Liv, I. C. & Giffiths, D. V. (2015). Géotechnique 65, No. 1, 66-72 [http://dx.doi.org/10.1680/geot, 14.0077]

TECHNICAL NOTE

A general solution for 1D consolidation induced by depth- and
time-dependent changes in stress

J. C. LTIU*f and D. V. GRIFFITHS}4

The paper describes a general analytical solution for

obtaining the excess pore pressure in a

consolidating layer due to depth and time-dependent changes of total stress, given by a simple product
of depth- and time-dependent functions. The solution is validated against three previously published
solutions, and the paper ends with analysis of a case history involving settlement and consolidation
beneath a periodically loaded silo. Good agreement is observed between the analytical solution and
measured settlements, and the transient response is also validated against a finite-element solution.

KEYWORDS: consolidation; finite-clement modelling; pore pressures; settlement: time dependence

INTRODUCTION

Terzaghi (1943) provided a classical one-dimensional (1ID)
consolidation theory based on the assumption that an
external surface load is instantaneously applied, is held
constant with time and causes a uniform increase in total
stress with depth. In practice, external surface loads may be
time-dependent, and owing to stress distribution effects, may
also cause incrcases in total stress that vary with depth. To
analyse time-dependent loading, a graphical construction
method was suggested by Terzaghi (1943), and Schiffinan &
Stein (1970) presented an analytical solution to the layered
consolidation problem for different boundary conditions and
an arbitrary load-time history. Olson (1977) developed
analytical solutions of 1D consolidation of soil under ramp
loading and, more recently, the response of layered soil was
re-examined by Huang & Griffiths (2010) using a finite-
element approach, Taking compressibility of the pore fluid
into account, Rahalt & Vuez (1998) developed a solution
for settlement and pore pressure induced by sinusoidal
loading and Conte & Troncone (2006, 2008) expanded a
general time-dependent loading as a Fourier series, and
superposed the solutions of each harmonic. The method was
used to obtain the transient response of saturated scil layers
to general loading variations at the surface. Building on this,
Razouki & Schanz (2011) studied a 1D consolidation
process under sinusoidal loading with and without rest
periods. Razouki et al. (2013) presented and discussed an
exact analytical solution of the non-homogeneous partial
differential equation governing the conventional D consoli-
dation under haversine repeated loading,

The above approaches all assumed that the increase in
vertical total stress is uniform with depth. In ficld situations
involving anything other than extensive loading, the increase
in vertical total stress varies with depth due to stress
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distribution effects, and Taylor (1948) described several
examples, including both linear and sinusoidal variation.
Several solutions for this type of variation with different
levels of complexity have been developed. For example,
Singh (2008) developed diagnostic methods for simultane-
ously identifying the consolidation coefficient, final settle-
ment and ratio of top to bottom excess pore-water pressures
from observed settlements. Liu er @l (2012) studied ID
consolidation of an aquitard whose vertical total stress in-
creased linearly with depth due to water table drawdown at
the bottom of the aquitard, with an unchanged water table at
the top. Lovisa er al. (2012) proposed generalised curve-
fitting procedures which can be used to analyse laboratory
or field settlement-time data and determine ¢, for any case
where a non-uniform excess pore-water pressure distribution
is encountered.

Less work has been reported on changes in total stress
that are both time- and depth-dependent. Zhu & Yin (1998,
1999) presented consolidation analyses for a soil layer sub-
Jected to ramp load varying linearly with depth, which was
later expanded to include two soil layers. Li e al, (2012)
used the finite-difference method to consider the change of
vertical total stress with depth and time together in 1D
consolidation of a double-layered soil with non-Darcian flow.
Liu et al. (2014) derived analytical solutions for consolida-
tion of marine clay under linear depth-varying and time-
dependent load.

In the present paper, the authors present a general solution
for the consolidation of soil under general depth-dependent
and time-varying load. Validity and accuracy of the solution
is verified by comparison with some published special cases
of the proposed solutions. Finally, a case history is con-
sidered involving settlements generated by eyclic loading of
a silo.

DEVELOPMENT OF THE GENERAL SOLUTIONS
Problem description

The general scheme of the 1D consolidation problem
considered in this paper with depth- and time-dependent
loading is shown in Fig. 1. As shown, H is the thickness of
the soil layer, m, is the coefficient of volume change and &,
is the vertical hydraulic conductivity of clay. The z-axis
represents depth with the origin at the ground surface. The
base of the layer is either drained or undrained, while the
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Fig, 1. Scheme of the consolidation problem

upper surface is always assumed to be drained. The increase
in vertical total stress in soil is assumed to be the product of
a function that depends only on depth and a function that
depends only on time, and is assumed to have the following
form

Oz, 1) = a(2)q(t) (1

where 0 < g(7) <1 is a dimensionless function of time ¢,
and o(z) represents the distribution of total stress with depth
corresponding to g{r) = 1 occurring at time ¢ = ty,. Stresses
marked o= o(0) and ¢, = ¢(H) represent, respectively,
the maximum increases in vertical total stress at the top and
bottom of the layer. Except for the depth- and time-varying
vertical total stress aspects, the basic assumptions made in
this analysis are the same as those made by Terzaghi in his
classical 1D theory. (a) The secil layer is saturated and
homogeneous. (b) Darcy’s law is valid. (¢) The coefficient of
consolidation (ey) is constant. (d) Compressibility of water
and soil grains is negligible. (¢) The flow of water is in the
direction of compression. There are many limitations of the
assumptions. For example, secondary consolidation is
omitted, and it is only applicable to extensively loaded areas.

Taking the vertical total stress increase into account, the
governing equation is given by

« 2 Ja

IR @

ot 8¢ Ot
where wu(z,t) is the excess pore-water pressure of the soil
layer; ¢y = ky/(imyyw) is the coefficient of consolidation of
the soil layer and y,, is the unit weight of water.

If the top surface is drained and the bottom surface is
undrained (single-drained), the boundary conditions of the
problem can be given as

Ou

ul,,=0,—| =0 3

|2M0 5=z i ( )

while both surfaces are drained (double-drained), the bound-
ary conditions are

uloo=0, ul,.y=10 4
The initial condition of the problem is given by
u(z, 0) = O(z, 0) = o(z)g(0) (5

Solution for the single-drained case
By substituting equation (1) into equation (2), the Laplace
transform of equation (2) can be rewritten as
d(z, 5)
dzl

su(z, 8) = cy

+540(2) ®)

where iz, s) is the Laplace transform of u(z, r) with respect

to time 7 written as i(z, s) = L[u(z, N] = [;° u(z, e™"dz; g
is the Laplace transform of ¢(r) with respect to time ¢
written as g(s) = L(g) = [,” ge™™dt; and s is a complex
number representing the frequency domain or Laplace-space
variable.

The Laplace transform of equation (3) with respect to
time 7 is given by

il.p= 0 (Ta)
dit

— =0 (7b)
dz z=[]

In practical enginecring, the distribution of total stress
with depth o(z) generally satisfies Dirichlet Fourier series
conditions. Fourier series expansion of ¢(z) is given as

:k'-\ Mz

a(z) = Z Cy sin (—‘-) (8)
K H

where

H .

B Iy :(z)jm(Mk:/H)dz, My = 2k — lﬂ,
Iy sin® (Miz/H)dz 2

k=1,2,...

By substituting equation (8) into equation (6), the Laplace
transform of equation (6) can be rewritten as

. iz, 5) | S [(Myz
stz 8) = ¢y B + sq ; Cy sin N 9

Hence a general solution of equation (9) can be written as

s s
= Ajex —z A — /=
! 1 p( Cv)~|— 2exp( \/;z)
e 5 Mﬂ)
+ 5¢ Dy sin (—
q; A =
where A, and A, are coefficients to be determined and

Cy
Bpoa— .
5+ oMy /H)

(10)

By substituting equation (10) into equation (7), the bound-
ary conditions can be expressed as follows

0=4)+ 4, (11a)
and
0 =A1\/Ecxp (\ﬁﬁ) - Ag\/E exp (—\/EH)
cy Cy i ey
(11b)

The coefficients 4, and A, can be obtained from equa-
tions (11) as

Ar=0, Ay=0 (12)

By substituting equations (12) into equation (10), # can
be derived in generalised form as

= kzl: G(5)5g sin (%} (13)
where

» Cr

Galili = * (14)

s+ o (M /HY
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Substituting equation (14) into equation (13) and applying
an analytical inversion of Laplace transform gives

o~ [* dg(z) . Mk?-')
= E — ) ik
u 2. L e Gi(t — t)dr sin 7

(15)
+ g(0) g Gi(f) sin (’—%)
where
Gi(1) = Crexp(—M3iT,) (16)
To=2% (17)

Solution for the double-drained case

A similar derivation procedure as that for the single-
drained case can be used to solve the solution for the
double-drained case. The solution of the double-drained case
is the same as that of the single-drained case, namely,
equation (15). However, M; should be replaced by N, which
is expressed as equation (18). Correspondingly, Cj is ex-
pressed as equation (19),

Ne=km, k=1,2,... (18)
H 1 -
o o) i Niz/H)dz (19)
p sin® (Nyz/H)dz

SOLUTION VERIFICATION AGAINST SOME SPECIAL
CASES
Three special cases of Ofz. t) (Table 1)

In case 1, Zhu & Yin (1998) considered a linearly in-
creasing time-dependent ‘ramp’ load with a linearly varying
total stress distribution with depth. The ramp reached a
maximum at #, ={y and remained constant thereafter. In
case 2, Rahalt & Vuez (1998) assumed a sinusoidal time-
dependent cyclic load with a uniform total stress distribution
with depth, and in case 3, Liu et al. (2014) considered a

Table 1. Special cases for different Q(z, )

triangular time-dependent cyclic load with a linearly varying
total stress distribution with depth.

Solutions of special cases

Substituting o (z) and ¢(¢) from Table 1 into equation (13)
for single-drained cases (cases 1 and 3) or equation (16) for
the double-drained case (case 2) yields the solutions listed in
Table 2. Tt can be seen that solutions obtained by the present
method are exactly the same as those developed by the
previous studies as shown in Fig. 2. It may be noted that the
spatial coordinate z used in the case 2 solution here is
equivalent to D -z (D is drainage path) in the paper written
by Rahalt & Vuez (1998).

CASE STUDY OF CYCLIC SILO LOADING

In this scction, the solution developed previously is
applied to a case history presented originally by Favaretti &
Mazzucato (1994). The case involves the time-dependent
loading and unloading with comn of a rectangular silo of
dimensions 45 X 71 m in the town of Ca® Mello near Porto
Tolle, Italy. The subsoil consists of a layer of loose, silty
sand overlying a thick layer of soft to very soft, silty clay.
Below Lhe clay is dense sand. In order to limit the absolute
settlement and differential settlement of the silo during its
lifetime, a preloading embankment wider than the silo was
built on the site and maintained in place for 15 months. The
silo was constructed soon after the embankment was re-
moved. Seftlement was measured during subsequent loading
and unloading cycles of the silo.

Rahalt & Vuez (1998) assumed double-drained conditions
(maximum drainage path D =7-5m, total thickness of the
consolidating layer, H=15m) and soft soil properties
cy=1-5 X 10"°m?%s and m, =296 kPa~!. Both ¢, and Ty
wete subsequently assumed to remain constant. Owing to
silo loading, the variation of total stress with depth was
assumed to be linear with maximum values at the top and
bottom of the layer given by o = 32 kPa and op =28 kPa
respectively, and given by

Case 1 2 3
a(z) i - et —
H H=[2D H
1
e N - méﬁzw s
0(z) = 0+ (Op — 0)z/H a(z) =24, + oy o(@) =0+ (0p —0)z/H
ath) q(8)
q(t) i A
1' i ‘[i ,,‘
- !
| sl 1/ \/\ / \alc.
) ATi2 2AT n» AT
UL (= Aol = coswn) + 7 Yar sip
gm=y s 41y = (24, 1 00) il (n= 1) X AT < 1 < (20 — DAT/2
n—t{AT
(Zn—DAT/2 <t <nX AT
Drainage Single-drained Double-drained Single-drained
condition
Authors Zhu & Yin (1998) Rahalt & Vuez (1998) Liu et al. (2014)
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Table 2. Solutions of special cases using equations (13} and (16)

Case Solution

1 Single-drained
Mz
z,,_,MJ By sin (—Ek—){l—cxp(—MiTv)] 1

u=

i 'M32F Eﬁm( )[exP(wJo-W ) = exp(— MZT ) Y

where Ty = cyly/H2, By = 0, + Jo=
2 Double-drained

) 27+
- w<D " Myz )
=g+ 24 — = 8in Wi
aih ,‘2_1 DMy + M ( D

M
where D=H/2, W; = g £ sin (ws) — cos (o) + exp(—MiTy)
3 Single-drained
1.For(n— 1) X AT < ¢ < (2n - 1)AT/2,

i il::e(k){l - exp{—cv%-[t —(n=-1)X AT]} + P(n — 1)} sin (ﬂf—;z)

2 H?
AT::\,Mf ’

o) 2o o187 ool v - ol hinr]
= ) _ _

Phn—1)= Zexp( = 2exp|cy 7 — 1/)AT| —expley 7 — DAT| —exp|ey T iAT
2.For(2n — DAT/2 <1< n X AT,

%
i ZR(“(ZWP{-L»T =0 - 1/2)A?]} =] eXp{Acv%[! ~(n~ IJAT]} +P(n - 1)) sin (@i)

H

2 2
where R(k) = [Ut+ Wi—dd

_1FH!
M M =1

Present solution for case 1 (z = 10 m) H=10m,c,=30x 10" m¥s

Present solution for case 2 (z = 5 m) Case 1, single-drained

a, = 150 kPa, a, = 50 kPa, t, = 0-5 years
Case 2, double-drained

AP = 100 kPa, g, = 50 kPa, w = 4 a/years

Present solution for case 3 {z = 10 m)
L Solutien of Zhu & Yin (1998) for case 1 (z = 10 m)

Solution of Rahalt & Vuez (1998) for case 2 (z = 5 m) Case 3, single-drained
+  Solution of Liu ef al. (2014) for case 3 (z = 10 m) a, = 150 kPa, o, = 50 kPa, AT = 0-5 years
200 - - 200
150 . 3 g . ; - 150
100 - - -1 100

Excess pore pressure: kPa

Time: years

Fig. 2, Comparison of solutions for special cases

Excess pore pressure: kPa
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o(z) =32 —4z/H (20)

The load time function g(¢) was piecewise linear and is
shown in Table 3 (Favaretti & Mazzucato, 1994). In the jth
segment (going from station i to i+ 1), the time function
g(t) can be expressed as

g0 =~

!.
—[g(tan) — gD+ g(t)  n <t <ty
liyy — 1

(21)

The excess pore pressure is obtained by substituting
equations (20) and (21) into equation (15).

.2 . Nz 2 Cvi
u =;Eﬁk sin (?) exp (_Nk? (Vj -+ V,‘.._l)
LST<ty

22

where

Table 3. Piecewise linear fanction g(#)

Station 1;: years q(t)
1 0:0 0-0
2 01 0-8
3 0-4 0-8
4 0-6 00
5 1-0 00
6 1-1 09
7 13 09
8 16 0-0
9 17 00
10 2-1 10
11 2.4 1.0
12 2-8 0-0
13 29 0-0
14 30 1-0
15 33 1-0
16 34 0-7

7

X [exp (N%%tﬁl) — exp (Nf{%rj)]

"y ey
+4(4;) exp (NZ#'!J) ~ q(tp1) exp (N;%ﬂtji»l)}

Via= 3 {q(fﬁ—l) — q(t;) H?
J=1

1 — N%Cv

HZ
(23)
p. _4lis1) — qlr) H?
! Lyl — & N}%Cv
2 Cy : 2 Oy
X [exp (N*F[) —exp (A’kfﬁﬂ)] (24)
+qtyexp (NS,
q 1) p 5‘]{2 i
Ey =0 — (=)o (25)
The silo settlement can be given by
i Oy + 0y 2. 2 L
= M. T b S —_
S(t) m\H{q(} s ;N%Ek[l (=171
(26)

X exp (-Nﬁ L-ﬁf)(v, + Vi ;)}

in the range #, < 7 < 1,

The silo settlement is a piecewise function, whose value
can be obtained from equation (26) for each time segment.
A computer program has been developed for the silo
settlement problem and compared with a finite-element
solution modified from program 82 in Smith et al. (2014).
The analytical and numerical results are essentially identical
as shown in Fig. 3. Owing to variations in soil layer
thickness, both upper and lower bounds on measured settle-
ments are also shown in Fig. 3 and are generally in very
good agreement with the theoretical results, although the
measured seftlement is somewhat underestimated in the first
1-2 years.

Loads assumed for the analysis also had some uncertainty,
since the amount of corn stored in the silo at any given time
was only estimated. Fig. 4 shows a modified calculation

05 1-0 1-5 20 25 30 35
1-0 T T T T T \ 10
0 0
Maximum measured settlement
v Minimum measured settlement
20 Analytical settlement 20
1) * Finite-element settlement
L A ;
40 % * 40 E
5 ) CUPE 2N £
184 S, A . ™, &
E 80 15 ’ 1 ‘e 3 e 60 g
] moas t s il " M £
c o . i N 7 03 5
2 s ’ [ I3 Y b =
g L i [ ’ ~ N o b 80 &
£ 80 Ahos e Bt N N S , o i «
] [P | \‘ . K .
w Sa Lt .~ -~ -
100 - - - 100
120 1 i 1. 1 Il 1 120
05 1-0 15 2:0 25 30 35
Time: years

Fig. 3. Comparison between theoretical, finite-element and measured settlements under q(t)
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Fig. 4. Comparison between theoretical, finite-element and measured settlements under increased

loading

based on higher loads where ¢(¢) =1 at peak loading in
both of the first 2 years. Better agreement was observed
between the theoretical and measured settlement. It was also
noted that settlement of the silo reached a steady state after
three filling and emptying cycles.

CONCLUSIONS

An analytical sclution for calculation of excess pore
pressure in 1D consolidation induced by depth- and time-
dependent changes in total stress has been derived using
Laplace transforms. The solution was verified by comparison
with some available analytical solutions for special cases.
The solution was then applied to a case history involving
settlement of a silo subjected to time-dependent load filling
and emptying. Theoretical and measured settlements agreed
very well, especially when the load condition was adjusted
up to assume full filling on each cycle.
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NOTATION
Ay, A coefficients to be determined
Ap, w, oy parameters of sinusoidal time-dependent cyclic load
B; series coefficient listed in Table 2
C; Fourier coefficient
¢, coefficient of consolidation
D drainage path
Dy series coefficient
Gytr) time function given as equation (16)
Gi(s) Laplace transform of Gi(r)
H thickness of soil layer
i, J, k counters, 1, 2, 3...
ky vertical hydraulic conductivity
My Mp=Q@Qk—Dx/2, k=1,2,...
my coefficient of volume change
Ne Ny=hm k=12, ...

time function listed in Table 2
QOfz,t) total stress as a product of a function of depth and a
function of time
g(t) time function
g Laplace transform of g(r)
R(k) coefficient listed in Table 2
S(t) settlement with time
s frequency domain or LaPlace-space variable
T, time factor, T = cyf/H*
Ty time factor, Ty = cyfo/H*
¢ time
tn time f to reach maximum load g(fy) == 1
fy construction time of one-step loading
U excess pore-water pressure
i Laplace transform of u
¥i_y time function given as equation (23)
V; time function given as equation (24)
W, time function listed in Table 2
z vertical coordinate
Yo unit weight of water
oy, 0y maximum increases in vertical total stress at top and
bottom of the soil layer, respectively (linear case)
o(z) maximum increases in vertical total stress as a function
of depth z
T integration variable
w angular frequency
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