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The mechanical properties of soils and rocks can be highly variable, and there has recently been a great
deal of interest in modelling this variability using random feld theory, in which the material properties
vary from point to point. When these point-wise material properties are mapped onto a finite element
mesh, discretization errors are inevitable. In this study. the discretization errors are studied and sugges-

tions for element sizes in relation with spatial correlation lengths are given.
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1. Introduction

Handling property variability is a research area of great impor-
tance and interest in civil, geotechnical and material engineering,
At the micro scale, material properties are random due to spatially
varied microstructures. Ideally, we would try to directly model this
micro scale randomness to predict the overall macro scale perfor-
mance, but this is obviously too computationally demanding to be
practical. A compromise is to use a meso scale, i.e., the size of an
element in a finite element method (FEM) simulation by homoge-
nizing the micro scale randomness in each element to predict
macro scale performance. When the meso scale is large enough
to include all of the micro randomness, the overall material prop-
erties at the meso scale are spatially constant. For example, steel
usually exhibits randomness on the micrometer scale, but typical
finite elements with a size on the order of a centimeter are large
enough to have constant properties. In geotechnical engineering,
however, the material properties on the meso scale can show sig-
nificant spatial variability. Random field theory is often used to
model] spatial variability. The starting point for a discussion of ran-
dom field modelling is the “point" statistics that are assumed for
the model. These are the hypothetical statistical properties of the
soil or rock that would be measured if many tests could be per-
formed on infinitesimal samples at a site or laboratory. A conve-
nient measure of the spatial variability of a random field is the
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correlation length 0. Loosely speaking, 6 is the distance within
which points are significantly correlated (ie. by more than
approximately 10%). Conversely, two points separated by a dis-
tance greater than 6 are largely uncorrelated, Many studies have
been undertaken in recent years to develop probabilistic methods
that address spatial variability in a systematic way (e.g. {9.19.11,

3 5.1 11). Of particular importance has been the
development of the random finite element method (RFEM) for
modelling the spatial variability of geomaterials (e.g., | ]). While
mesh effects have been investigated for highly variable materials
by some investigators (e.g., [* . 17,142 4,11, the discretization
error due to the element size has received little formal attention:
the work of with Ching and Phoon | '} is an exception. A small cor-
relation length means that the properties of a soil change rapidly
from place to place; therefore, the element size should be small
enough to capture the spatial randomness of the material proper-
ties, The major aim of the present work, therefore, is to establish a
more formal link between the maximum element size and the spa-
tial correlation length. The paper begins with a review of the local
averaging method based on the geometric mean. The local averag-
ing method can provide an analytical estimate of the effective
overall property by taking the spatial correlation structure into
account. Although the geometric mean is dominated by low values,
it ignores the “seeking out” effect of a failure mechanism. This
effect will be examined using direct Monte Carlo simulations.
From the direct simulations, the discretization errors are studied
and suggestions for appropriate element sizes in relation with spa-
tial correlation lengths are given.

13.14,16,1.21,18,17



J. Huang, D.V. Griffiths/ Computers and Geotechnics 69 (2015) 506-513 507

2. Modelling the strength of materials using local averaging

For the purpose of demonstration, this study will focus on the
strengths of engineering materials, It is assumed that the strengths
of materials are modelled by point-wise random fields. The ques-
tion is how small the element size should be for a given spatial cor-
relation length. We restrict ourselves to isotropic Gaussian random
fields or random fields that can easily be transformed into
Gaussian random fields. We want to investigate the strength in a
certain domain (i.e., the macroscale strength) in which the strength
at any micro-scale point within the domain is modelled by a ran-
dom field. In this section, the overall strength of a certain domain
is estimated analytically using local averaging. The results will be
compared to those of RFEM simulations.

The overall strength of a material in a certain domain is usually
dominated by its low-strength regions. Because it is dominated by
low values, the geometric mean is recommended by Fenton and
Griffiths {/} for estimating the overall strength. The geometric
mean is defined as the nth root of the product of n (nonnegative)
random variables. Using this definition, the discrete set of random
variables X,,X,,...,X, has the geometric mean

Xe=X1.Xa,.... e, (1)

X¢ weights low values more heavily than high values (low values
dominate). This can be seen by considering what happens to the
geometric mean (see Eq. {1 ) if even a single X, is zero: X¢ becomes
Zero.

By expressing Eq. (|} as a power of e, we obtain an alternative
way of computing the geometric mean,

Xg =exp (lilnxi). (2)
i=1

If X is a 1D continuously varying spatial random field, the geo-
metric mean of X over a given domain becomes

Xc =exp (% ]DR lnX(f)dz), (3)

where R is the length over which X is averaged and ¢ is a spatial
coordinate.

If X is log-normally distributed, X¢ tends to be log-normally dis-
tributed, according to the central limit theorem. The mean and
variance of X; are found by first finding the mean and variance
of InX¢. The mean of InX; is

EllnXg] = ER [y InX(&)dg)
=} [y EllnX(&)ld¢ (4)
= E[InX]
= Hipx

where p,, is the mean of InX,

1
Pinx = 0 iy — glnX (5)

and

S| I (1 : (Z—X)z) ©)

where g, and ox are the mean and standard deviation of a
log-normally distributed random field X .

We note that because the median of a log-normally distributed
random field X is exp(i, ). the median of X; is equal to the med-
ian of X. In other words, taking the geometric average of a
log-normally distributed random field X preserves both the type
of distribution and its median.

The variance of InX; is
Var [InXq] = E[} f§InX(¢) - nrddh S5 InX0D) ~ oyl
& Jo J3 ElnX(E) — o) INX(7) — py))dedn
& Jo I8 Ciax(T)(& — m)dedn

%‘K Jo Iy Puug(T)(& = i)dedn

= Oy Vinx (R)

(7
where { and 7 are spatial coordinates, T is the distance between two
points, Cinx(7) is the covariance function of InX, p,,(7) is the corre-
lation function of InX such that Cix(7) = 62, 0x(T), Ginx is the
mean and standard deviation of InX, and y,(R) is the variance
function that determines how much the variance is reduced when
X is averaged over a length R using Eq. { '},

ffpmx )& — mdedn (8)

There are a few commonly used correlation functions (see, eg.,
+,). The Markov correlation function used in this study is

Prox(T) :exp< [t |> (9)

O

ik (R) =

where 0, is the spatial correlation length of InX.
The correlation function in logarithmi¢ space can be converted

to the following correlation function in real space (e.g., |7°1):
eXP{TiwPrx(T) — 1
palr) =G (10)

For mast random fields, the two correlation functions are quite
similar and

Biox = Ox (11

Because of Eq. {1 |}, from now on, the spatial correlation lengths in
the logarithmic and real spaces are both denoted by 4.

In 2D, for a rectangular domain with side lengths R, and Ry, the
variance function is defined by

4

Ry R
Tinx(Re Ry) = e e, j (Rx = X)(Ry — ¥)pyx(T) dxdy. (12)
RiR, Jo Jo

Using the correlation function given in Eq. |
function can be obtained analytically as follows:

g [o e (5) ] [feen (-5) 1)
(13)

where R, and R, are the lengths of the sides of a rectangular domain.
Once the mean and variance of InX; have been computed, the
mean and variance of X can be computed using

Bx; = eXP Moy + 3075 M)
oo

ik

), the variance

Yinx(Rx. Ry) =

and

s 2 i
Ox; = Iy \/€XP(0} Yy — 1)

= My, \/Exp (ln (1 5 (%)Z)Z'm N 1) (15)
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Egs. {14} and (1.} provide the mean and standard deviation of
the locally averaged strength using the geometric mean. It is clear
from Eq. |-} that the mean of the locally averaged strength is
reduced. It is less obvious from Eq. 17 ; whether the variance of
the locally averaged strength is reduced or not but because the
variance of InXg is reduced by local averaging (e.g., Eq. (%)), the
variance of the locally averaged strength X; is also reduced. This
can be seen by comparing Eq. {7} and Eq. (10}

Ox = Hinx\/ €XP(Thy — 1), (16)

where because py < py and y,x < 1, it follows that oy, < oy.

For a rectangular domain with side lengths Ry = L and R, = 2L,
the mean and standard deviation of the locally averaged strength
are shown in | I. For comparison, the results for a smaller
domain with side lengths R, =L and R, =L are also shown in

I 1. It can be seen from T:01¢ | that a larger domain results
in higher reductions in the mean and standard deviation of the
locally averaged strength.

3. Modelling the strength of materials using simulations

In an RFEM strength analysis, the failure mechanism occurs nat-
urally as it “seeks out” the weakest path through the soil |]. The
overall strength of a certain domain may be different from the
locally averaged values. In this study, biaxial compression tests
are performed on a rectangular domain to investigate the macro
scale strength for different mesh densities and spatial correlation
lengths. The overall strength of the domain is computed using
the elastic-plastic finite element method. To reach this goal, an
appropriate random field generation technique must be adopted.
There are several random feld generation techniques available
(see e.g.,, [71). The Karhunen-Loéve (K-L) expansion method (e.g.,
{27,20]) was chosen for this study because it does not require spa-
tial discretization at the random field generation stage. In the K-L
expansion method, the background random fields are generated
first; then, values at particular locations can be calculated accord-
ing to their coordinates. This allows us to compare meshes and
study discretization errors. The K-L expansion method represents
a random field as an infinite linear combination of the eigenfunc-
tions of the covariance function. Because the series must be trun-
cated to a finite number of terms, a significant concern is that
the simulated variance will be reduced. To control this reduction,
the eigenvalues are sorted in descending order and the number
of terms is determined when the eigenvalues have decayed suffi-
ciently (e.g. [10]).

The domain is axially loaded until it fails under undrained con-
ditions. The undrained shear strength within an element is
assumed to be log-normally distributed (ie. Inc, is normally

Table 1
The mean and standard deviation of the locally averaged strength.
6L Re=L R,=2L Re=1L, Ry=L
PR Ry)  fix/Hx  Ox./0x  Pinx(Ru Ry) My, /lx  Ox./0x
0.125 0.0256 0.8570  0.1359  0.0479 0.8992  0.1863
0.25 0.0825 0.9027 0.2461 0,423 0.9087  0.3265
0.5 0.2142 09161 04054 03222 09272 0.5063
1.0 0.4177 09371 05858 0.5413 0.9501 0.6809
2.0 0.6270 09592 0.7435 0.7263 0.9699 0.8137
4.0 0.7855 09763 0.8547 0.8494 0.9833 0.8984
8.0 0.8844 0.9872 09222 0.9208 09912 0.9468
16.0 0.9399 0.9933 09597 0.9594 09955 0.9728
320 0.9654 09966 0.9795 0.9794 0.9977 0.9862
64.0 0.9845 0.9983 0.9896 0.9897 09988  0.9931
128.0 0,9922 0.9991 0.9948 0.9948 0.9994  0.9965
256.0 0.9961 09996 0.9974 09974 0.9997 0.9983

distributed) and modelled as a random field. The mean and stan-
dard deviation of the undrained shear strength (cy) are
M., =40.0kPa and g, = 20.0 kPa, respectively. The Young’s mod-
ulus and Poisson's ratio are set to 10° kPa and 0.4, respectively.
As shown in , the domain has a width of L=1.0m and a
height of 2L and is confined isotropically to 10 kPa prior to axial
loading, which is applied by incrementing the vertical displace-
ment of the top nodes by 10~7 m, The horizontal displacement of
the top nodes is not restricted; therefore, the model is of a smooth,
rigid loading platen. The mesh consists of eight-node plane strain
elements with reduced integration. The return mapping algorithm
described by Huang and Griffiths | | 7| was used. The axial stress at
failure, determined based on the mean strength and the Tresca fail-
ure criterion, is 90.0 kPa.

To determine how the failure patterns change with the mesh
density, typical results for different spatial correlation lengths
(6 ={L/8,L/4.L/2. L, 2L}) were analyzed. Square elements were
used with side length [ chosen from {L.L/2.L/4 1/8.L/16,
L/32,L/64,L/128} m. A random field representing the undrained
shear strength was generated at each Gauss point (4 per element)
based on its coordinates, as shown in i . Because the results
of direct simulations will be compared to the analytical estimates
of the local averages, no local averaging was considered in the
direct simulations. Each square represents the zone of influence
of one Gauss point (not an element). It may be noted from

-0 that the random fields generated using the K-L expansion
have a striped pattern, especially when the spatial correlation
length is large. This is because the exponential covariance function
was decomposed into the product of two 1D eigenfunctions.

also show typical failure patterns for different mesh den-
sities and spatial correlation lengths. The densest mesh (I = L/128)
presumably comes the closest to showing a realistic failure pattern.
It is interesting to note that using the coarsest mesh (I = L[8) results
in a failure pattern that is reasonably consistent with that resulting
from using the densest mesh; this holds for all of the spatial corre-
lation lengths considered. It should be mentioned that this obser-
vation is based on a single simulation. The failure pattern may
change from simulation to simulation. . © show the
load-displacement relationship for 0 =L/4 (1.© ) and 0= 2L
(f12. 6) for a typical simulation. There are two potential sources
of discretization error. One is the discretization of the finite

lo
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Fig. 1. A biaxial test with smooth, rigid end platens.
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Lli=64

Fig. 2. The deformation at failure (¢ = L/8).

Lll=1

Lil=16 L/i=32

element mesh and the other is the discretization of the random
field (e.g., |’]). Because the FEM mesh and the random field are
often discretized in the same way, these two sources of discretiza-
tion error are not distinguished in this study. A more comprehen-
sive study should adapt the mesh according to both the random

Lil=64 L/1=128
Fig. 3. The deformation at failure (0 = 1/4).

field and the failure mechanism. This is currently being undertaken
by the authors and their colleagues using adaptive finite element
limit analysis (e.g., [771).

InFioe 7 and 2, the loads were back-calculated from the vertical
normal stresses in the top row of Gauss points. The failure loads are



510

J. Huang, D.V. Griffiths / Computers and Geotechnics 69 (2015) 506-513

L/l=16 L/1=32 Lil=64 L/1=128
Fig. 4. The deformation at failure (6 = Lj2).

Lil=16 Li1=32 Ll1=64 L/1=128

Fig. 5. The deformation at failure (0 =1).
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Lil=16 L/i=32

Lil=64 L/1=128

Fig. 6. The deformation at failure (0= 2L).
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Fig. 7. Axial stress versus axial displacement (corresponding to -+ ., = L/4).

all less than 90.0 kPa, which is expected because weak elements
normally dominate the solution and allow the mechanism to “seek
out” a path through the soil.

' shows how the failure load changes with the element size.
To achieve a constant failure load, unlike a failure pattern, the
element size should be less than L/32, but the elements could be
larger for higher spatial correlation lengths.

Further investigations into the overall strength were performed
using Monte Carlo simulations. For each combination of mesh
density and spatial correlation length, two thousand simulations
were performed. In each simulation, the overall undrained shear
strength was calculated using

G =36y - 10, (17)

where gy; is the failure load. For the example presented, the units of
oy and c, are kPa.

The mean and standard deviation of the overall undrained shear
strength in two thousand simulations are shown in I'izs. 10 and 11,
In 7 0 wnd 11, the mean and standard deviation of computed
overall shear strength have been normalized by the input mean
and the standard deviation of the undrained shear strength,
respectively. [io. 10 shows that the computed mean overall
strength is always less than the input mean undrained shear
strength, except for very large spatial correlation lengths 0 -~ 128L.

80.04

e L SRR e L s

70.0 1 o fm

60.0 4

50.0 4

40.0 +
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30.0 4

20.0 A

10.0 A

0.0

0 0.001 0.002 0.003 0.004 0.008 0.006
Axial Displacement (m)
----- =2 e Li=f == Li=g

— —LA=16 - =Li=32 © LA=64 ——L1=128

Fig. 8. Axial stress versus axial displacement (corresponding to §i ©, 6= 21),



512 J. Huang, D.V. Griffiths / Computers and Geotechnics 69 (2015) 506-513
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Fig. 9. Failure load versus element size for single simulations {corresponding to
b

-6).

When 6 > 2L, the overall mean strength can be estimated well
using a coarse mesh with I = L. For large spatial correlation lengths
0> 2L, the element size makes virtually no difference. For small
spatial correlation lengths 8 <~ 21, the maximum element size that
can be used to estimate the mean overall strength reasonably is
I=L/16. For the smallest spatial correlation length considered,
0 = L/8, the maximum element size should, therefore, be less than
half of the spatial correlation length. It is also interesting to note
that, in this study, the mean overall undrained shear strength is
minimized at 0 = L. This is often the case in failure studies: the
most critical spatial correlation length is often equal to the typical
dimension of the studied system (see, e.g., | 117]). This means that
the element size could be cautiously increased to 0 = L to reduce
the computational cost and ensure a conservative result, The stan-
dard deviation of the overall strength is shown in 1. {1,

For the problem considered in this study, which assumes R, = L
and R, = 2L, the mean and standard deviation of the locally aver-
aged strength calculated using Eqs. {14} and {17 are compared

to the simulated values given in '~ 1. Fiv 11 shows that the
1.2 4
14
_»M_‘r
e e
0.8
= ey
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2
-él 0.6 -
3
=,
0.4 4
0.2 4
0 T T T
0.1 1 10 100
e/L
Li=l e Lf1=4 LA=16 L/1=64
e L= e Lf]=8 Li=32 Li=128
Local averaging

Fig. 10. The mean overall undrained shear strength after the Monte Carlo
simulations.
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Fig. 11. The standard deviation of the overall undrained shear strength.

mean simulated overall strength is always less than the analyti-
cally estimated value calculated using Eq.: | ' . The standard devi-
ation of the simulated overall strength is also less than the
analytical estimation calculated using Eq. (1., except when the
spatial correlation length is very small and the mesh is coarse.
This observation suggests that the local averaging method is con-
servative in terms of variance reduction.

4. Concluding remarks

The correct handling of uncertainties in the mechanical proper-
ties of engineering materials, particularly geomaterials, is of crucial
importance in engineering design. The mechanical properties of
soils and rocks may vary spatially, and random field theory is
increasingly used by investigators to capture this effect. When
using finite element modelling, the question of how small the finite
elements need to be to properly characterize the spatial variability
arises. Using a statistical approach, this study shows that, due to
the “seeking out” effect, the simulated overall mean strength in a
biaxial compression test is always less than the locally averaged
mean strength. The standard deviation of the simulated overall
strength is also less than the standard deviation of the locally aver-
aged strength in most cases.

This study recommends that the element size used in a random
finite element analysis be less than half of the spatial correlation
length. It is recognized that only the undrained shear strength,
2D random fields and a biaxial compression test have been consid-
ered in this study. The recommended element size may be differ-
ent in more general cases (e.g., frictional materials, 3D models,
and softeningfhardening materials).
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