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Observations on Load and Strength Factors
in Bearing Capacity Analysis

D. V. Griffiths, F.ASCE!

Abstract: The widely differing factors of safety obtained by strength reduction and load increase in the ultimate bearing capacity of foun-
dations have been reexamined analytically. In most cases, factors of safety based on load increase need to be higher than those based on
strength reduction to achieve the same level of safety in design. The greater sensitivity of foundation systems to strength reduction over load
increase may impact the choice of factors in ultimate limit state design. DOI: 10.106 1/(ASCE)GT.1943-8606.0001316. © 2015 American

Societv of Civil Engineers.

Author keywords: Factors of safety; Partial factors; Limit state design; Bearing capacity.

Introduction

It is well known that slope stability and bearing capacity analyses
for design typically target factors of safety of around 1.5 and 3.0,
respectively (e.g.. Terzaghi et al. 1996; Salgado 2008). Both appli-
cations involve ultimate limit state conditions, so an impression
might be given that bearing capacity design needs to be nwice as
safe as that required for a slope. Clearly this is not the case, given
that the two factors of safety are based on completely different
premises. The factor of safety used in slopes is a type of resistance
factor, i.e., the factor by which the shear strength must be reduced
to reach failure, whereas that for bearing capacity is a Joad factor,
i.e., the factor by which the load must be increased to reach failure.
A general coverage of the difference between factors of safety
based on resistance and load for slope and bearing capacity prob-
lems, and the disparity between them, was noted by Duncan and
Wright (2003), and there are other important references in which
the use of load and resistance factors have been discussed in detail
(e.g., Becker 1996). The purpose of this note is to present a direct
comparison between load increase and strength reduction in ulti-
mate bearing capacity. An analytical approach has been facilitated
by the introduction of a novel identity for the passive earth pressure
coefficient Kp.

Bearing Capacity Factors

Consider the bearing capacity problem shown in Fig. 1, involving a
rough strip footing of width B supported on a uniform ¢’ — ¢’ soil
of unit weight v with a surface surcharge of g.

The ultimate bearing capacity g, of the {ooling can be given by
Terzaghi’s bearing capacity equation
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qu = c'N. +gN, + ;B’NT (N
where N.. N, and N, = bearing capacily factors.

It is recognized that direct computational methods are also avail-
able for obtaining gy, that avoid the superposition implied by
Eq. (1) which is not theoretically valid unless ~ = 0. Notable
among these are the finite-element method (e.g., Griffiths 1982;
Smith et al. 2014), which is particularly powerful for nonuniform
ground conditions. and the method of characteristics (c.g., Martin
2005) which can lead to exact numerical solutions. For the pur-
poses of this note however, the classical Eq. (1) offers a convenient
vehicle for direct comparison of load and strength factors.

The factor of safety in bearing capacity analysis is typically
based on loads, and given by

F§, = Dt (2)
qan

where ¢, = allowable design pressure that the footing can safely
support. A target factor of safety against bearing failure of about
FS, =3 (e.g., Saulgado 2008) would typically be required in
design. Tt is recognized that serviceability limit states regularly
govern design in practice, especially for less dense soils and wider
footings; however, the focus of this note is on the ultimate
limit state.

For comparison purposes, the factor of safety against bearing
failure based on strength reduction is now considered. In this case,
the strength reduction factor of safety given by FS,. ., .- is the
factor by which ¢’ and tan ¢’ must be reduced in Eq. (1) to cause
bearing failure, ie., gy =~ qu.

To compare FS, and FS,.,, - analytically, the following ex-
pressions for the bearing capacity factors will be used

Ne = (Kpe ™ —1)cote (3)
J'Vq = er an g’ (4)
N, = L5(K,e™™" — [)tan ¢’ (5)

Egs. (3) and (4) for the N, and N,-terms are mathematically
rigorous, and attributable to Prandtl (1921). The N, term has
proved more challenging and has no direct analytical solution.
Martin (2005) has produced exact numerical solutions using the
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Fig. 1. Bearing capacity of a strip footing

method of characteristics (assuming an associated flow rule), and
these results are closely approximated by Eq. (5) from Brinch
Hansen (1970).

Egs. (3)~(5) all include the passive earth pressure coefficient X,
which can be commonly expressed in several different ways, e.g

B! 1+ sin )’ cosa’ \2 ()
- o e O

2 1 —sing’ 1 —sin &’ )
In this work, a less familiar trigonometric identity for K, is used
as given by Eq. (7). This version, which expresses K, purely in

terms of tan ¢/, has been discussed previously by Griffiths et al.
(20402), and is convenient for analytical consideration of strength

reduction:
V1o [anZ(;J’)" (7)

With reference to Eq. (1), each of the three bearing capacity fac-
tors given in Egs. (3)-(8) will be considered separately, leading to
analytical expressions relating the conventional factor of safety
based on load increase (FS,), to that based on strength reduction
(FS.1an. ). After this, an ummplc will be prescnted with all terms
included.

K, = tan* (45" +

Kp (tanw’{-

N, Term [Eq. (3)]

In this case it is assumed that ¢ —= 0 and vy — 0, hence the ultimate
bearing capacity is given by
Hule "'var' = {'.f(.K')'" R o 1)C0[ wr

/ 2 ;
Sl (1 n ¢’ + v 1+ anzu’) g e —

)= ®

tan o

and the allowable value based on strength reduction by

Gan) =

¢’ [ tanof / ( tan ¢’ )i’r
— 41+ :
Hﬁsm , V/

FS["mn o’ FS(:f tan &'

08 e i
x oS ES eypy) _ g LN ang 9
a } tan ¢’ ©)

Substitution of Egs. (8) and (9) into Eq. (2) gives the function

; 3
(tan AUV S tanzgﬁ’) prand’
FS, = d

o ﬁ N2
{ tan ¢ Fo it ( tan o )-] ot SIS sty 1
ESerian <l FSL‘"luu &'

(10)

N, Term [Eq. (4)]

In this case, it is assumed that ¢’ = 0 and v = 0, hence the ultimate
bearing capacity is given by
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/ 2 ‘
2 -') o’ tan

qu gy gKpet tane’ = Q(tﬂn @'+ vV I +tan“o

(1)

and the allowable value based on strength reduction by

2
tan o' /—tanu’k2 /TS,
Gy == — | — g6 /S )
il q[ \l’ (Fsr'.lmui') }

F S:".lan o
(12)

Substitution of Eqs. (11) and (12) into Eq. (2) gives the function

(tan (.'b’ o= \/W) e Lan &'

. . i 7 [' g 1 2 2
[ L AP " ( tan ¢ ) } 0o S 0, )
FSeano v £ SL'Lan(

(13)

Fs,

N, Term [Eq. (5)]

In this case, itis assumed that ¢’ = 0 and ¢ = 0, hence the ultimate
bearing capacity is given by

B B . ;
Guit = N'f. = ‘é‘i]-ﬁ(ern“n"' . 1)1211’1 q‘)’}

'7
3yB / P ¥
= ’}T Ktan o' +14/1 +‘E2m“(:’) gl - 1] tano’  (14)

and the allowable value based on strength reduction by

. 3vB { { T.:l[lf ,n"l P ( ia11(;,’ )2]2
Jar -+ 414 G
4 ‘P‘St tan ¢’ \f fsz’tm.

. 4!
..(ld:m LESdadt) 1 tan ¢ (s
}F,S : (15)

¢ lan: J

Substitution of Egs. (14) and (15) into Eq. (2) gives the function

O = S 1
8y = - == s
tan o’ o '] i tang’ Y 2 TG ES )
FSL-' tan ' \/ v rS( “lan o' ¢ V
(16)

Egs. (10), (13), and (16) are shown plotted in Figs. 2-4, respec-
tively for a range of ¢/’-values. It may be noted from Figs. 2 and 4
fm the N. and N terms. respectively, that F Sy > FS¢ pn e for all

">, ()n the othu hand, analysis of Eq. (I 3) for N, reveals that
F‘I < F S,tlﬂ,, « forall 0" < 11.08° and FS, <f5uun L+ can also
CILCUI fore’ > 11.08°If FS,. tan - exceeds somc critical value. This
effect is demonstrated in Fig. 3, where, for example, the line for
©' = 14° crosses the dashed line (FS, . = FS,) al about
FS8otqn v = 1.65. Table | summarizes for ardngc of gb’ values, the
transition point at which FS, < FS. ., for the N, bearing capac-
ity fuctor. '

In summary, F Sy < FSo 1 is only ubscned m the N, term
for practical purposes when &' is small (e.g., ' < 15%. Hlﬂm
friction angles can also lead to FSy < FS,yn v, but only when
FSeno 1s unrealistically high (e.g., for ¢ =25 when
FSor . > 7.86).
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Fig. 2. FS, .+ versus FS, for the N.. term [Eq. (10)]

Fig. 3. FS. , + versus FS, for the N, term [Eq. (12)]

Table 1. Range of FS.,., .- for Which FSy < FSeiyon - in the N -Term
from Eq. (13)

&' (degrees) FSet iun o
<11.08 >1.00
12 >1.18
14 >1.65
16 =2.26
18 =3.03
20 =402
25 >7.80

Bearing Capacity Example

To include all the terms of the bearing capacity equation, an exam-
ple from Salencon and Matar (19%2) is now considered where,
with reference to Fig. 1. ¢/ = 30° ¢/ = 16 kPa, y = 18 kN/m?.
B =4 m, and q = 18 kPa.

Fig. 5 shows plots of FS, ., . v8.F§, for each of the three bear-
ing capacity factors corresponding to &’ — 30°. From Eqgs. (3)~(5),
the bearing capacity factors are N, = 30.1, N, =184, and N, =
15.1, and the bearing capacity from Eq. (1) is given by

18 x4
7

Qo = 16 X 30.1 + 18 x 18.4 +

x 15.1 = 1,356 kPa
(17)

Load Increase

If a typical load-based factor of safety against bearing [ailure of
F§, =3 is used, the allowable bearing pressure is given by

1,356

Strength Reduction

From a strength reduction perspective, the value of FSet o that
would be needed to reduce the bearing capacity given in Eq. (17)
from gy, = 1356 kPa to gy, = g, = 452 kPa is given by the
nonlinear equation

Fig. 4. FS. . versus FS, for the N, term [Eq. (16)]

Fig. 5. FS.' o versus FS, for the three bearing capacity factors
corresponding to o' = 30°
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which after solution gives

FS8u g = 160 (20)

This example gives FS, ~ 2FS,,, -, which might be ex-
pected from Fig. 5 for bearing capacity on a soil with ¢’ — 30%
It is clear from the examples considered, that geotechnical design
is more sensitive to strength reduction than load increase, i.e., an
allowable bearing capacity based on /Sy, = 1.5 (say) will
be considerably lower (more conservative) than one based on
FS, =15

Concluding Remarks

The note has examined the difference between the factor of safety
defined by strength reduction (FS,, .+) and that defined by load
increase (FS,) in an ultimate bearing capacity problem. A novel
identity for K, led to the development of closed-form expressions
directly relating F'S, to FS.r .+ for each of the three bearing
capacity [actors. It was observed that when o' >0, FS, >
FSeane for nearly all cases, except for certain combinations of
parameters in the N, term. A bearing capzcity example involving
a s0il with ¢’ = 30° and all terms of the bearing capacity equation,
led to FS§, = 2FS. 4. The difference would be greater with
higher friction angles; however, the results show that for a typical
friction angle, the level of safety in design based on a strength
reduction factor of safety of approximately FS, ., = [.5 is not
significantly different to that based on a load increase factor of
safety of F§, ~ 3.0. The greater sensitivity of foundation systems
to strength reduction over load increase may impact the choice of
factors in ultimate limit state design.
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