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Abstract: In geotechnical engineering analysis and design, the frequency and spacing of borehole information is of great interest, especially
when field data are limited. This paper uses random field models to deal with uncertainty in soil properties owing to spatial variability, by
analyzing in-situ cone penetration test (CPT) data from a sandy site in northern Denmark. To provide a best estimate of properties between
observation points in the random field, a Kriging interpolation approach has been applied. As expected, for small correlation lengths, the
estimated field quantities at intermediate locations between data points are close to the mean value of the measured results, and a high
uncertainty is associated with the estimate. A longer correlation length reduces the error and implies more variation in the estimated values
between the data points. DOI: 10.1061/(ASCE)GT.1943-5606.0001358. © 2015 American Society of Civil Engineers.
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Introduction

In geotechnical investigations, the scope is often governed by how
much the client and project manager are willing to spend, rather
than by what is needed to characterize the subsurface conditions
(e.g., Jaksa et al. 2005). To design and analyze a foundation, practi-
tioners ideally would like to know the soil properties at many
locations; but achieving this goal can be unrealistic and expensive.
Researchers are searching for new ways to determine these param-
eters using statistical approaches. Probabilistic methods have been
applied in geotechnical engineering for assessing the effects of un-
certainties in geotechnical predictions (e.g., Zhang et al. 2011), and
the application of geostatistics to large geotechnical projects has
also proved to be a powerful tool, allowing coordination of field
data in analysis and design (e.g., Ryti 1993; Rautman and Cromer
1994; Wild and Rouhani 1995; Rouhani 1996).

When uncertainties occur, they may often be attributable to lim-
ited sampling, rather than inaccuracies/measurement uncertainties
in the soil tests themselves (e.g., Goldsworthy et al. 2007). In-situ
tests in particular can provide a good characterization of soil prop-
erties at the locations where tests were performed, but inevitable
uncertainty remains at locations which have not been examined.

A more formal mathematical characterization of spatial variabil-
ity using random fields (e.g., Fenton and Griffiths 2008), can quan-
tify probabilistically how the variability at one location can be used
to represent the variability at another location some distance away.
The well-established Kriging method, based on D. G. Krige’s
empirical work for evaluating mineral resources (Krige 1951), and
later formalized by Matheron (1963) into a statistical approach in
geostatistics can also be used to perform spatial interpolation be-
tween known borehole data. In addition to generating a best, linear
unbiased estimate of a random field between known data, Kriging
has the added ability of estimating certain aspects of the mean trend
by using a weighted linear combination of the values of a random
field at each observation point (e.g., Fenton and Griffiths 2008). In
environmental and geotechnical engineering, Kriging is commonly
applied to the mapping of soil parameters and piezometric surfa-
ces (e.g., Journel and Huijbegts 1978; Delhomme 1978; ASCE
1990).

Kriging has numerous advantages compared with other com-
mon interpolation techniques. For example, Kriging can produce
site- and variable-specific interpolation schemes by directly incor-
porating a model of the spatial variability of the data (Rouhani
1996). As a collection of linear regression techniques, Kriging ac-
counts for the stochastic dependence among the data (Olea 1991).
The geological processes result in a stochastic dependency, which
may have acted over a large area across geological time scales
(e.g., sedimentation in large basins) or in fairly small domains
for only a short time (e.g., turbiditic sedimentation, glacio-fluviatile
sedimentation). Geological characteristics that form in a slow and
steady geological environment are better correlated to each other
than those that result from an often abruptly changing geological
process.

The purpose of this study is to interpolate normalized cone data
in a sandy site by using the Kriging method and investigate the
effect of spatial correlation length on the results. This statistical
analysis procedure consists of two main parts:
1. Verification of the method using a random field simulation. In

this part the Kriging method has been applied to a simulated
3D Gaussian random field and then at given intermediate
points, these simulated values compared with the best estimate
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Kriging values and estimates of the standard deviation or the
coefficient of variation of the error.

2. Applying Kriging to real values of cone data. Kriged values
are also estimated at different depths below the surface based
on two different horizontal correlation lengths to analyze the
effect of correlation length on the results.

The results indicate that by increasing the horizontal correlation
length, the standard deviation of estimated values by the Kriging
method decreases, resulting in less uncertainty in prediction of val-
ues at intermediate locations. It is worth noting that in this pro-
cedure, it is assumed that the data represent samples from a
statistical homogeneous domain.

Normalization of Cone Data

Because of the significant influence of the effective overburden
stress on CPT measurements (e.g., Moss et al. 2006), various meth-
ods have been proposed for normalizing CPT data to account for
this effect. In this study, the technique proposed by Robertson and
Wride (1998) has been applied to the measurements of cone tip
resistance, i.e.

qc1N ¼
�
qc
Pa

�
CQ; CQ ¼

�
Pa

σ 0
v0

�
n

ð1Þ

where qc1N is the dimensionless cone resistance normalized by the
weight of soil on top of the cone, qc is the measured cone tip re-
sistance, and CQ is the correction for overburden stress. The power
n takes the values 0.5, 1.0 and 0.7 for cohesionless, cohesive and
intermediate soils, respectively, whereas σ 0

v0 is the effective vertical
stress and Pa is the reference pressure (atmospheric pressure) in the
same units as σ 0

v0 and qc.

Description of the Site

This study concerns a site close to Aalborg in northern Denmark
where a wind turbine blade storage facility is to be constructed.
The site is a basin deposit area as it is close to the Limfjord. The
soil layers consist of 4 m clay on top and silty sand in the lower
layers. Using piezocone penetration test (CPTu) data, the statis-
tical characteristics of the cone tip resistance at the site have been
estimated. A total of nine cone penetration tests was conducted
using a Geotech NOVA Acoustic system and a 20 t digital pie-
zocone penetrometer, and data was acquired digitally. The CPTu

system also consists of a hydraulic pushing and leveling system
and 1-m long segmental rods. Fig. 1 shows a schematic cross
section of the CPT probe. All CPTu soundings reached a depth
of approximately 8 m. The nine soundings were arranged in a
cross-shaped pattern with a 10-m separation distance between
holes, and the cross was framed by four boreholes (Fig. 2).
CPT data were sampled at 20-mm intervals. Fig. 3 illustrates
a representative CPT profile obtained in the field. Standard clas-
sification test results were carried out on samples retrieved from
the boreholes showing that the soil deposit is primarily sand and
a sand–silt mixture.

Modeling Spatial Variability of the Site Using Kriging

Kriging is essentially a best, linear unbiased estimation with the
added benefit of being able to estimate the mean. The main objec-
tive is to provide a best estimate of the random field at unobserved
points. The Kriging estimate is modeled as a linear combination of
the observations

X̂ ¼
Xn
k¼1

βkXk ð2Þ

where x is the spatial position of the unobserved value being
estimated. The unknown coefficients βi are determined by consid-
ering the covariance between the observations and the prediction
point.

To assess the effect of known data at an intermediate position,
maps were created by using kriging on the cone resistance data
from CPT soundings in the region. This approach provided a best
estimate of a random field between known data to estimate the ran-
dom field at any location using a weighted linear combination of
the values of the random field at observation points. The following
steps are applied for this procedure:

Assume a correlation length of the site (θ) (in this study two
arbitrary correlation lengths have been chosen).

Estimate the correlation coefficient of the data (ρ) assuming a
homogeneous random field

ρðxi;xjÞ ¼ exp

�−2jτ ijj
θ

�
τ ij ¼ jxi − xjj ð3Þ

Item Description Item Description

1. Point/ Tip, 10 cm2 6. Friction sleeve

2. Support ring under the X-ring 7. Friction sleeve, 2 pcs O-ring

3. Filter ring brass, 10 cm2 – Pore pressure 8. X-ring

4. X-ring 9. O-ring, battery pack, 10 cm2

5. Friction sleeve, 2 pcs O-ring 10. Serial number of the probe

Fig. 1. CPT probe, 10 cm2
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Fig. 2. Plan of boreholes and CPTu positions
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Fig. 3. Two representative CPT profiles obtained from the site. u0 is the hydrostatic pore pressure induced by the phreatic level of the region
(CPT 3 and 5)
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Calculate the covariance between data (between xi and xj)

Cij ¼ σ2
x exp

�−2jτ ijj
θ

�
;

�
Note∶ρðτÞ ¼ CðτÞ

σ2
x

�
ð4Þ

In Kriging it is assumed that the mean can be expressed as in a
regression analysis

μðXÞ ¼
Xm
i¼1

aigiðxÞ ð5Þ

where ai is an unknown coefficient and g1ðxÞ ¼ 1; g2ðxÞ ¼ x ;
g3ðxÞ ¼ x2, and so on (in a one-dimensional case). A similar
approach is used in higher dimensions (Fenton and Griffiths
2008).

Estimate of the Kriging matrix K

K ¼

2
66666666666666666666666666664

C11 C12 . . . C1n g1ðx1Þ g2ðx1Þ . . . gmðx1Þ
C21 C22 . . . C2n g1ðx2Þ g2ðx2Þ . . . gmðx2Þ
. . . . . . . .

. . . . . . . .

. . . . . . . .

Cn1 Cn2 . . . Cnn g1ðxnÞ g2ðxnÞ . . . gmðxnÞ
g1ðx1Þ g1ðx2Þ . . . g1ðxnÞ 0 0 . . . 0

g2ðx1Þ g2ðx2Þ . . . g2ðxnÞ 0 0 . . . 0

. . . . . . . .

. . . . . . . .

. . . . . . . .

gmðx1Þ gmðx2Þ . . . gmðxnÞ 0 0 . . . 0

3
77777777777777777777777777775

. ð6Þ

Because K is a function of the observation point locations and
covariance between them, it could be inverted and used repeatedly
at different spatial points to build up the best estimate of the ran-
dom field.

Calculate the covariance between the ith observation point and a
given, intermediate spatial point x

M ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

C1x

C2x

:

:

:

Cnx

g1ðxÞ
g2ðxÞ

:

:

:

gmðxÞ

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð7Þ

By definition, the so-called best linear unbiased predictor X̂ of X
implies that it is linear. So the n unknown weights βk in Eq. (2)
have to be determined to find the best estimate at the point x

Kβ ¼ M; β ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

β1

β2

:

:

:

βn

−η1
−η2
:

:

:

−ηm

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð8Þ

For each specific point, M changes, as does the vector of
weights, β. The quantities ηi are a set of Lagrangian parameters
used to solve the variance minimization problem subject to the un-
biased conditions.

Estimate unknown values at the desired location

X̂ðxÞ ¼
Xn
k¼1

βkxk ð9Þ

where the hat indicates that this is an estimate, and x1; x2; : : : ; xk
are observation points.
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Concerning step 1 in the procedure listed above, there are differ-
ent techniques available in the literature for the estimation of the
correlation length using geotechnical data of the field (Vanmarcke
1977; DeGroot and Baecher 1993; Tang 1979; DNV 2010). If suf-
ficient data are available, then it is possible to use one of those tech-
niques. The correlation coefficient between each pair of data can be
calculated and plotted versus the spatial distance between the cor-
responding positions. Then an admissible type of autocorrelation
function is fitted to them and using the regression analysis, the best
values for the model parameters (incl. correlation length parameter)
can be estimated (JCSS-C1 2006). For example, in the quadratic
exponential model, the correlation length is the double of the D
factor (Firouzianbandpey et al. 2014).

With regard to step 4 of the procedure, an assumption that the
mean is either constant (i.e., m ¼ 1; g1ðxÞ ¼ 1; a1 ¼ μðXÞ or lin-
early varying (m ¼ 2; μðXÞ ¼ a1 þ a2x) is usually sufficient. The
correct form of the mean trend can be determined by plotting the
results and visually checking the mean trend. The trend can also be
found by performing a regression analysis or performing a more
complex structural analysis (Journel and Huijbergts 1978).

Method Verification Using Random Field Simulation

In this study, the Kriging method has been applied to a generated
3D Gaussian random field using the correlation matrix decompo-
sition method. The procedure was as follows:
1. Simulate a realization of the random field
Using the simulated values in the soundings positions, establish

a Kriging model.
The best estimate Kriging values of cone data are then compared

with the simulated values at given intermediate points. This was
also undertaken for the purpose of verification of the procedure in
assuming a constant mean trend and ignoring Lagrangian parameters.

The mean and standard deviation of the normalized cone data
from the field qc1N (e.g.) were used to generate the random field. A
Markovian correlation function

ρfield ¼ exp

�
− 2jΔxj

δx
− 2jΔyj

δy
− 2jΔzj

δz

�
ð10Þ

has been used for modeling the random field (for example,
Vahdatirad et al. 2014) and the correlation between points in the

field was modeled as an exponentially decaying function of the ab-
solute distance between the points. In Eq. (10),Δx; Δy andΔz are
the spatial distances in the horizontal and vertical directions, re-
spectively, and δx; δy and δz are correlation lengths in the appropri-
ate directions. The real correlation lengths of cone data in the region
(δx; δy ¼ 2 m and δz ¼ 0.45 m) have been estimated and used in
the model (Firouzianbandpey et al. 2014).

For each realization, a vector of standard Gaussian random
seeds, Ux, is generated for each random field with the same size
as the number of integration points. The correlation matrix ~R is
constructed with the correlation function specified in Eq. (10) and
decomposed as

~L × ~LT ¼ ~R ð11aÞ

GðxÞ ¼ ~L × UðxÞ ð11bÞ
where ~L is the lower triangular matrix used for transferring Ux to
the correlated field with zero mean GðxÞ.

For each random variable, transformation to the random fields
with real distribution is:

Y ¼ expðμln þ σlnGÞ
where μln and σln are lognormal mean value and lognormal stan-
dard deviation for qc1N, respectively.

After 1,000 Monte Carlo simulations, the mean values of the
random field at the same position as the soundings were used to
estimate the Kriging values at intermediate positions in the field.
Then the difference between the Kriging estimations and those gen-
erated by the random fields has been calculated and by fitting a
normal distribution, the mean value of the error has been found.
As shown in Fig. 4(a), the mean value of the error is very small,
and it indicates that the method is quite acceptable in estimating
values. Fig. 4 illustrates the results in the simulated random field.
The black circles identify the location of the CPT soundings.

Applying Kriging to the Real Values of Cone Data

Kriged values were also estimated at a depth of 2 m below the sur-
face based on two different horizontal correlation lengths: 5 and
10.5 m (half of the mean distance between soundings which was
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21 m), are used to examine the effect of the correlation length on the
kriged values. For the vertical direction, the real value of vertical
correlation length of the region (θv ¼ 0.45 m) was applied. Be-
cause the real estimated horizontal correlation length of data was
too small, it was preferred in the study to employ two represen-
tative values of this parameter for the purpose of comparison and
inference.

Fig. 5 shows a map of the estimated normalized cone resistances
with two different correlation lengths at the chosen depths. To
reflect the variability of this parameter in two directions, the nor-
malized cone resistance values are shown as contours throughout
the site plan. The black circles again identify the locations of the
CPT soundings. As the distances between these points are in-
creased, the correlation between the values of normalized cone re-
sistances decreases. In other words, the values are increasingly
different as the distances between the points increase. When the
correlation length is large, the data are highly correlated, and
the values are much closer to each other for a greater distance. This

fact can be seen by comparing two plots with different horizontal
correlation lengths. When the correlation length increases, points
with the same color are distributed in a wider separation distance
from fixed known locations, which implies a higher dependency in
space. In the figures, θh and θv denote horizontal and vertical cor-
relation lengths, respectively.

Estimator Error

Owing to a finite number of observations, there is always an error
associated with any estimate of a random process. This error should
be calculated to achieve the accuracy of the estimate. The difference
between the estimated X̂ðxÞ and its true (but unknown and random)
value XðxÞ can be given by

μE ¼ E½XðxÞ − X̂ðxÞ� ¼ 0 ð12Þ

σ2
E ¼ E½XðxÞ − X̂ðxÞ2� ¼ σ2

X þ βT
n ðKn×nβn − 2MnÞ ð13Þ
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where βn and Mn are the first n elements of β and M, and Kn×n is
the n × n upper left submatrix of K containing the covariances.
Also βT

n is the transpose of βn. The individual standard deviation
of the error has been estimated for two different correlation
lengths (Fig. 6). As shown in Fig. 6 (left), the standard deviation
of the error is small when it is close to the observation points and
increases by increasing the distance. In Fig. 6 (right), with a
higher horizontal correlation length, the standard deviation of

error is obviously smaller in a larger domain around each obser-
vation point.

This procedure was applied to a different depth (4 m) to illus-
trate how the normalized cone resistance varied in the horizontal
and vertical directions with correlation length. By understanding
the correlation structure of the field, the values of a desired param-
eter of the soil can be estimated at intermediate locations. Fig. 7
provides information about the variation of normalized cone
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Fig. 7. Estimated normalized cone resistance by Kriging. Depth = 4 m, θv ¼ 0.45m: (a) θh ¼ 5m; (b) θh ¼ 10.5m
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resistance in the region. If one could estimate the correlation length
of the site by probabilistic analysis, the value of the cone resistance
could easily be determined at any point of the site.

Application of Kriging—Illustrative Example

From a consideration of soil type, drainage conditions, and initial
stress state, CPTu data can be used to estimate numerous geotech-
nical parameters, e.g., friction angle, relative density, small strain
shear modulus, undrained shear strength, and OCR. An example is
now presented to explain how Kriging can be used to estimate the
undrained shear strength of a clayey layer in the region under con-
sideration in this paper.

Studies for predicting the undrained shear strength using CPT
have progressed empirically and theoretically. The results of these
studies show that the correlation between cone resistance and
undrained shear strength of clays can make use of the following
equation (Baligh et al. 1980)

su ¼
ðqc − σv0Þ

Nkt
ð14Þ

where Nkt is an empirical cone factor and σv0 is the total in-situ ver-
tical stress. A considerable amount of data has been reported on this
equation (e.g., Lunne et al. 1997), indicating Nkt of approximately
15–20. Previous studies on Danish clay showedNkt varying from 8.5
to 12, with 10 as an average [Luke (1992)]. For larger projects, site-
specific correlations should be developed. By having Kriged qc val-
ues, σv0 and Nkt ¼ 10, the values of su can be determined at any
point through the layer by Eq. 14. Fig. 8 shows estimated Kriged
values of su of the clayey layer at 10-cm intervals in the vertical
direction. The approach allows limited CPT data to be fully exploited
over a much wider volume of the site. The estimated strength param-
eters might then be available for use in a comprehensive numerical
model of foundation performance on the heterogeneous soil layer.

Conclusion

A Kriging approach has been applied to the normalized cone re-
sistance of a sandy site in Denmark to interpolate between known
borehole data. First, a verification process has been performed by
generating a 3D random field using statistical parameters of cone
data. Some values at discrete borehole locations were sampled as
known observation points and then Kriging was used to interpolate
between the discrete values and compared with the original random
field. These estimated Kriging values are compared with the simu-
lated values at given intermediate points. This procedure was per-
formed to verify some assumptions as a constant mean trend and
ignoring Lagrangian parameters. After calculating the difference
between the Kriging estimation and the generated random field,
known values of the cone data at the location of the sounding were
taken as observation points to estimate the values of cone resistance
at any point within the field by the Kriging method. Because
changes in the correlation length have an inevitable effect on
the map of soil variation by Kriging, two values of horizontal cor-
relation length were applied at two depth levels by the Kriging
method, to examine the effect of correlation length on estimated
values at intermediate locations between known field values. This
was undertaken for two depths of 2 and 4 m through the deposit.
The results showed that when the correlation length was increased,
a good (accurate) estimate could be obtained at a greater number of
intermediate points. In contrast, when the correlation length was
smaller, these values could not be estimated precisely by Kriging.

In the latter case, the estimated values at intermediate locations are
approximately equal to the mean values of the data at the observa-
tion points, which implies a higher uncertainty. When the correla-
tion length was increased, the data were more correlated with each
other, and the values were closer at a greater distance. This obser-
vation was clear from the contours of cone values, in which the
colors varied more gradually.

This study has used a Kriging technique based on measured
field values, to provide a map of normalized cone resistances at a
site with known or estimated spatial correlation properties. By hav-
ing the values of normalized cone data at any desired location, the
values of strength parameters for the soil needed for the design and
analysis of any type of earth structure can be estimated and, con-
sequently, can highly reduce the expenses of future site investiga-
tions. Studies such as this can be further developed to reduce the
cost of site investigation by providing more reliable interpolated
information for sites possessing limited CPT data.

Notation

The following symbols are used in this paper:
ai = unknown coefficient;
Cij = covariance between data;
CQ = correlation for overburden stress;

giðxÞ = regression function;
GðxÞ = correlated random field with zero mean;

K = Kriging matrix (a function of observation point locations
and their covariance);

~L = lower triangular matrix;
M = covariance between the observation point and the

intermediate point;
Nkt = empirical cone factor;
n = results from the correction for overburden pressure (0.5,

0.7, 1.0 for cohesionless, intermediate and cohesive soils,
respectively);

Pa = atmospheric pressure;
qc = measured cone tip resistance;

qc1N = normalized cone resistance;
~R = correlation matrix;
su = Undrained shear strength;

UðxÞ = standard Gaussian random seeds;
x = spatial position of unobserved value;
~X = estimation of x;
βi = Kriging coefficient or unknown Kriging weight;

δx;y;z = correlation length in x, y and z direction;
ηi = Lagrangian parameter;
θh = horizontal correlation length;
θv = vertical correlation length;
μE = mean value of the estimator error;
μln = Lognormal mean value of qc1N ;
μX = mean function;
ρ = correlation length;

σE = standard deviation of the estimator error;
σln = Lognormal standard deviation of qc1N ;
σ 0
v0 = effective vertical stress;

σv0 = total vertical stress; and
τ = lag distance between observation points.
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