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Abstract—A numerical approach for the computation of yield and plastic collapse of framed structures
is described. Based on the ‘initial stress’ method in which the global matrix is formed once only, the
algorithm differs from other computer approaches in that moments in excess of their yield values are
redistributed using ‘constant stiffness’ iterations. Under a given set of external loads, convergence of the
numerical process gives a solution in which equilibrium is satisfied without any violation of yield at the
Joints. Collapse of a structure is indicated by a sudden increase in the number of iterations required for
convergence, and correspondingly large nodal displacements. Examples are presented in which both
loading and unloading cycles are followed, leading to demonstrations of elastic shake down and
incremental collapse. Comparisons with solutions obtained by more traditional methods suggest that the
proposed algorithm represents an accurate and versatile approach to the analysis of yield in framed

structures.
NOTATION

Scalars
EA axial rigidity
ET bending rigidity
GJ torsional rigidity
M,, M}, M2 plastic moments
M, M, end moments

e maximum displacement
t tolerance
G couple
L element length
6 element inclination
A AL Ay load factors
W load
W collapse load
d, movement of point C
o plastic hinge rotation angle
i, e ! counters
NEL number of elements
IMAX iteration limit
Arrays and vectors
K global stiffness matrix
k, element stiffness matrix
v displacements accumulator
AP/ applied load increments
r element actions: accumulator
AU displacement increments
AF load increments
AP correction load increments
&% element displacements
pL element actions
q. element correction vector
Operators
A element assembly operator

1. INTRODUCTION

The paper describes a computer oriented technique
for monitoring the onset of plasticity and the collapse
of framed structures subjected to various combina-
tions of external loading.

Much has been written on the subject of yield and

plastic collapse of framed structures (e.g. [1-3]) so
only a brief introduction will be given here. Tradi-
tional methods for determining the plastic collapse
loads of fairly simple structures have tended to
invoke a combination of upper and lower bound limit
theorems (e.g. [4]). The lower bound method involved
finding bending moment distributions in equilibrium
with applied loads and nowhere violating the yield
criterion, whereas the upper bound method involved
postulating failure mechanisms in which the work
done by external loads was equal to energy dissipated
internally at the plastic hinges. The lower bound
method for more complicated structures can be ex-
pressed in the form of a linear programming
problem [5] amenable to computer solution. Al-
though systematic, this approach has not proved as
popular as the upper bound ‘method of combined
mechanisms’ in which a trial and error search is made
for the minimum loads comsistent with a kine-
matically admissible failure mechanism. A summary
of various methods of tackling the plastic collapse
problem is to be found in [2].

Although intuition can play a large part in the
selection of mechanisms for obtaining ‘quick’ solu-
tions by the upper bound method, great care must be
excrcised in more complex problems where a more
rigorous approach may be necessary, An interesting
example of a structure in which intuition could
mislead is the case of a simply supported Vierendeel
girder described by Horne [4] and shown in Fig. 1.
Analysis shows that the weakest point of the beam
(ignoring the effects of axial forces on plastic mo-
ments) for plastic collapse due to a single load does
not lie on the centreline!

With the advent of digital computers, algorithms
have been devised which automate the process of
obtaining the collapse load of beams and frames (e.g.
[6-8]). A popular method is to use a step-wise elastic
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Fig. 1. Collapse of Vierendeel girder.

analysis in which moments obtained elastically are
linearly extrapolated such that the most critical joint
reaches its plastic moment M. This joint is then
replaced by a pin and the process repeated noting
that a running total is kept of moments at all joints
from one step to the next. Eventually, sufficient joints
go plastic such that a mechanism develops signalled
by a sudden increase in nodal displacements.

As discussed by Wang [6], the formation of a pin
can be dealt with either by the inclusion of an extra
rotational degree of freedom, or by modifying the
element stiffness matrix. The latter course has the
advantage that the global stiffness matrix remains
unchanged for every stage of the elastic analysis. This
is also a feature of the method described later in this
paper.

Although based on the stiffness method, some
computer solutions incorporate a modified approach
in which the effects of axial deformations of the
members are ignored. From the point of view of
automation of the method, however, the inclusion of
axial deformations of the members leads to a more
general formulation and has been retained in the
present work. If required, the effects of axial defor-
mations can be virtually eliminated by the incorpo-
ration of large relative values of the axial rigidity EA.
Alternatively, axial effects can be completely elimi-
nated by the use of tied freedoms as will be described
in a subsequent section.

2. GENERAL DESCRIPTION OF
THE METHOD

The algorithm described in this paper is based on
the standard matrix stiffness method, and is obtained
by making some simple modifications to an ordinary
elastic program for the analysis of frames. The
present approach does not account for changes in
element stiffness due to axial forces, but modifi-
cations to the stiffness matrices to include stability
functions [9] could be easily made if required. The
method differs from traditional solution techniques in
that equilibrium between applied loads (forces and
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moments), and internal element actions without vio-
lation of yield, is achieved by iteratively modifying
the global loads vector. This modification continues
repeatedly until the moments at all joints are less than
or equal to their respective plastic moment limits
within certain tolerances. The global stiffness matrix
remains unchanged throughout the process. The
algorithm is designed for incrementally applied loads,
although loads can be applied in a single increment
if desired without any loss of accuracy. Failure of a
structure, and the formation of a mechanism, is
signalled by a sudden increase in the nodal displace-
ments (translations and rotations) and failure of the
iterative process to reach a converged state. An
iteration limit /MAX is included in the algorithm
which, if reached, would normally indicate failure
conditions.

The analysis of cyclic loading of a structure follow-
ing initial yielding is easily dealt with by the applica-
tion of negative load increments. The effects of elastic
shakedown can also be examined this way. The
directness of the method, whereby the actual loads of
interest are applied to the structure and the corre-
sponding displacements computed, enables phenom-
ena such as incremental collapse to be reproduced
numerically by the application of two alternating
loading functions.

The next two sections deal with the stiffness matrix
formulation and the method of moment redis-
tribution. For clarity, the examples are in two dimen-
sions and only one plastic moment value per node per
element needs to be checked. The method is easily
extended to three dimensions, in which case three
plastic ‘moment’ values (two bending, one torsion)
must be checked against their limiting values. In the
three-dimensional case, it also will be necessary to
incorporate some form of yield criterion to account
for the various interactions between the components
of bending [10].

It is assumed throughout this work that the greater
stresses occurring in the frames are due to bending,
and that the effects of shear and axial forces on the
ultimate moments are negligible. The usual assump-
tion regarding small changes in geometry having no
effect on the equilibrium equations is adhered to,
although it is recognised that the assumption may be
less justifiable if large deflections beyond the elastic
limit occur.

3. STIFFNESS MATRIX FORMULATION

The framed structure to be analysed is discretised
in terms of beam-column finite elements, ensuring
that nodes are located at any points of loading and
also at any locations where plastic hinges may occur.
In two dimensions, each node has three degrees of
freedom (two translations, one rotation). Structures
in which axial deformations can be neglected are
easily dealt with as special cases of the general
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Fig. 2. Freedom numbering including (a), and excluding
(b) axial deformations.

stiffness formulation. Consider the example given in
Fig. 2 [4], which will also be used later to demonstrate
the computation of plastic collapse. Figure 2(a) al-
lows for the possibility of axial deformations in both
the horizontal and vertical members and requires the
solution of 15 simultaneous equations for the elastic
case. In Fig. 2(b), the freedoms have been renum-
bered in a way which eliminates axial deformations
by imposing a constant sway deflection in the hori-
zontal direction, and a zero axial movement of
vertical members. In the latter case, the number of
equations to be solved has been reduced to eight. In
both the figures, the three numbers written against
each joint correspond to x-translation, y-translation,
and rotation respectively, and refer to the subscripts
of the corresponding global displacement vector U. A
zero implies a completely restrained freedom which
has a known value (0), and therefore does not appear
in the equilibrium equations.

Provided the assumption is justified, the use of tied
freedoms as described above can lead to a substantial
reduction in the amount of computational effort but
the method does require some intuition on the part
of the analyst in recognising the sway mechanisms.
For more complex structures involving several
storeys, or structures incorporating inclined mem-
bers, the more general approach is recommended.
Even if the general freedom numbering scheme out-
lined in Fig. 2(a), is adopted for a particular analysis,
the axial deformations can be virtually eliminated by
making the axial rigidity EA4 several orders of mag-
nitude greater than the bending rigidity EJ for each
member.

Once the freedom numbering has been defined, the
global stiffness matrix K can be formed by assembly
of the individual element stiffness matrices k,. The
resulting stiffness matrix is symmetrical and banded,
and strategies to reduce the storage requirements can
be introduced at this stage if desired. The global
stiffness matrix is formed once only and immediately
factorised using a suitable Gaussian elimination tech-
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nique. The iterative process now begins, and is based
on repeated solutions of the equilibrium equations

KAU' = AF, (¢))
where AF' and AU’ are the applied load increments
and the resulting elastic nodal displacement in-
crements respectively at the ith iteration. As the
global stiffness matrix has been previously factorised,

the solution vector AU’ is economically obtained by
forward and backward substitution.

4, MOMENT REDISTRIBUTION STRATEGY

During the moment redistribution phase of the
algorithm, all joints of the structure are monitored
until a plastic moment value M, is exceeded. When
this occurs, the excess moment is distributed to other
joints of the structure which still have reserves of
strength.

Following the structure chart of Fig. 3, the algo-
rithm starts with the application of the first (/ = 1) set
of load increments AP). The first iteration (i = 1) is
always an ordinary elastic solution to the loaded
structure, resulting in the set of global displacement
increments AU!. For each element in turn
(e=1,2,...,NEL), the nodal displacement vector
6. is extracted from the global vector, multiplied by
the element stiffness matrix k, and added to the
element ‘actions’ r'~! remaining from the last load
step. If all the moments computed at this stage are
less than their respective plastic moment values, the
frame remains elastic, no further iterations are re-
quired and the algorithm moves on to the next load
step. If a plastic moment value is exceeded, a plastic
hinge will develop and further iterations will be
needed. At the ith iteration within a typical load step
l, it is convenient to think of the global applied loads
AF' as comprising of two components, thus

AF = AP + AP/, )

where
AP! = external global loads increment
and

AP' = internal global correction loads vector.

The external loads vector AP! is constant from one
iteration to the next, whereas the correction loads
vector AP’ is continually being adjusted. As the global
stiffness matrix K remains unchanged, the method
amounts to a modified Newton—Raphson approach.

At the element level, if one or both nodes have a
moment in excess of the plastic moment value + M,
a self-equilibrating correction load vector ¢’ is gener-
ated. This vector involves a moment or moments
equal and opposite to the amount by which yield has
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Form global stiffness K and factorise,
Null accumulators for element actions r,°.
Null initial global nodal displacements U®,

For each load incement ! = 1,2,....

Read external global loads increment AP
Null initial internal global correction loads vector AP!.

Foreach iteration i = 1,2,....,IMAX.

Form AF! = AP} + AP{,
Null AP¢,
Solve K AU' = AF?,
Check convergence by comparing AU/ with AU,

Foreachelement ¢ = 1,2,....,NEL.

Extract element displacements &,/ from global AU,
Form element actions p/ = k, 8/ + r}-,

Plastic moment exceeded ?

Yes

No

Form q:j

Null g/

Assemble q,' into global correction loads vector APY = A — g/},

Convergence ?
No
Yes
i < IMAX | i = IMAX
Update Skip Update
r'i' ™~ pai + q:‘ l",
Convergence ?
Yes - No =
i « IMAX | i = IMAX
Update Perform Update
U! = U 4 AU another u!
Stfm new load iteration STOP.
increment.

Fig. 3. Structure chart for moment redistribution algorithm.

been exceeded, and a couple to maintain equilibrium,
The couple is transformed into the global coordinate
directions and assembled into the global correction
vector thus

NEL

AP'= A —q, 3)
where NEL = the number of elements.

For elements in which no yield is occurring, the
terms of g are set equal to zero.

The formation of g’ for a typical element in which
yield is occurring is shown in Fig. 4. If plastic hinges
are forming at both ends as shown in Fig. 4(a),
the correction that must be applied involves two
moments and a couple [Fig. 4(b)], which must
be transformed into global coordinate directions
[Fig. 4(c)]. The sign convention adopted here takes

M,

A
A
@ ie %zl’jMﬂ

M|JM|E’|M||’|

(9

a) COMPUTED
MOMENTS

2
ME-M,

¢ / \
" ecron (v

Mh-M,

e

(e}

ME -M,

——Csing
Ccosg

¢) GLOBAL
CORRECTION

Csing "—\_j

1
MM,

Ccosg

Fig. 4. Correction ‘forces’ for element with two plastic
hinges.
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anti-clockwise moments and rotations to be positive,
but it should be noted that the plastic limit values
M}, M} always have the same sense as the moments
with which they are being compared. A typical
correction vector will be of the form

—Csiné |
Ccosf
M- M,
Csing |’
—Ccosf
Mf,—Mz_

q.= @

where

M+ M- M, - M,

¢ E

)

L, 8 = element length and inclination
M, M2 = plastic moments at ends 1 and 2.

The self-equilibrating nature of the vectors ¢} im-
plies their presence in the global loads vector will
have no effect on the net loading on the system. Once
all the element correction vectors have been collected
by the global vector AP, and assuming convergence
has not yet occurred, the applied loads vector is
modified once more according to egn (2) and the
cycle repeated.

5. CONVERGENCE

A dimensionless convergence criterion is used
which decides when sufficient accuracy has been
achieved, and thus when no further iterations are
necessary. The state of convergence is judged by
comparing global displacement vectors U’ at succes-
sive iterations. It is thus necessary to provide extra
storage to hold the displacements at the (i — I)th
iteration.

After the displacement vector U’ has been com-
puted, the maximum value U, is found. Con-
vergence is said to have occurred if for all the N
freedoms

i i1
IU;_g-’—|<t J= 152 en Y, (6)
Umax

where 7 is a user-prescribed tolerance. The value of ¢
depends on the accuracy required, but a typical value
might be 0.001. In all the examples described later in
this paper, a rather small tolerance of 0.0001 has been
adopted.

6. EXAMPLE 1: COLLAPSE OF
A TWO-BAY PORTAL FRAME

The frame shown in Fig. 2 was subjected to
proportional loading by gradually increasing the load
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Fig. 5. Computed load factor A vs sway displacements.

Fig. 6. Hinge locations and collapse mechanism.

factor 4. The analysis was performed ignoring the
effects of axial deformations of the members, thus the
freedom numbering scheme shown in Fig. 2(b) was
used. The resulting load/displacement behaviour is
shown in Fig. 5, together with the number of iter-
ations to reach convergence at each load step. With
the load factor given by A = 1.37, convergence was
achieved after 65 iterations, but the small increase to
4 =1.38 failed to converge after 200 iterations with
a sudden increase in the horizontal translation. Thus
the computed collapse load of the frame is in very
close agreement with A =1.375 as given by the
method of combined mechanisms. To show the insen-
sitivity of the method to load increment size, the
result for a single increment of A4 = 1.37 was also
obtained. At convergence, the displacement corre-
sponding to this single load increment was indistin-
guishable from that obtained incrementally and took
91 iterations with the same tolerance. By observing
the nodal translations and the values of the moments
at the joints when A = 1.38 and after 200 iterations,
the expected failure mechanism is retrieved as shown
in Fig. 6.

7. EXAMPLE 2: CYCLIC LOADING

This example demonstrates a full cycle of loading,
unloading and reloading on the same portal frame
considered in the previous example. The loading is
assumed to remain proportional throughout, so the
only parameter that needs to be varied is the load
factor A. Figure 7 shows the response for a loading
cycle in which 2 is increased from 0 to 1.37, reduced
from 1.37 to —1.37, and increased again to 1.37. An
elastic-perfectly plastic moment/curvature response
has been assumed to operate in both loading and
unloading. The Bauschinger effect observed in prac-
tice has been ignored in this example, although it
would be possible to refine the plastic moments under
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Fig. 7. Responses of two bay frame to complete cycle of
loading/unloading.

cyclic loading if sufficiently detailed experimental
data was available.

8. EXAMPLE 3: INCREMENTAL COLLAPSE
OF A SINGLE-BAY FRAME
The previous examples used a proportional loading
system governed by the single parameter . A more
general loading system could be applied in which the
loads on a structure are varied quite independently of
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Fig. 8. Independent loading functions.
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each other. The simplest extension would be to have
two loading functions governed by the parameters A,
and A, as shown in Fig. 8. In this example the load
functions are alternatively applied and removed as
indicated in Table 1.

Table 1. Alternating loading

Load step

(= R T O S S
oFooco |2
cooIoo |

a
1

It can be shown [2] in the case A, = 4, = W, that for
the range

2737 < WL<2857 7
s o :

P

cyclic loading causes incremental plastic defor-
mations which tend asymptotically to a definite limit
as the frame shakes down. When this occurs, all the
loads are eventually borne by wholly elastic action.
However, for the range

2.857 < i < 3.000 8)
; % .

P

incremental plastic collapse occurs in which each
positive load increment causes additional plastic de-
formation. Figure 9 shows the side-sway at each load
step for the cases of WL/M, equal to 2.8 and 2.9
respectively. For the less intense loading case, the
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Fig. 9. Accumulation of displacements for two levels of loading.
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Fig. 10. Plastic hinge locations after several cycles.

displacements (hatched lines) increase slightly with
initial yielding but soon reach a steady state after a
few cycles. For the more intense loading case, the
displacements (solid lines) continue to increase with
each cycle at a constant rate. An essential require-
ment of incremental plastic collapse is that a genuine
mechanism of failure has been reached. The plastic
hinge locations and moment values for both cases
after 36 steps are shown in Fig. 10. It is seen that the
case where WL/M,=2.9 has an extra plastic hinge
which completes the failure mechanism.

It may be noticed that in this example, the collapse
loads for each loading case on its own would be
Ay =3M,/L and }, = 4M,/L respectively. In order to
generate incremental collapse in this case, therefore,
the first loading function must be within 95% of its
own collapse load.

9. EXAMPLE 4: TRANSVERSE
LOADING OF A GRID

The method is readily extended to three-
dimensions [11] in which case there will be six degrees
of freedom per node, and three plastic ‘moments’
(two bending, one torsion) to be checked. The ele-
ment correction vector g, will in general contain two
sets of moments and couples, and a self-equilibrating
torque. The transformation to the global system
which was obtained explicitly in the two-dimensional
case (Fig. 4), must now be performed using con-
ventional three-dimensional matrix transformation
techniques (e.g. [12]).

The example shown in Fig. 11 represents a grid of
rigidly connected, equally spaced beams of equal
cross-section rigidly fixed along AB. A vertical con-
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AB FULLY 320
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L
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0.0l0 [650
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i,12,0
C .. I_,
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Fig. 11. Transversely loaded grid.

1353

IXI073

Fig. 12. Computed load vs deflection at C.
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Fig. 13. Hinge locations and energy check at failure of grid.

centrated transverse load is to be applied at C. Due
to the symmetries that exist in the problem, and
ignoring axial deformations, only 12 independent
freedoms need be considered. The resistance of the
beams to twisting has also been ignored in the present
case by assigning to them a relatively small torsional
rigidity GJ. The computed load/deflection response
of point C is shown in Fig. 12, indicating a collapse
load of 1.5M,/L. Figure 13 gives the computed
locations of the plastic hinges at collapse, and a
simple energy check on the work dissipated at these
hinges due to rotations of « and /2 leads to a
collapse load W, in close agreement with the calcu-
lated value.

10. CONCLUSIONS

A numerical algorithm for analysing yield and
plastic collapse of framed structures has been de-
scribed. The program is quite general, and is based on
a stiffness formulation in which plastic moments in
excess of yield are redistributed using repeated elastic
solutions. The global stiffness matrix is formed once
only, and convergence is achieved by iteratively mod-
ifying the applied loads vector, thus the method
amounts to a modified Newton—Raphson approach.
Frames in which axial deformation of the members
can be ignored, are treated as a special case in the
general formulation. The algorithm is designed for
incrementally applied loads, although the converged
solution is shown to be insensitive to the size of the
load increment. Both loading and unloading paths
have been followed, and the phenomena of elastic
shakedown and incremental collapse reproduced.
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The method has been applied to several examples of
plastic yield in both twot and three dimensions, and

. close agreement obtained with solutions obtained by

more traditional methods. It is suggested that the
method represents a versatile and accurate approach
to the analysis of yield in framed structures.
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