
TECHNICAL NOTE

Worst-case spatial correlation length in probabilistic
slope stability analysis

D. ZHU�, D. V. GRIFFITHS†‡ and G. A. FENTON§

This note investigates the reliability of undrained slopes by the random finite-element method.
The focus of this note is on the worst-case spatial correlation length, namely the correlation length at
which the probability of slope failure reaches a maximum. It is shown that the worst-case phenomenon
is most pronounced when the mean factor of safety is relatively low or the coefficient of variation is
relatively high. Knowledge of the worst-case spatial correlation length is valuable, as it can be employed
for conservative design in the absence of substantial soil field data.
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INTRODUCTION
Natural soil exhibits spatial variability in both the vertical
and horizontal directions. Since the mid-1990s (e.g. Griffiths
& Fenton, 1993), an advanced numerical tool called the
random finite-element method (RFEM), which can account
for soil spatial variability, has been applied to assess the
reliability of a range of geotechnical systems. In several cases,
it was observed that, at intermediate spatial correlation
lengths – typically those close to some key reference
dimension of the structure – a minimum reliability or
maximum probability of failure was observed. Evidence of
the ‘worst-case’ phenomenon was observed in the 1993 paper
cited above, and on several occasions since then in relation to
seepage, bearing capacity, earth pressures and settlement.
Many of these are also summarised in the textbook by
Fenton & Griffiths (2008). A similar phenomenon was also
reported by Baecher & Ingra (1981), and more recently, for
example, by Breysse et al. (2005) and Ching et al. (2017). In
the framework of reliability-based design, the worst-case
spatial correlation length is important (e.g. Fenton &
Griffiths, 2003), because in the absence of high-quality and
plentiful field data, it can be used in preliminary studies to
ensure a conservative design. This note will extend the work
of Griffiths et al. (2016), who first discussed some worst-case
observations in slope stability, to achieve a more systematic
understanding of the conditions under which a worst-case
spatial correlation length occurs in slope stability analysis of
undrained soils.

RFEM MODEL
Figure 1 shows a typical FE mesh used in RFEM analysis

of undrained slope stability. The RFEM merges elastic–
plastic finite-element modelling (Smith & Griffiths, 2004)
with random field theory (e.g. Vanmarcke, 1984). The
random fields are generated by the local averaging subdivi-
sion (LAS) method (Fenton & Vanmarcke, 1990), which fully
accounts for spatial variability and accounts for element size
by way of local averaging.
This methodology performs Monte-Carlo analysis,

where each repetition involves generation of a random field
of undrained strength over the mesh, followed by the
application of gravity loading. If the algorithm is not able
to converge within 500 iterations, the slope is deemed to
have failed. Non-convergence indicates no stress redistribu-
tion can be found, which simultaneously satisfies the Tresca
failure criterion and global equilibrium. Preliminary
studies indicated that 2000 Monte-Carlo simulations were
enough to give statistically reproducible results (e.g. Griffiths
et al., 2009) and the probability of failure pf is computed
as the proportion of those 2000 RFEM analyses which
failed.
The spatial correlation length θ is a dimensional property

governing the distance over which properties are essentially
similar; that is, small correlation lengths result in rapid
spatial variability, whereas large correlation lengths result in
slow spatial variability. In the current study, an exponential
decaying correlation function is assumed as follows

ρ ¼ exp
�2τ
θ

� �
ð1Þ

where ρ is the correlation coefficient between two points
separated by an absolute distance τ in the random field. It
should be noted that, as a result of sedimentary deposition
processes, the properties of soil deposits are often more
variable in the vertical direction than in the horizontal
direction. However, for simplicity in this study, a dimension-
less and isotropic spatial correlation length Θ¼ θ/H is used,
where H denotes the slope height. Studies of the effect of
anisotropy on the worst-case spatial correlation length may
be a topic for future investigations.
The undrained shear strength cu is modelled as a random

variable characterised by a lognormal distribution
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throughout this study. The lognormal distribution benefits
from its non-negative character and its simple transforma-
tional relationship with the classical normal distribution. The
variability of cu can be expressed in the form of coefficient of
the variation vcu , given by

vcu ¼
σcu
μcu

ð2Þ

where σcu and μcu are, respectively, the standard deviation and
mean of cu. Typical values of the coefficient of variation for
cu are thought to lie in the range 0·1–0·5 (e.g. Lee et al., 1983;
Cherubini, 2000). In this study, the deterministic parameters
include the saturated unit weight γ ¼ 20 kN=m3, the
undrained friction angle ϕu¼ 0, the slope height H ¼ 10m
and the slope angle β, which is varied in the parametric
studies.

WORST-CASE SPATIAL CORRELATION LENGTH
Probabilistic tools for slope stability analyses can be

categorised into two fundamental branches. One is the
‘random field approach’, where random fields with defined
spatial correlation are combined with numerical discretisa-
tion schemes such as FE or finite-difference methods. The
other is the simpler ‘single random variable’ (SRV) approach
where spatial variability is ignored, which essentially
amounts to an assumption of infinite spatial correlation
(i.e. Θ!∞). For undrained slopes, the SRVapproach has an
analytical solution as presented by Griffiths & Fenton (2004)
in the form of charts, with an underlying analytical formula
given by

pf ¼ Φ
ln 1þ v2cu

� �
� 2 ln FS

� �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ v2cu

� �r
2
664

3
775 ð3Þ

where Φ[.] is the standard normal cumulative distribution
function and FS is the deterministic mean factor of safety of a
uniform slope calculated using the mean undrained shear
strength μcu .

Griffiths & Fenton (2004) warned about the dangers of
using the analytical approach, because it can lead to an
underestimation of pf (i.e. unconservative) when the mean
factor of safety is relatively low or the coefficient of variation
is relatively high. In other words, the worst-case phenomenon
may be observed under these conditions. To further investi-
gate the worst-case phenomenon, a slope angle β¼ 26·6° (2:1
slope) as shown in Fig. 1 is first considered, which was also
the test slope used by Griffiths & Fenton (2000, 2004). For
this simple slope, the deterministic factor of safety with
uniform properties, can be computed by any traditional slope
stability method, including the stability chart of Taylor
(1937), which gives a factor of safety of FS¼ 1 when
cu/(γH)¼ 0·17. Since the factor of safety is proportional to

the undrained strength, the mean factor of safety FS can be
calculated as

FS ¼ μcu= γHð Þ
0�17 ð4Þ

The following dimensionless spatial correlation length
values were also selected for parametric analyses in this study

Θ ¼ 0�01; 0�1; 0�2; 0�5; 1�0; 2�0; 5�0; 10�0; 100�0

Influence of FS and vcu
Figure 2 shows pf plotted against Θ for the β¼ 26·6° slope

with different mean factors of safety when vcu ¼ 0�5 (an
upper end of the suggested range from Lee et al. (1983)).
When the mean factor of safety is FS ¼ 1�2, a pronounced
worst case occurs at a spatial correlation length of about
Θwc¼ 0·2. Owing to the sharp increase in pf for
0·01�Θ� 0·1, four more points with Θ¼ 0·02, 0·04, 0·06
and 0·08 were calculated, as shown in Fig. 3. It can be seen
from Fig. 3 that the new values of pf are all smaller than 0·8
and have not affected the location of the maximum pf. As FS
is increased, the Θwc also increases, but the worst-case effect
becomes less pronounced, and is barely noticeable for
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Fig. 1. Typical mesh used in RFEM analysis of undrained
slope stability
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Fig. 2. Probability of failure plotted against dimensionless spatial
correlation length with different mean factors of safety
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Fig. 3. Probability of failure plotted against dimensionless spatial
correlation length with FS ¼ 1�2
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FS ¼ 1�4. Fig. 2 demonstrates that the SRVapproach may be
unconservative when FS is relatively low (FS , 1�4) for
undrained slopes with vcu ¼ 0�5.
Consideration of limiting values of Θ is instructive for

understanding the range of probabilities and for validation.
When Θ! 0, owing to local averaging (e.g. Griffiths &
Fenton, 2004), the slope becomes essentially ‘deterministic’
with a homogeneous strength fixed at the median of cu.
As the undrained shear strength is assumed to be lognor-
mally distributed, the median of cu is equal to μcu/(1þ vcu

2)1/2.
For the undrained slopes shown in Fig. 2, the median
corresponds to FS. 1, so pf! 0. As might be expected,
when Θ!∞, the RFEM solutions converge on the
analytical solutions from equation (3) as horizontal
dotted lines.
The reason for the worst-case phenomenon is that at

extreme values of Θ the results of pf are fixed, as explained
above; however, intermediate spatial correlation lengths
facilitate the formation of additional failure mechanisms,
leading to more failure simulations in the Monte-Carlo
process, and hence a higher pf.
Figure 4 shows the pf plotted against Θ for the β¼ 26·6°

slope with different coefficients of variation when FS ¼ 1�3.
This value of FS is chosen as a likely minimum acceptable
value in practice for less important or temporary slopes
(e.g. USACE, 2003). The vcu ¼ 0�5 result is the same as
the middle plot in Fig. 2. As vcu is decreased, Θwc increases,
but the worst-case effect becomes less pronounced, and is
barely noticeable for vcu ¼ 0�3. The figure demonstrates that
the SRV approach may be unconservative when vcu is
relatively high (vcu . 0�3) for undrained slopes with
FS ¼ 1�3.

Influence of slope angle
To investigate the influence of slope angle on the worst-

case phenomenon, the slope angle was varied in the range
15°� β� 90°. Fig. 5 shows the pf plotted against Θ for
several slope angles with the mean factor of safety and the
coefficient of variation set to FS ¼ 1�3 and vcu ¼ 0�5,
respectively. It can be seen from Fig. 5 that a worst-case
spatial correlation length was observed for all cases (except
for β¼ 15°); however, the β¼ 60° result gives the most
pronouncedworst case, which has implications for reliability-
based design. For large spatial correlation lengths (Θ!∞),
probabilities of failure in all cases approach the value given
by equation (3) of pf¼ 0·375. This apparent interdependence
between the slope angle and Θwc is an area of continued
investigation.

CONCLUDING REMARKS
This technical note has investigated the worst-case spatial

correlation length for undrained slopes by RFEM. The
worst-case spatial correlation length is the value that leads to
the highest probability of failure. It was shown that the
worst-case phenomenon is most pronounced when the mean
factor of safety is relatively low (e.g. FS , 1�4) and the
coefficient of variation of undrained strength is relatively
high (e.g. vcu . 0�3). The worst-case spatial correlation
length increases with increasing mean factor of safety and
decreasing coefficient of variation. The existence of a
worst-case correlation length implies that simplified prob-
abilistic analysis of slopes using, for example, the SRV
approach, may lead to unconservative design. An unexpected
finding in the current work is that there is also a slope angle
effect relating to the worst-case phenomenon. For the slope
considered in this note, the worst-case phenomenon was
more pronounced for a slope of 60° than either 45° or 90°.
This interesting result is a subject of ongoing investigation.
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NOTATION
cu undrained shear strength
H slope height
pf probability of failure
vcu coefficient of variation for cu
β slope angle
γ unit weight
Θ dimensionless spatial correlation length

Θwc worst-case spatial correlation length
θ spatial correlation length

μcu mean of cu
ρ correlation coefficient

σcu standard deviation of cu
τ absolute distance between two points

Φ(.) standard normal cumulative distribution function
ϕu total stress friction angle (= 0)
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