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Technical Note

Analytical and Numerical Observations on the Hetényi Solution
for Buckling of Beams on Elastic Foundations

D. V. Griffiths, F.ASCE"; and G. Bee, S.M.ASCE2

Abstract: This paper considers the minimum buckling load and mode shape of a simply supported beam on an elastic foundation. Solutions are
obtained by solving the eigenvalue problem delivered by a finite-element formulation and by using the analytical solutions involving (1) trials and

(2) rounding of real numbers to integers as described by Hetényi [Hetényi,

M. (1946). Beams on Elastic Foundations, University of Michigan

Press, Ann Arbor, MI]. The comparison shows that the solution by rounding can lead to overestimation of the buckling load close to the transition
zone between mode shapes. The paper explains the reason for the overestimation and offers a simple direct algorithm that always leads to the correct

mode shape and minimum buckling load. DOI: 10.1061/(ASCE)EM.1943

~7889.0000827. © 2014 American Society of Civil Engineers.
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Introduction

During a recent research study involving numerical prediction of
thermal buckling of pipes embedded in variable seafloor soils (e.g.,
Li and Batra 2007; Bee 2013), a program was developed for
modeling buckling of a beam on a spatially random elastic foun-
dation. Code validation was performed for uniform foundations by
comparing solutions of the eigenvalue problem delivered by a finite-
element (FE) formulation, with analytical solutions described in
Hetényi (1946). The comparison highlighted an ambiguity in the
analytical solution for calculating the buckling load close to the
region in which one mode shape transitions to the next. The problem
lies in the calculation of an integer representing the mode shape
number used in the buckling load formula. It will be shown that the
rounding strategy recommended in the analytical solution can lead to
an overestimation of the buckling load. This paper investigates the
reason for this anomaly and suggests an improved algorithm for
always finding the correct mode number.

Review of FE Formulation

The goveming differential equation for a beam of length { and
stiffness EI, resting on a foundation of stiffness k under the action of
a transverse distributed load ¢ and an axial compressive force ¥, is
given by

d*y

dzy
E1E+ky+NE:q (1)
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A typical configuration is shown in Fig. 1 with discretization by five
beam elements.

A typical two-node beam element of length L is shown in Fig. 2,
in which x is a spatial coordinate along the axis of the beam, y is the
transverse deflection, and 8 = dy/dx is the (small) rotation.

In the absence of transverse loading (g=0) and after dis-
cretization in space (see Smith and Griffiths 2004), the various terms
of Eq. (1) lead to the matrix form shown in Eq. (2)

(k] + [mm]]{w} = Nigml{w} (2)

where {w}=1[y, 6; GQ}T; and y; and 6; = (dy/dx); are the
tranglation and rotation, respectively, at node i = 1,2. The various
matrix terms from Eq. (2) and their counterparts from the differential
Eq. (1) are given in the Appendix.

The beam and foundation stiffness matrices can be combined
as

[k:n} = [km] o+ [mm] (3)

and, after assembly and introduction of boundary conditions, the
global generalized eigenvalue equation (where global matrices and
vectors are denoted by uppercase symbols) can be written after
rearrangement as

(Gal{W} = NL [Ku] (W) )

Solution of Eq. (4) by vector iteration (see Griffiths and Smith 2006)
will lead at convergence to the largest eigenvalue 1 /N and ei-
genvector { W}, where N, is the critical (lowest) buckling load of the
beam on an elastic foundation and { W} is the corresponding buckled
mode shape.

Analytical Solution

The analytical solution for the critical buckling load for beams on
elastic foundations with hinged (simply supported) ends is now
summarized from Chapter VII of Hetényi (1946). Tt is first shown
that the critical buckling load of an infinitely Jong beam of flexural
stiffness £7 on an elastic foundation of modulus & is given by
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Fig. 1. Simply supported beam on an elastic foundation discretized
with five elements
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Fig. 2. Typical beam element used for buckling analysis
Nere = 2VKET (&)

and it is further noted that because of the additional restraint, the
critical buckling load of a simply supported beam of finite length /,
with all other conditions the same, must be greater than or equal to
this value (see De Angelis and Cancellara 2012)

Ner = 2VERET (6)

Thus for the case of a simply supported beam, Hetényi gives Eq. (7)
for the critical load N,

Ner = (%)ZEI i (ﬁ)zk %)

where the integer n should be chosen by trials so as to make the value
of N aminimum (e.g., Brush and Almroth 1975). Later in the paper,
two examples will compare the method using trials with a direct
algorithm proposed by the authors.

By differentiation and letting dN,,/dn =10, the following ex-

pression is obtained
k
=V ®

Clearly the value of n from Eq. (8) is a real number; however, it
cannot be substituted directly into Eq. (7) because / would cancel,
and the expression would simply return the infinitely long beam
solution given in Eq. (5). As explained by Hetényi in relation to his
Fig. 118, “Taking for n an integer number which is the nearest to the
value determined from the equation above [Eq. (8)] and substituting
that number in (126) [Eq. (7)], we get the value of the critical load.”
(equations in brackets refer to the current paper).

It can also be noted that odd and even values of integer n imply,
respectively, symmetrical and antisymmetrical modes of buckling
where n is the number of waves (or maxima and minima) in the
buckled shape as shown in Fig. 3 for the first three mode shapes
given by n=1,2,and 3.

Comparison of FE and Analytical Solutions

In the following, it can be assumed that dimensional quantities are
provided in a consistent system of units. Fig. 4 shows three plots for
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Fig. 3. First three mode shapes of a buckled beam on an elastic
foundation

a simply supported beam with stiffness £/ = 100 on an elastic
foundation with stiffness & = 50. The first two plots are of beam
length () versus buckling load (N,,) as computed by the Hetényi
analytical solution with rounding as explained previously, and by
FEs with beam element lengths of L = 0.01 (i.e., 200 beam elements
would be used to model a total beam length of / = 2, and so on). The
third plot is of beam length (/) versus number of iterations for
convergence of the vector iteration method used to solve the ei-
genvalue problem from Eq. (4). A beam length range of 2=1=6
was chosen in Fig. 4 because it captures the transition between the
first (n = 1) and second (n = 2) mode shape as shown in Fig. 3.

It is clear from the FE solutions that the number of iterations
required for convergence grows rapidly as the transition point be-
tween the first (n = 1) and second (n=2) mode shapes is ap-
proached. Indeed, the algorithm would fail to converge entirely if
an analysis was attempted at the exact transition point.

The analytical and FE solutions for the buckling load are almost
indistinguishable for most beam lengths, falling to a minimum of
N = 141.4 at [ = 3.74 given by Eq. (5) for the infinitely long case;
however, the two solutions diverge in the range 5.28 <1< 5.60.
In this range, the analytical solution continues to rise to about
N = 190.3 at [ = 5.60, before falling suddenly to rejoin the FE
curve at N, = 165.3. It can be noted that / = 5.28 and [ = 5.60 are,
respectively, the lengths at which the FE solution and the analytical
solution transition to the » = 2 mode. The reason for the divergence,
however, is that the analytical solution does not round to n = 2 until
the real value of n given by Eq. (7) reaches n = 1.5, which does not
occur until / = 5.60.

Although not presented in this paper, similar discontinuities were
observed at all transition points corresponding to higher values of n,
but the one between n =1 and n = 2 highlighted here is the most
pronounced. It can be concluded that in all transition zones, the
analytical solution based on simple rounding will always over-
estimate the true buckling load. Simitses and Hodges (2006) showed
a similar result and noted that the approximate solution based on an
infinite beam on an elastic foundation becomes increasingly accurate
as the mode number increases.

Adjustment to Hetényi Solution
In the following, the authors have taken the liberty of modifying

Hetényi’s original notation to avoid confusion between integers and
real numbers. The symbol m is strictly an integer, and represents the
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Fig. 4. Beam length [ versus buckling load N, and FE solver iteration count

mode number previously called » in Fig. 3. The symbol n is strictly
a real number as computed by Eqg. (8).

At any transition point, the buckling load must be the same for
any two consecutive modes with integer values m and m + 1, so
from Eq. (7)

2 2 2 2
smeEl 1 kI 2 El 1 k!
ot B i s G T <
g () 2 (m+1)? w2

Nep=m

9

After rearrangement, Eq. (9) can be written as

vVm{m+1) =%{/Ezl=n (10

which equals the value of the real number » provided by Eq. (8).
Using Eq. (10), Table 1 presents the actual value of (real) » at which
the change in mode occurs. Clearly, the mode change happens before
n reaches (2m + 1) /2, which is where a number would normally be
rounded up.

Although the rounded value of n is always an overestimate
as shown in Table 1, the error tends to zero as m increases as shown
by

\/m(m+1)—>%(2m+l) as m—o (11)

Direct Algorithm to Find the Critical Load and
Mode Number
A direct algorithm for finding the mode number () and the critical

(lowest) buckling load (N,,) for a simply supported beam of length /
and stiffness ET resting on an elastic foundation of stiffness k is

1. Compute
1 afk
=—4/= 12
" m V El {12
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Table 1. Summary of (Real) n Values for the First Three Transition Points

Mode transition Correct value of n Incorrect value of n at

mi{m+1) at transition transition (based on rounding)
1:2 V2 1.4142 1.5
2:3 NG 2.4495 2.5
3:4 V12 3.4641 35

2. Choose an integer j such that

jsn=j+1 (13)

3. Select the correct mode number m

If jsa=s+jj+1), let m=j (14a)
If ViG+1)=nsj+1, let m=j+1 (14b)
4. Compute the buckling load from
N mar 2 7 &%
o= () B+ (;;) k {45

Note that if n=/j(j+ 1), an exact transition point has been
reached and m can be set equal to either j or j + 1, because both
values of m will give the same value of N,, from Step 4.

Worked Examples

Two examples are presented here that use both the direct algorithm
proposed by the authors and the method using trials described by
Hetényi and demonstrated by Brush and Almroth (1975).

Working in consistent units, consider a simply supported beam
of length / = 10 resting on a foundation of stiffness k = 100.
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Case 1: EI=T75

Direct Algorithm
1. n=3.4205 [from Eq. (12)]
2. j=3 [from Eqg. (13)]
3. 3=34205=+v12, so m=3 [from Eq, (14a)]
4. Ng,=179.20 [from Eg. (15)]
Trial Approach

1. Compute N, from Eq. (15) as

Ney = (%)2(75) 4 (3)2(100)

mar

= 7.4022m* +—1’013:22“8
m

2. Using trials, find m to give the minimum value of ¥,

4

m 1 2 3 4
Ne, 1,020.61 28291 179.20 181.76

Case2: EI=70

Direct Algorithm
1. n=3.4800 [from Eq. (12)]
2. j=3 [from Eg. (13)]
3. V12=34800=<4, so m=4 [from Eq. (14b)]
4, Ng,=173.87 [from Eq. (15)]

Trial Approach

1. Compute N, from Eq. (15) as

N = (%)2 (70) + (-;—?1_)2(100)

= 6.9087m? 4 10132118
n

2. Using trials, find m to give the minimum value of N,

m 2 3 4 5
Ner 28094 17476 17387 213.25

It can be noted that if # from Step 1 in the Direct Algorithm had
been rounded to the nearest integer, leading to m = 3, an incorrect
buckling load of N, = 174.76 would have been predicted.

Conclusions

Hetényi described a trial approach for finding the critical buckling
load of a beam on an elastic foundation; however, the FE study
presented in this paper has highlighted an inconsistency in his
instructions for rounding of the mode number that can lead to an
overestimation of the buckling load (N,,) close to the transition
between mode shapes. The paper has presented a direct algorithm
in Egs. (12)—(15) for correctly selecting the mode number m and
hence computing the critical (lowest) buckling load N,, for all
cases.
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Appendix. Matrix Terms from Differential Eq. (1)

Term in Eq. (1) Matrix in Eq. (2)

6 3L -6 3L

d _2EI|3L 21* -3L [?
o bl =726 S50 6 -3
3L 1P -3L 2r?
156 22L 54 —13L
k lia] = KL | 220 4L*  13L -3pF
™ 420 54 13L 156 —22L
—13L =31 -22L 4Lf
36 3L -36 3L
& (gn] =~ | 3L 42 -3L -1
a Eml="30L | -36 —-3L 36 -3L

3L —I1* -3L 4I?
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Notation

The following symbols are used in this paper:

Scalars

EI = beam flexural stiffness;
i = integer counter;
Jj = integer used in modified N,, algorithm;
k = foundation stiffness;
L = beam element length;
! = total beam length;
m = integer representing buckled mode number;
N = axial load,;
N, = critical buckling load;
Neree = critical buckling load of an infinitely long beam;
n = integer or real number used to represent buckled
mode number;
g = transverse distributed load;
x = spatial coordinate along beam axis;
y = transverse displacement of beam;
y;i = transverse displacement at ith node; and
0; = rotation at ith node.

Vectors and Matrices

[Gn] = global geometric matrix;

[gm] = element geometric matrix;

[K7] = global modified stiffness matrix;
(k) = element stiffness matrix;

{km] = element modified stiffness matrix;
[mm]) = element mass matrix;
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{W} = global nodal displacements and rotations vector; and
{w} = element nodal displacements and rotations vector.
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