are recorded as ¢y
and Dy respectively. If FS is greater than 1 when rainfall stops,
the slope is said to be safe, and the failure depth is recorded as zero
(i.e. D/ = 0) in such cases. The prabability of deep failure py in this
case is defined as;

n
P =% (33)

Msim

where g is the number of failures with Dy = 1.00 m.” The probability of
shallow failure pg is defined as:

Ngs

Ps=7"—=D;—Pu (34)
ns:m

where g, is the number of failures with Dy< 1.00 m.

The probabilities of failures py pjs and pgy with various v, (05,1, 1.5,
2 and 4) are compared with analytical predictions in Fig. 7. A very good
agreement can be observed between the SRV results and the analytical
predictions. The probability of shallow failure increases with an increase
invg,. This is reasonable, as with an increase in vy, there is a shift in the
log-normal distribution towards zero, thus increasing the probability of
K; being in between Ky and Ky, Consequently, there is a decrease in
the probability of deep failures with an increase in vy,. Thus with an in-
crease invy,, the contribution of py to princreases while the contribution
of pa to pydecreases. This clearly shows that the consequence should be

“ ‘The maximum failure depth in the present study was only 1,0m which is referred to as
a deep failure. This notion of a “deep failure” having failure depth as 1.0 m should be used
in a restricted sense for the present study only. In a practical sense, such a failure would be
regarded as a shallow failure.
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assessed according to the failure mode, Otherwise, the overall risk will
be incorrectly estimated.

4.1.5. Random field study

In order to investigate the effect of the spatial variability of the
saturated hydraulic conductivity K on landslides risk, K is modelled
as a random field while other parameters are deterministic. The
probabilities of failure (py, ps, and pg), consequence (C), and risk (R)
associated with rainfall-induced failure of the purely frictional soil
slope (i.e. Example 1) are investigated. From the literature it is ob-
served that the saturated hydraulic conductivity varies in the range
of 1, = 0.6 to0.9 (Duncan, 2000). Taking the higher end of the
range for the random field study, vk, = 1 is considered. Table 2 sum-
marizes the parameters for the random field study. Two thousand
Monte Carlo simulations were conducted for each spatial correlation
length. For each realization of the random field of K;, seepage analy-
sis is performed for the duration of t = 0.0855 days and the results
are then used to perform slope stability analysis.

The variation in failure probabilities (pg, pp, py), consequence (C) and
risk (R) with the spatial correlation length (8) is shown in Fig. 8. The
smallest correlation length (© = 0.125) has the greatest spatial variabil-
ity (in this study) and therefore results in the largest probability of
shallow failure (pg) or the smallest probability of deep failure (Pra)-

Since the proportion of shallow failures among the total number of
failures is a maximum when © = 0,125, the corresponding conse-
quence is a minimum, With an increase in spatial correlation length
(the soil becomes more uniform,) p;, decreases while P2 increases; sub-
sequently C also increases as now more deep failures occur. Although
the probability of failure pydecreases with an increase in spatial correla-
tion length, the risk reaches its maximum when @ is equal to the depth
of the slope i.e. ® = 1.0. This highlights the importance of individual
assessment of the failure consequence.

Fig. 9 shows scatter plots of pore water pressure (i) at failure, for
selected spatial correlation lengths ©. The (red) solid points represent
failures due to the generation of positive pore water pressures while
the (blue) hollow points represent failures due to loss of suction. The
solid line represents the pore water pressure at failure estimated analyt-
ically (from Eq. (28)). Firstly, the greatest scattering can be observed in
the distribution of pore water pressure at failure when the spatial corre-
lation length O is the smallest. Secondly, at smaller correlation lengths,
slope failure may also occur due to the generation of positive pore
water pressures as shown by the (red) solid points which could be
attributed to non-uniformity in the weight of the failing soil mass W,
As explained in Section 2.1, the weight W is obtained by integrating
the unit weight vy throughout the depth to account for variations
in the water content. At a smaller ©, there is more non-uniformity

T T T

0.12F Koo @Nd K

smin

T T T
are delermined at /= 0'25'“Ks and ! = 0.0855days |

‘TNo failure | Only shallow | : [No failure Only deep
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0.08}| ; _
3 |
0.0} 5 i
0.04 AT -~
0.02f N 5 |
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Fig. 6. Saturated hydraulic conductivity distributed log-normally with mean g, = 8.64m/day and vy, = 1 (Example 1) at t = 0,0855 days.
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(or randomness) in the weight W throughout the depth, thus requiring
a greater reduction in the pore water pressure (compared to the analyt-
ical estimate) to cause failure. Thirdly, as © increases, the maximum
depth of shallow failure also decreases. This is simply due to the soil
becoming more uniform, resulting in the “region of no failure” (as ex-
plained in Section 4.1.2) becoming maore prominent. Lastly, it should
be noted that shallow failures can occur due to loss of suction as well
and need not be due to generation of positive pore water pressures
only (Santoso et al, 2011).

A noteworthy point is that the results of pore water pressure at fail-
ure start diverging from the analytical predictions as the failure depth
increases. This is because the effective degree of saturation, S, varies
with depth and is not constant as assumed in the analytical prediction
of pore water pressure at failure. This can be observed in Fig. 10 which
shows the scatter plots of S, for selected spatial correlation lengths.
The red (solid) points representing the locations, where S, = 1, indicate
that the soil was saturated at failure which implies that positive pore
water pressure was generated at shallow depths. The blue (hollow)
points representing the locations, where S, < 1, indicate that the soil
was not completely saturated or the failure occurred due to loss of
matric suction.

Fig. 11 shows the histogram of failure depths for different spatial
correlation lengths. More shallow failures occur for smaller correlation
lengths © and most of these shallow failures are concentrated near the
ground surface with almost zero consequence,

4.2, Example 2

In this example it is assumed that ¢’ = 0,15 kPa. Based on the expres-
sion for the factor of safety (Eq. (17)) with the parameters described in
Table 1 and considering o = 36°, the factor of the safety before rainfall
(considering a hydrostatic distribution) is 1.303.

Table 2

Parameters for the probabilistic study.
Parameter Symbol  Value Units
Mean saturated hydraulic conductivity i, 8.64 m/day
Coefficient of variation Vi, 1
Spatial correlation length 0.125, 0.25, 0.50, 1.00,

2.00, 8.00, 100

Length of random field D 1 m
Number of simulations Ngim 2000

4.2.1, Estimation of pore water pressure distribution at failure

Based on Eq. (28), the pore water pressure required to cause failure
at different depths can be estimated analytically. The initial and failure
profiles of the pore water pressure are shown in Fig, 12, Compared
to Example 1, the pore-water pressure in the top half of the soil profile
is positive while the bottom half is negative at failure. This implies that
failures in the top half will be due to generation of a positive pore water
pressure only, whereas in the bottom half the failures can occur due to
loss of suction as well,

4.2.2. Preliminary deterministic analysis

Like Example 1, a deterministic analysis is performed for Example 2
with a constant I (= 0.254 ), and a varying K;. To observe the variation
in failure pattern, Dy and tyare recorded for each simulation of ;.

Fig. 13 shows the relationship between Dy and K;. The first passing
time of failure is shown in Fig. 14. If the mean value of saturated
hydraulic conductivity j_is considered, the first passing depth of failure
Dy=1.00 m and the first passing time of failure ; = 0.0860 days. If the
rainfall duration is restricted to 0.0860 days, then failures would occur
only for some values of K; which are denoted by the (red) solid lines
in Figs. 13 and 14. The only difference compared to Example 1 is in
the values of Ksny and Kqpin. Compared to Example 1, Ky, is much
greater while K, is smaller in Example 2. This means that the
range of K; over which shallow failure can occur is reduced, Fig. 15
illustrates examples of deep and shallow failures as observed in the
deterministic study. For Example 2, K.y = 1.253 m/day, Kimin =
3.7584 m/day and p;, = 8.64m/day.

4.2.3. Analytical estimation of probability of failure

Based on the results obtained in the previous section and using
the expressions presented in Section 4.1.3 the probabilities of failure
(Pr Prs» Pra) can be analytically estimated.

4.2.4, Single-random-variable approach

Similar to Example 1, the SRV analysis is performed to determine the
probabilities of failure (ps pg, and py) for selected values of vy, (0.5, 1,
1.5, 2 and 4). Two thousand Monte-Carlo simulations are performed
for each vy,. For each realization of K;, seepage analysis is performed
for a rainfall duration t = 0.0860 days and then the results of pore
water pressure are incorporated in Eq. (17) to check for failure. The
probabilities of failures py, ps and pgy with various v, (0.5, 1, 1.5, 2
and 4) are compared with analytical predictions in Fig. 16, A very
good agreement can be observed between the SRV results and the
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analytical predictions. In Example 1, pyincreased with an increase invy,,
reached a peak (at v, = 2) and then decreased marginally (atvg, = 4);
on the other hand, py; increased continuously while py; decreased con-
tinuously with an increase in v,. For Example 2, pyincreases with an
increase inv, and reaches a peak (at vk, = 1.5) then decreases sharply;
the magnitude of pybeing much smaller for each value of v, compared
to Example 1. Unlike Example 1 where py; continuously increased with
Vi, pys for Example 2 reaches a peak (at vk, = 1.5) and then decreases.
Interestingly, py varies exactly in the same manner for both the cases
within the same range of values as well. This implies that, due to a
change in the triggering mechanism, there are fewer shallow failures
for Example 2, resulting in a reduction in pg. Consequently, this results
in a decrease in the overall probability of failure pras well.

4.2.5. Random field study

The parameters for the random field simulation in Example 2 are the
same as in Example 1, only the soil cohesion ¢’ is changed to 0.15 kPa
for the slope stability assessment. The purpose here is to observe the ef-
fect of a change in the triggering mechanism on the failure probabilities
(pr. pjs» and pgy), consequence (C), and risk (R). The seepage analysis is
performed for duration of t = 0.0860 days and the results are then
used to perform slope stability analysis.
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Fig. 12. Profiles of pore water pressure — initially and at failure (Example 2); inset, profile
of pore water pressure at failure on a magnified scale.

Fig. 17 shows the variation in the failure probabilities (pg, pja py).
consequence (C) and risk (R) with spatial correlation length (©). Com-
pared to Example 1, although the trend in the variation of the failure
probabilities with © is somewhat similar, the variation occurs over a dif-
ferent range of values with a significant reduction in py at all values of @.
This reduction can be attributed to a different triggering mechanism (i.e.
generation of a positive pore water pressure) which causes
fewer shallow failures. The variation in py, is very similar to Example
1. Therefore, the reduction in pyis primarily due to a reduction in p.
The consequence is a minimum for ® = 0.125 and increases
with © as the soil becomes more uniform, similar to what was ob-
served in Example 1. However, deeper shallow failures cause an
increase in the consequence C compared to Example 1. The risk
R depends on pyand C, and py decreases while C increases with
©. Subsequently, a maximum risk can be observed at ® = 0.50,
implying that a critical spatial correlation length exists at which
the risk is greatest. The variation in the risk R with ® occurs over
a very narrow range (in Example 2) with a higher risk being ob-
served at smaller spatial correlation lengths (& = 0.125, 0.25,
0.5) compared to Example 1.

Fig. 18 shows the distribution of pore water pressure (u,,) at failure
plotted against the corresponding failure depths Dy for different spatial
correlation lengths ©. The (red) solid points represent failures due
to the development of positive pore water pressure while the (blue)
hollow points represent failures due to a loss of suction. The solid line
represents the pore water pressure at failure estimated analytically
(from Eq. {28)). A significant scatter can be observed in the results
(of uy) for small correlation lengths (©). The scatter decreases with an
increase in ©, similar to that observed for Example 1. However, in con-
trast to Example 1, where most of the surficial failures are due to loss
of suction, the shallow failures in the top half of the soil profile are
only due to generation of a positive pore water pressure. Also, few
failures at the bottom occur due to generation of a positive pore water
pressure, which was not observed in Example 1. The number of failures
occurring due to positive pore water pressure generation is greatest for
the smallest @, and decreases with an increase in ©. As © increases, the
number of shallow failures occurring near the surface also starts de-
creasing which causes a decrease in py; as observed in Fig. 17. The devel-
opment of positive pore water pressure is also confirmed in Fig. 19,
which shows scatter plots of S, at failure for selected spatial correlation
lengths. The (red) solid points representing the locations, where S, = 1,
indicate that the soil was saturated at failure which implies that positive
pore water pressure was generated at shallow depths. The (blue)
hollow points representing the locations, where S, < 1, indicate that
the soil was not completely saturated or the failure occurred due to
loss of matric suction. Fig. 20 illustrates examples of shallow and deep
failures occurring due to generation of a positive pore water pressure
for the random fields shown in Fig. 21.
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pore water pressures (8 = 0.125).

Fig. 22 shows the histogram of failure depths Dy for different spatial
correlation lengths @. As far as shallow failures are concerned, they
are much deeper in Example 2 compared to Example 1 at all spatial
correlation lengths. The histogram clearly illustrates the reason for an
increase in consequence compared to Example 1, as the shallow failures
are much deeper.

5. Conclusion

The risk of rainfall induced landslides is studied quantitatively, based
on the logic that the consequence should be assessed individually for
each failure, When the saturated hydraulic conductivity is modelled as a
random field, it was shown that the probability of failure increases as
the spatial correlation length increases. However, when consequence of
failure (measured here by the depth of the failure) is accounted for, a crit-
ical spatial correlation length exists at which the risk is maximum. This
confirms clearly that the consequence should be assessed individually
for a rational risk assessment. The triggering mechanisms for a rainfall in-
duced landslide have also been highlighted by the pore water pressure
distributions at failure. When failure occurs due to generation of positive
pore water pressure, the risk tends to be higher than when the failure
occurs due to loss of suction.
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6. Notations
a scaling suction
c effective cohesion
C consequence
D slope depth
Dy depth of failure
Fyn normal force
Fr tangential force
Fs factor of safety
g gaussian equivalent of the log-normal saturated hydraulic
conductivity random field
I rainfall intensity
K hydraulic conductivity
K. relative hydraulic conductivity
K saturated hydraulic conductivity
Ksmin maximum value of K; which can cause a shallow failure
Ksns minimum value of K; which can cause a shallow failure
m van Genuchten model parameter
n soil porosity
ny number of simulations resulting in slope failures
Tgim number of simulations
N number of simulations resulting in deep slope failures
ng number of simulations resulting in shallow slope failures
N van Genuchten model parameter
pr probability of failure
Pra probability of deep failure
Dis probability of shallow failure
q flux infiltrating the slope
R risk
s degree of saturation
Se effective degree of saturation
S residual degree of saturation
t rainfall duration
tr first passing time of failure
u pore pressure head
Uy pore water pressure
Uq pore air pressure
w weight of failing soil mass
z slope normal direction
V4 standard normal variate
a slope angle
Y unit weight of soil
Vs unit weight of soil solids
Yw unit weight of water
] soil volumetric water content
6, residual water content
65 saturated water content

Ok, spatial correlation length of logarithm of saturated hydraulic
conductivity

3] normalized spatial correlation length of logarithm of saturat-
ed hydraulic conductivity

g, mean saturated hydraulic conductivity

Hink, mean of logarithm of saturated hydraulic conductivity

Vi, coefficient of variation of saturated hydraulic conductivity

p(z) correlation function

U total normal stress

g’ effective normal stress

Ok, standard deviation of saturated hydraulic conductivity

Uik, standard deviation of logarithm of saturated hydraulic
conductivity

T soil shear stress

5 soil shear strength

&’ effective friction angle

(<] cumulative standard normal distribution function

¥ coefficient of effective stress
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