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Another look at the stability of slopes with linearly increasing
undrained strength

D. V. GRIFFITHS*} and X. YU*

The paper presents a new look at the stability of slopes with linearly increasing undrained strength with
depth. Particular emphasis in the current work is focused on the influence of a firm stratum on the
factor of safety and the location of the critical failure surface. Solutions have been obtained by the
application of standard optimisation software with some independent finite-element checks. Results
are presented in the form of improved charts that give the stability number, and hence the factor
of safety, as a function of the depth ratio, strength gradient and slope angle. It is shown that when
the strength at the crest is greater than zero, previously published results can greatly underestimate the
factor of safety, as the depth to a firm stratum is reduced.
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INTRODUCTION AND BACKGROUND
The stability of undrained (¢$,=0) slopes with linearly
increasing strength with depth has long been of interest
to geotechnical investigators, with important early work
reported by Gibson & Morgenstern (1962) and Hunter &
Schuster (1968). The problem definition is given in Fig. I,
where the slope height is H, the slope angle is # and the depth
ratio to a firm stratum is D.

The variation of the undrained strength is given by the
equation

(1)

where ¢, is the strength at crest level (z=0) and p is the
gradient of strength increase with depth z. The parameter
Hy is the height above the crest at which the extrapolated
undrained shear strength would reduce to zero. The saturated
unit weight y is assumed to be constant.

Hunter & Schuster (1968) considered the case of ¢,p>0
and introduced a dimensionless strength gradient parameter
M, defined as

cu(z) = cwo +pz

H,
=l 2
M i (2)
which can also be written as
Cup
o ral, 3
oH 3)

and provided charts (in their figure 6) giving a dimensionless
stability number N as a function of §, D and M. The stability
number N is proportional to the factor of safety, FS, as shown
in equation (4).
Fs=nN% (4)
Y
Hunter and Schuster’s charts indicate that N is signifi-
cantly affected by # and M, but only marginally affected

Manuscript received 20 Oclober 2014; revised manuscript accepted
17 April 2015. Published online ahead of print 28 July 2013,
Discussion on this paper closes on 1 March 2016, for further details
see p. il

* Colorado School of Mines, Golden, Colorado, USA.

T Australian  Research Council Centre of Excellence for
Geotechnical Science and Engincering, University of Newcastle,
Callaghan, NSW, Australia.

824

by D. The influence of D on the location of the critical failure
mechanism and stability number will be the main focus of
this paper,

Other investigators of the linearly increasing strength
stability problem with ¢, >0 include Koppula (1984), who
performed similar optimisation analyses to those of Hunter
& Schuster (1968) with improvements pointed out by Shen &
Brand (1985), and Yu e al. (1998) who used the problem as a
benchmark for comparison of finite-element limit analysis
and limit cquilibrium solutions.

The special case of ¢,0=0 (M = 0) was considered in detail
by Gibson & Morgenstern (1962), who showed that the stab-
ility number N depends only on . It was further shown that
for any value of B, there exists an infinite number of critical
circles all giving the same N. In a later section, the geometric
range of the infinite family of circles giving the same stability
number will be discussed. The special case of ¢,0=0 was
also investigated by Booker & Davis (1972) using plasticity
theory.

OPTIMISATION

Interested readers are referred to the online supplementary
data for detailed information on the derivation of cquations
and the Matlab optimisation programs used to generate the
results presented in this paper. In brief, a potential circular
failure mechanism was postulated tangent to a given depth
ratio D. Based on the geometry and strength distribution,
equations were set up to compute the overturning and
restoring moments, Mo and My, respectively, leading to a
factor of safety given by

o Mr
FS§ o

(%)

The optimisation software was then used to find the
location of the circle centre giving the minimum factor of
safety. Finally the stability number was computed from
equation (4) as

N=FsL (6)

p

The results presented in this paper for N=F (8, M, D) all

derive from equation (6).
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Fig. 1. Undrained slope with linearly increasing strength

INFLUENCE OF THE DEPTH RATIO

A full set of results for different parametric combinations
with ¢y >0 is given later in this section, but in order to
explain the trends in more detail, a typical set of results for
the case of a slope with M =2 and #=15° is considered first,
as shown in Fig, 2.

Four failure regions are identified for different ranges of D.

(a) Deep circle, D> 2-02. A minimum stability number is
observed at D=2-02, so the dashed curved line in the
range D >>2-02 given by the optimisation results is not
critical, and the correct result just extends horizontally
at N=22:93. In this range marked ‘D’, the critical
failure surface outcrops to the right of the toe, but is not
tangent to the strong layer below, which has no influ-
ence on the result, as shown in Fig. 3(a).

(b) Base circle, 2-02> D>~ 1-54. In this range marked ‘B’,
the strong layer starts to influence the stability number
N causing it to risc gradually as D is reduced. The
critical failure surfaces are base circles and tangent to
the strong layer below, as shown in Fig. 3(b).

(¢) Toecircle, 1-54 < D < 1-37. In this range marked “T", the
critical circles all pass through the toe and are tangent to
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Fig. 2. Typical result for slope with M=2 and £= 15°; S, slope; T, toe;
B, base; D, deep

A

the strong layer below, as shown in Fig. 3(c) and Fig. 4.
The stability number N continues to rise as D is reduced.
(d) Slope circles, D<1-37. In this range marked ‘S’, the
critical circles outcrop on the slope and are tangent
to the strong layer, as shown in Fig. 3(d). The stability
number N conlinues (o rise more steeply as D is reduced.

As was noted by Shen & Brand (19835), the critical deep
and base circles are always ‘mid-point’ circles; that is, the
centre of the critical circle is exactly above the mid-point of
the slope. As a further check, elastic—plastic finite-element
results using a strength reduction algorithm ate also shown
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Fig. 3. Different types of critical failure circles: (a) deep circle (D) (D

has no influence on /V); (b) base circle (B); (c) toe circle (T); (d) slope
circle (S)
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Fig. 4. Range of D values for which toe circles are critical when M=2 and p=15°
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Fig. 5. Stability number (V) plotted against depth ratio (D): (a) M=0-25; (b) M=0-50; (c) M=0-75; (d) M=1-00; (c) M= 1-25; (f) M=1-50;
(g) M=175; (h) M=2-00 (continued on next page)
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Fig. 5. Continued

in Fig. 2. The results confirm the trend given by the solid
line, and the finite-element failure mechanisms also closely
followed those indicated in Fig. 3 over the range of D values
considered.

A more complete set of results for N plotted against D is
now given in Fig. 5. For ease of comparison with figure 6
from Hunter & Schuster (1968), the same ranges of values
they used, namely 0:25 <M -2 and 0 < D <4 are presented.
For each value of M, several slope angles are considered in
the range 5° << 60° A dashed line is shown corresponding
to the transition from deep and base circles, to toe and slope
circles. Interested readers are also encouraged to use the
Matlab programs provided in the supplementary data to
investigate other cases.
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Comparison with other investigators

The results presented in this paper agree exactly with
Hunter & Schuster (1968) whenever the critical failure sur-
face is of the deep or base type, as shown in Figs 3(a) and 3(b)
and marked ‘B and D’ in Fig. 5; in other words, the results
agree whenever the critical circle outcrops to the right of the
toe. Results significantly disagree, however, whenever the
critical failure surface is of the toe or slope type, as shown in
Figs 3(c) and 3(d) and marked ‘S and T in Fig. 5. In this
range the stability number N is shown to rise steeply as D is
decreased, in contrast to Hunter and Schuster’s results, which
indicate a constant stability number (compare for example,
the curved solid line and the horizontal dashed line marked
‘Hunter & Schuster (1968)" in Fig. 2 when D < 1-54).



828

Table 1. Geometry and properties for example problem
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H D
10m 1

Cuo

B
15° 20 kPa

- 3
TkN/m

7 M (equation (3))
20 kN/m? 2

A further obscrvation on the comparison between results
presented in this paper and those of Hunter and Schuster
applies in cases where D < 1. For example, a slope with height
H, depth ratio D=0-5 and strength gradient parameter 34, is
clearly identical Lo a slope with height 0-5H, depth ratio D=1
and strength gradient parameter 24 (assuming the same £,
cup, p and y). The charts presented in Fig, 5 of this paper reflect
this exact equivalence, while the charts in figure 6 of Hunter &
Schuster (1968) would give quite different stability numbers.

Example problem

The improved solutions presented in this paper are now
illustrated with an example problem with geometry and
propertics shown in Table 1.

Figure 5(h) with #=15° and D=, gives a stability number
of N=231:42, and a factor of safety from equation (4) of FS=N
(p/y)=1:57. The Hunter & Schuster (1968) results from Fig, 2
with the same input parameters give N~23-88 and F§=1-19;
some 32% lower. This discrepancy could lead to very different
slope design outcomes, since the lower and upper values of
FS§=1-19and FS=1-57 might typically lie on either side of an
acceptable target value of FS=1-5. Lower values of D<1
would lead to ever greater differences between factors of safety
predicted by the two methods.

Zero strength at the crest level, cp=10
The special case of linearly increasing undrained strength
from zero strength at the crest level (M =0) was considered
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by Gibson & Morgenstern (1962). Those authors noted
that the stability number, and hence the minimum factor
of safety, depends only on the slope angle 8, and is not
influenced by the depth ratio D. Their results have been
plotted as Fig. 6(a), and for consistency of presentation
with Fig. 5, stability munbers for this case have also been
plotted in Fig. 6(b), emphasising the insensitivity of N to
the value of D.

Gibson and Morgenstern noted that for any given
slope angle, there is an infinite family of critical circles, all
giving the same stability number. The deepest circle in the
infinite family of critical circles fora = 15° slope is shown in
Fig. 7(a), together with a couple of shallower ones. All circles
indicated are critical, and give the same stability number of
N=851. The deepest circle passes through the toe with a
positive gradient, and is tangent to a depth ratio of D =1-37.
Fig. 7(b) shows similar results for a #=45° slope where all
critical circles give N=4-11. In this case, the decpest critical
circle in the family is tangent to D=1 at the toe. For slopes
steeper than 45°, the deepest circle in the family has a
negative gradient as it passes through the toe as shown in
Fig. 7(c) for a f="75° slope. In this case all critical circles give

-56.

A summary of the deepest depth ratio D of families
of critical circles for different slope angles in the M =0 case
is given in Fig. 8. It is clear from the figure that for flatter
slopes where #<<45°, the deepest critical circle can extend
quite a way into the foundation soil if allowed. For example,
from Fig. 8, for a B=5° slope, the critical circle could be
as deep as D=2-38. This observation is at variance with
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Fig. 6. Stability numbers for A7=0 showing: (a) a unique relationship between B and N (after Gibson & Morgenstern, 1962); (b) insensitivity of

NtoD



GRIFFITHS AND YU

829

N = 8-51 for all
circles with D = 1-37

TR

&5

N
: N
N
AT T o s
(b)
oy - e

(@)

Fig. 7. Critical circles for M=0: (a) #=15° (b) #=45° (c) f=75°

Gibson and Morgenstern’s comment that the critical circle
giving the minimum factor of safety always lies within the
slope.

CONCLUDING REMARKS
The paper has revisited the problem of an undrained slope
with linearly increasing strength with depth. Results have
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been presented for the stability number N as a function of
slope angle f3, strength gradient parameter M and depth ratio
D. In the case of a non-zero strength at the ground surface
(cup>0), four critical mechanism types were identified as
deep (‘D”), base (‘B’), toe (*T”) and slope (‘S’). Although the
values of N computed in this paper corresponding to deep
and base mechanisms (higher values of D) were in complete
agreement with the published results of Hunter & Schuster
(1968), the values of N computed in the toe and slope cases
(lower values of D) were quite different and could be con-
siderably higher. In the current paper, N in the toe and slope
range was observed to rise steeply as D— 0, in contrast to
Hunter and Schuster’s values, which indicated constant N
with no influence of D. Complete insensitivity of N to the
value of D is indeed the case when the strength at the surface
is zero (cyp = 0), as noted by Gibson & Morgenstern (1962). Tt
was observed in the current work, however, that for flatter
slopes where < 45°, critical circles could extend well into the
foundation and were not necessarily confined within the
slope itself.

NOTATION
¢y undrained strength

¢yp  undrained strength at crest (z=0)
D depth ratio

FS  factor of safety
H  slope height

H, height above crest where ¢, =0
M strength gradient parameter

Mgy overturning moment
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restoring moment

stability number

depth below crest

slope angle

saturated unit weight

strength gradient

¢u total stress friction angle (=0)

T =T &R
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