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Numerical modelling of the trap door problem 

N. C. KOUTSABELOULIS* and D. V. GRIFFITHS* 

The trap door problem is a useful model for pro- 
viding a clearer understanding of the stress dis- 
tribution around civil engineering structures such 
as anchor plates and tunnels. The passive mode can 
be used either to compute the uplift force of 
anchors or any buried structure which may be 
idealized as an anchor; the active mode can be 
used to compute the gravitational flow of a granu- 
lar material between vertical walls or the soil reac- 
tion curve for tunnel design. Both modes of 
displacement are modelled numerically in this 
Paper using the finite element method. The results 
are presented in the form of influence charts, which 
may be used for both the passive and active modes 
to provide failure loads for a range of geometries 
and soil properties, using non-dimensional&d 
parameters. The use of these equations is com- 
pared with results obtained from other sources 
using both physical and numerical models. 

KEYWORDS: anchor design; finite element analysis; 
trap door problem; tonne1 design 

Le probleme de la trappe reprksente un modele 
utile pour I’obtention dune comprehension plus 
Claire de la distribution des contraintes autour de 
structures du genie civil telles que les plaques 
d’ancrage et les tunnels. Le mode passif peut 
s’employer pour calculer la force d’arracbement 
des elements d’ancrage ou d’une construction quel- 
conque ayant la fonction d’un element d’ancrage, 
tandis que le mode actif peut @tre utilise pour cal- 
culer koulement gravitationnel dune mat&e 
granulee entre des murs verticaux ou la courbe de 
reaction du sol dans le cas d’un tunnel. Dans cet 
article les deux modes de deplacement sont model- 
b de fagon numerique P l’aide de la methode aux 
elements finis. Les rbultats sont prksentes dans la 
forme de graphiques d’influence qui peuvent 
s’employer pour les modes passif et actif dans le 
but d’obtenir des chargements de rupture pour une 
skrie de geometries et de proprietb du sol en uti- 
lisant des pram&es non-dimension&s. L’emploi 
de ces equations est compare aux rbultats obtenus 
a partir d’autres sources en utilisant des mod&s 
physiques et numeriques. 

The finite element method has become very 
popular in recent years in academic environments 
as a design tool in soil engineering, but in soil 
engineering practice its use for analysis and 
design purposes is limited. This is due either to 
uncertainties in the basic finite element tech- 
niques used to describe soil behaviour, or to the 
development of complex numerical algorithms to 
approximate various aspects of soil behaviour 
which were not easily understood by engineers. 

In this Paper the Authors implement the finite 
element method on the trap door problem. This 
problem as described by Terzaghi (1936) has two 
modes of displacement, depending on whether the 
trap door is translated into the soil (passive) or 
away from it (active). 

The passive mode may be used for the evalu- 
ation of the uplift force of anchors, or any buried 
structure which may be idealized as an anchor. 

Discussion on this Paper closes on 3 July 1989. For 
further details, see p. ii. 
* Simon Engineering Laboratories, University of Man- 
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Applications of this problem occur during explo- 
ration and utilization of ocean resources, for 
which the breakout forces of objects embedded in 
sediments at the ocean bottom must be com- 
puted. This geotechnical problem is encountered 
in many marine operations (in both shallow and 
deep waters) which require the use of anchors to 
transmit upward-directed forces to the ocean 
bottom. Typically, any mooring system for ocean 
surface or submerged platforms owes its stability 
to the ocean-bottom anchors. The problem 
appears in design and construction of deep-sea 
habitats as often as in the design of salvage oper- 
ations or in repositioning of deep-sea platforms. 
In addition, as demands for distribution of elec- 
tric power increase, so does the need for the large- 
scale scale construction of pylons. The calculation 
of the resistance against breaking out of the foun- 
dations of such pylons is essential for their com- 
mercial design. 

Analyses of the passive mode of the trap door 
problem have been performed in the past using 
various types of physical modelling (Vesic, 1971; 
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Das & Seeley, 1975; Sutherland, 1965; Balla, 
1961; Vardoulakis, Graf & Gudehus, 1981). 
Failure loads were provided corresponding to 
certain types of mechanism observed at failure 
stages. There was a general agreement on the type 
of failure mechanism formed above the trap door 
and the way it changed its shape with varying 
geometric and material properties. 

Numerical analyses of the trap door problem 
have been performed by Koutsabeloulis (1985), 
where the influence of dilation angle, Young’s 
modulus, Poisson’s ratio and the at-rest earth 
pressure coefficient K, was investigated. It was 
found that only the dilation angle made a differ- 
ence to the failure loads. A fully associated flow 
rule is well known to give excessive volume 
increase, so Grifftths (1986) proposed more realis- 
tic dilation angles which were a function of fric- 
tion angles in the context of the Mohr-Coulomb 
criterion. Rowe & Davis (1982a, b) used the finite 
element method to compute uplift forces of strip 
anchors embedded in clay and in sand, and other 
numerical results for the trap door problem have 
been reported by De Borst & Vermeer (1984), and 
Grifliths & Koutsabeloulis (1985a). 

The active mode can be used to study the 
gravitational flow of granular material between 
vertical walls (silo problem), and has also applica- 
tions to tunnel design. The tunnelling aspects 
relate to the evaluation of the loosening pressure 
of sands and/or rocks after excavation takes place 
during the construction of tunnels. From the 
engineering point of view, an underground struc- 
ture can be considered to represent a foreign 
inclusion inside a mass which has definite rheolo- 
gical properties and is subjected to gravity forces. 
If the rheological properties of the inclusion are 
different from those of the surrounding mass, a 
perturbation in the original stress field will occur 
around the inclusion, decreasing rapidly with dis- 
tance according to St Venant’s principle. The 
contact forces between the ground and the inclu- 
sion, which are of main interest in the design of 
underground structures, can therefore, in prin- 
ciple, be determined by the methods of contin- 
uum mechanics, if the rheological properties of 
both the inclusion and the ground are known, or 
if the displacements of the former are prescribed. 
In many cases it is common for the exact rheolo- 
gical properties not to be known, particularly for 
those soils that are mixed with oil and gas. For 
those cases, Harris, Poppen & Morgenstern 
(1979) suggested that preliminary stability 
analyses should be performed using the trap door 
problem. Einstein & Schwartz (1979) reported 
that in cases of tunnel openings which were sup- 
ported after the load corresponding to the free- 
field stresses has been applied, the simple 
assumption of external loading instead of excava- 

tion unloading may lead to support forces that 
are 50-100% too conservative. The use of the 
trap door problem in an analysis was fully sup- 
ported by Szechy (1973). For the problem of a 
trap door displacing downwards, limited analyti- 
cal solutions and experimental data exist. 

NUMERICAL SOLUTION TECHNIQUE 
The numerical algorithm used to implement 

soil plasticity within the finite element method 
was that of the ‘initial stress’ method 
(Zienkiewicz, Valliappan & King, 1969), which 
has been shown (see e.g. Koutsabeloulis & Grif- 
fiths, 1986) to be an efficient and versatile way of 
solving plasticity problems in geomechanics. The 
algorithm incorporates iterations using equivalent 
elastic solutions, until any stresses that originally 
violated yield have returned to the surface of the 
specified yield criterion within quite strict toler- 
ances. The influence of these tolerances on pre- 
dicting failure loads of a trap door problem was 
investigated by Koutsabeloulis (1985). It was 
found that they made little difference to collapse 
loads as long as they were kept below l%, in con- 
junction with the implementation of correction 
factors within the initial-stress approach (Nayak 
& Zienkiewicz, 1972). 

Convergence was said to have occurred when 
the change in nodal displacements, non- 
dimensionalized with respect to the largest absol- 
ute value, nowhere exceeded 1%. Equilibrium and 
continuity were also satisfied in the usual way 
using a displacement finite element formulation. 

Fifteen-node triangular, isoparametric elements 
(Nagtegaal, Parks & Rise, 1974; Sloan & Ran- 
dolph, 1982) were used throughout the analysis 
using 12 and 16 integration points under plane 
strain and axisymmetric strain conditions respec- 
tively. 

Readers interested in the precise details of the 
initial-stress algorithm used to obtain the solu- 
tions quoted in this Paper, are referred to the text 
by Smith & Grifliths (1988). 

SOIL CONSTITUTIVE RELATIONS 
The solution presented here assumes that the 

soil behaves as an elastic, perfectly plastic 
material. For the passive mode of the trap door 
problem both plane strain and axisymmetric con- 
ditions were assumed, while for the active mode 
only plane strain conditions were considered, as 
plane strain and axisymmetric conditions pro- 
vided similar results. The Mohr-Coulomb failure 
surface was used in conjunction with a non- 
associated flow rule. Assumption of zero plastic 
volume change is reasonable for loose sands, but 
not for dense sands which dilate during shearing. 
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When using the MohrCoulomb yield criterion, 
the amount of dilation can be controlled by 
varying the dilation angle. If the dilation angle is 
equal to the friction angle then an associated flow 
rule is assumed, otherwise the flow rule is non- 
associated. An associated flow rule is automati- 
cally imposed by frictionless materials, i.e. 
6 = ti = 0”; for sands, more realistic dilation 
angles have been used in the present work in the 
range 0 < $ < 4 (Grifliths, 1986). 

However, the assumption of zero volume 
change in the case of dense sands should provide 
a conservative estimate of failure loads, especially 
for the active mode. In addition, Atkinson & 
Potts (1977), using upper bound theorems, pre- 
sented collapse mechanisms formed above the 
roof of a tunnel embedded in cohesionless soils. 
Upper bound theorems are true only for 
materials whose flow rule is associated. In every 
other case, Atkinson & Potts (1977) suggested 
that the upper bound solution provided by the 
assumption of an associated flow rule will be an 
upper bound for any other solution for which the 
dilation angles are lower than the friction angle. 
However, this can lead to overestimating collapse 
loads for frictional materials, as Zienkiewicz, 
Humpheson & Lewis (1975) indicated. They com- 
puted differences up to 30% in collapse loads 
between associated and non-associated flow rules 
under axisymmetric conditions. 

As the aim of the calculations was to estimate 
collapse loads necessary to cause general shear 
failure rather than the settlements before failure, 
the stress-strain behaviour assumed to act within 
the failure surface was considered relatively unim- 
portant. 

The properties assigned to the soil within the 
failure surface were chosen to be E = 1.3 x lo5 

E 
(D E= 1.3~ 105kN/m2 

y=20kN/m3 
C,@.vD,v,Ko 

: 
D 

Fig. 1. Delinition of the trap door problem 

kN/m2, y = 20 kN/m3, v = 0.3 and K, = 1.0. The 
shear strength of the soil was governed by a 
Mohr-Coulomb failure criterion with effective 
parameters C and 4. 

NUMERICAL MODELLING OF THE 
TRAP DOOR PROBLEM 

The trap door problem as defined by Terzaghi 
(1936) is shown in Fig. 1. It was found (Rowe & 
Davis, 1982a) that for L/D = 5, the modelling 
effects were insignificant; thus the L/D ratio for 
the present analysis was fixed at L/D = 5. The 
height H was fixed at 6 m, and to obtain different 
H/D ratios, the trap door width D was altered 
keeping H and L/D constant. Although the 
analysis performed by Rowe & Davis (1982) was 
for plane strain conditions, Koutsabeloulis (1985) 
showed that L/D = 5 also represented a suitable 
limit under axisymmetric conditions. The numeri- 
cal model of the problem is shown in Fig. 2, as 
defined by De Borst & Vermeer (1984). To avoid 
singularities, the lower boundary of the first 
element beside the trap door was given a linear 
displacement distribution, with the leftmost node 
of it remaining fixed. The trap door itself received 
a uniform set of prescribed displacements. 

E = 130 000 kN/m’ 
y = 20 kN/m3 

LID = 5 

Fig. 2. Finite element discretization of the trap door problem; 
LID=5 
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Fig. 3. Finite element diseretization of the trap door problem; 
L/D = 10 

The rationale for using displacement rather 
than load control was explained by Grifftths 
(1982). Failure under displacement control is indi- 
cated by a levelling out of the averaged stresses 
above the trap door; having reached the ultimate 
capacity, these remain at that value despite 
further displacement increments. 

To eliminate possible numerical errors, some 
test cases were first analysed using both frictional 
and frictionless material types, in conjunction 
with the passive and ‘active modes. The finite 
element mesh shown in Fig. 2 and a finer mesh 
shown in Fig. 3, which had an L/D aspect ratio of 
10, were used for these verification test cases. 

- Finer mesh LID = 10 
--- CrudemeshL/D= 5 

Plane strain 
HID = 1 
E =lOOMPa 

= 0.45 
: =50kPa 

q =O” 
Y =20 kNmi3 

Collapse load (upper bound. 
Daws, 1966) 

I 
0.025 

Displacement: m 

(a) 

1 
0.045 

First, a problem was analysed using the active 
mode of the trap door problem. The soil was 
assumed to be frictionless, with self-weight: for 
this type of problem, Davis (1968) has proposed 
both upper and lower bound solution. Since 
4 = O”, the numerical solution of a finite element 
analysis incorporates an associated flow rule and 
thus should coincide with Davis’s (1968) solution. 
According to this solution the residual stress 
above the trap door for H/D = 1 is given by 

(yH - P)/C = 2 (1) 

where y is the unit weight, C is the soil cohesion 
and P is the vertical stress above the trap door. 

"1 
Collapse load 
(after Rowe and 
Davis, 1962) 

Plane strain 
HID = 3 
E = lOOMPa 

= 0.45 
L =50kPa @ =O” 
Y = 0 kNmi3 

1 I 

0.1 0.2 
Displacement: m 

(b) 

I 
0.3 

Fig. 4. Active mode: load ratio plotted against imposed displacement 
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2.5- Collapse load 
(after Rowe and Davis, 

Plane strain 
E =lOOMPa 

tb 

= 0.45 
= 30” 

Y = 20 kN/m3 
c =o 

0.5- 
HID = 2.5 

- F~nermeshLID = 10ass. flow rule 

i 

- - Crude mesh LID = 5 ass. flow rule 
8 --- Finer mesh LID = 10 non-ass. flow rule 

------ Crude mesh LID = 5 non-as. flow rule 

6_ Sutherland (1965) 

_---_ 

-v:-_-- 

Axisymmetry 
E =lOOMPa 

6 =30 

Y = 20 kN/m3 
HID = 2.5 

OJ J 
I I I I I I I 
0 0.1 0.2 0 0.2 0.4 0.6 

Displacement: m Displacement: m 

(a) (b) 

Fig. 5. Passive mode: load ratio plotted against imposed displacement 

Setting C = 50 kPa and H = 20 m, equation (1) 
becomes P = 0.75yH. The numerical solutions 
obtained using the finite element meshes of Figs 2 
and 3 are shown in Fig. 4(a). As can be observed, 
the numerical results are independent of the L/D 
ratio and the refinement of the mesh, and are 
similar to the solution proposed by Davis (1968). 

In all analyses, a displacement-controlled 
approach was used, with the vertical stresses 
adjacent to the door noted after each displace- 
ment increment. Failure was deemed to have 
occurred when the gradient of the load- 
deformation curve became sufficiently small. 

In a similar fashion, a problem of a frictionless 
material was analysed using the passive mode of 
the trap door problem. In this case, the trap door 
model implies that there will be an immediate 
breakaway of the trap door from the soil below it. 
In most realistic cases this is true, as most soils 
have limited tensile strength, as pull-out forces 
apply. Assuming H/D = 3, this problem was also 
analysed by the meshes of both Fig. 2 and Fig. 3: 
its numerical solution as compared with that pro- 
posed by Rowe & Davis (1982b) is shown in Fig. 
4(b). If P JC is the dimensionless collapse load, 
the agreement between the two results and Rowe 
& Davis’s (1982b) results is good. In addition, 
refinement of the mesh and different L/D aspect 
ratios made little difference to the numerical solu- 
tion. 

To investigate the influence of the association 
of the flow rule, the passive mode of the trap door 
problem was used assuming the soil to be cohe- 

sionless. Under these conditions an immediate 
breakaway will occur between the trap door and 
the soil below it, as zero tensile stresses are 
implied. The problem was analysed by both 
meshes shown in Figs 2 and 3, assuming both 
plane strain and axisymmetric conditions, with 
4 = 30” and HID = 2.5. 

The results obtained under plane strain condi- 
tions are shown in Fig. 5(a) and indicate that 
neither the ratio L/D nor the flow rule had much 
influence on the collapse load. Maximum discrep- 
ancy of the four results did not exceed 5%, and 
the collapse load computed for a non-associated 
flow rule was similar to that computed by Rowe 
& Davis (1982b). 

However, under axisymmetric conditions, the 
maximum discrepancy between an associated 
flow rule and a non-associated flow rule was 
approximately 30%, as high as that noticed by 
Zienkiewicz et al. (1975) when they analysed a tri- 
axial test problem. They suggested that such dis- 
crepancies are due to the confinement of the 
problem, which increases as axisymmetric condi- 
tions are approached. However, in practice, as 
Rowe & Davis (1982b) explained, the soil will 
exhibit friction and dilatancy up to the peak 
values, which reduce to the critical values of tcr 
and $ = 0” at large strains. As different points m 
the soil mass will reach peak values at different 
times, there will be a variation in 4 and $ 
through the soil mass. In consequence, any solu- 
tion using peak values will tend to overestimate 
the pull-out load. This implies that, in reality, the 
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Passive mode 

01, t 
0 1 2 3 4 5 6 

Displacement: m x 1 O-3 

Fig. 6. Passive mode, plane strain: load ratio plotted against dis- 
placement; $ co&ant 

collapse load might reach a peak value, which 
subsequently reduces to an ultimate value corre- 
sponding to zero volume change condition. The 
collapse loads obtained using a non-associated 
flow rule by both meshes of Figs 2 and 3 were in 
good agreement (Fig. 5(b)), and they compared 
favourably with that suggested by Sutherland 
(1965). 

In the following analysis, cohesionless soil 
types will be considered, assuming a non- 
associated flow rule and using the mesh of Fig. 2. 

PASSIVE MODE 
Plane strain conditions 

The average applied pressure P required to 
cause failure of the soil above the trap door, as 
shown in Fig. 1, can be defined as a dimensionless 
load ratio as follows 

PIYH = f(W’, 9) (2) 

Passive mode 
Plane strain 
HID=4 
ly = 0” 

where y is the unit weight of the cohesionless soil, 
H is depth of the soil above the trap door, D is 
width (diameter) of the trap door and 4 is soil 
friction angle. 

For 4 = 30”, $ = 0” and K, = 1, five H/D 
aspects ratios were tested and the results obtained 
are shown in Fig. 6. 

As can be observed, the displacement control 
method employed in the present work clearly 
indicated the load ratio, as defined by equation 
(2) at failure, for all five H/D ratios. Some numeri- 
cal instability was observed at HID = 4 and 
H/D = 5, but that was due mainly to the con- 
vergence tolerance used in the analysis. Lower 
tolerances could refine the mode of failure, but 
could not improve the collapse load ratio by 
more than 2% (Koutsabeloulis, 1985). 

For H/D = 4, J/ = 0” and K, = 1, three differ- 
ent friction angles were tested, and the results are 
plotted in Fig. 7. As in Fig. 6, failure was clearly 
indicated for all three friction angles. Further 

20” _- 

t I 

0 1 2 3 4 5 6 

Displacement: m x 1 Om3 

Fig. 7. Passive mode, plane strain: load ratio plotted against dis- 
placement; H/D constant 
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4- 

I 
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.g 
e 
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2- 

Passive mode 
Planestrain 
I# = 00 
Ko = 1 

. Finiteelement results 

o- 1 
0 1 2 3 4 5 

Geometry ratio HID 

Fii 8. Passive mode-, plane strain: ultimate load ratio plotted 
against HID 

parametric studies for different friction angles 
indicated a linear variation between P/yH at 
failure and HID. The Authors found that this 
variation was closely modelled by the expression 

P/yH = HID sin #J + 1 (3) 

by Rowe & Davis (1982b), as shown in Fig. 9. 
The agreement with equation (3) was generally 
good, providing results that tended to be slightly 
conservative. 

In order to account for the contribution of 
dilation to passive resistance, the following modi- 

The solution of equation (3) is shown in Fig. 8. fication to equation (3) is proposed - 

Using equation (3), a comparison was made 
against numerical and laboratory results obtained 

z 

5 

4 

z 
2 3 

2 

1 

0 

P/yH = H/D sin (4 + $) + 1 (4) 

Experimental results L/D = 8-75 
l Normal procedure y mOM = 14.9 kN/m3 

$=32”$1=4”K~=O~47 
q  Sanddroppedfrom25Omm$=33 

to=lo”y,,= 15.27 kN/m3 K,, = 0.45 

Theoretical predictions 
$=32”y,=O”&,=l 
(Rowe and Davis, 1962) 
$+J=32”y,=O”K,=l 
(Present work, equation (3)) 
@=32”~=6”K,=l 
(Present work, equation (4)) 

I 1 I 1 I I 1 1 
1 2 3 4 5 6 7 6 

HID 

Fig. 9. Passive mode, plane strain: comparison of experimental and theoretical cokqtae 
loads 
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Passive mode 
hisymmetry 

10 15 20 

Displacement: m x 10m3 

Fig. 10. Passive mode, axisymmetry: load ratio plotted against dis- 
placement; qb constant 

The expression given by equation (4) was found 
to fit well to computed results, in which $ was 
varied, with all other parameters kept constant. 
This procedure was repeated for a number of dif- 
ferent H/D ratios and friction angles. It is sug- 
gested that the value of J/ used in equation (4) is 
that proposed by Grifliths (1986). 

The format of equations (3) and (4) is similar to 
that of an equation proposed by Ladanyi & 
Hoyaux (1969) for the same problem. 

As a benchmark, the example given by Rowe & 
Davis (1982b) has been re-analysed. An anchor of 
width D = 2 m is buried at a depth of 6 m in a 
granular material, with strength properties C = 0 
kN/m’, f#J = 35”, I++ = 12”, K, = 0,5, y = 20 
kN/m3, and subjected to a vertical pull. From 
equation (3) for H/D = 612 = 3 and I$ = 35” 

P,/yH = sin 35” + 1 = 2.12 

Hence 

P, =272 x 20 x 6= 326 kN/m’ (5) 

Using ti = 12”, equation (3) gives 

P,/yH = 3 sin (35” + 12”) + 1 = 3.19 

Hence 

P, = 3.19 x 20 x 6 = 383 kN/m’ (6) 

However, for 4 = 35” Grifliths (1986) provided 
$ = 6”, and thus equation (3) gives 

P&H = 3 sin (35” + 6”) + 1 = 2.97 

Hence 

P, = 356 kN/m’ 

I 
Passive mode 
;;y=m2metry 

I 

2 4 6 8 
Displacement: m x 1 0m3 

(7) 

Fig. 11. Passive mode, axisymmetry: load ratio plotted against dis- 
placement; H/D constant 
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The laboratory test gave P = 346 kN/m*, while 
the numerical results of Rowe & Davis (1982) 
gave P = 363 kN/m*. 

Compared with the laboratory results, the use 
of equation (4) with the modified dilation angle 
came closest, but was slightly conservative. 

Axisymmetric conditions 
In a similar manner to that used under plane 

strain conditions, the trap door problem was 
analysed under axisymmetric conditions. 
Although Rowe & Davis (1982) emphasized the 
influence of the anchor type, they did not extend 
their work to the case of a circular anchor. 
However, the problem has received some atten- 
tion from Balla (1961), Sutherland (1965) and 
Vesic (1971, 1972), who considered the breakout 
resistance of objects embedded in the ocean 
bottom as a cavity expansion problem. 

Figure 10 shows the loadclisplacement charac- 
teristics with 4 = 20”, $ = 0” and K, = 1 for 
various H/D values, where D is the diameter of 
the trap door. It was noted that the displacement 
to failure varied considerably depending on the 
value of H/D. Fig. 11 shows similar plots with 
H/D = 2, I) = 0” and K, = 1, for friction angles 
4 = 20”, 30” and 40”. The results indicated good 
numerical convergence and stability. 

As in the case of plane strain, an equation was 
developed to fit results obtained for five values of 
the H/D ratio and three values of the friction 
angle 4. The equation which provided the best fit 
was 

P&H = P/YH[R;‘~‘~‘~@] (8) 

where R, and R,, are parameters which depend 
on 4 as shown in Fig. 12, and P/yH represents 
the dimensionless failure load under plane strain 
conditions. 

Equation (8) has similar format to that pro- 
posed by Vardoulakis et al. (1981) and it is more 
straightforward than that proposed by Vbic 
(1971). 

Included in the variation of R,, shown in Fig. 
12 is the angle b, which was taken to vary linearly 
with the friction angle 4. At 4 < 20”, b was set 
equal to zero; at 4 = 40”, b was set equal to 6.5”. 
This angle b was introduced to account for an 
arching shear band forming above the trap door. 

Results obtained using equation (8) are plotted 
against the finite element solutions in Fig. 13. As 
can be seen, equation (8) overestimates the load 
ratio at high H/D ratios and high friction angles, 
but this overestimation never exceeds 5%. 

Results obtained using equation (8) are plotted 
in Fig. 14 against other solutions obtained by 

O-'f 
I 

10 20” 30 40” 
Friction angle # 

Fig. 12. Passive made, axisymmetry: variation of R, 
and R, with friction angle $ 

Balla (1961) and Sutherland (1965). Balla (1961) 
described the formation of an arching type of 
failure mechanism above the trap door, which 
occurred irrespective of the H/D value and the 
friction angle. In respect of his theory, b was set 
equal to 4/2. In situ tests reported by Sutherland 
(1965) showed load ratio values lower than those 
predicted by Balla’s theory, but higher than 
Sutherland’s experimental results. The numerical 
results, for H/D < 3, showed very good agree- 
ment with the results obtained by Sutherland, but 
for H/D > 3 the results showed a tendency to 

20 

16 

Passive mode 
Axisymmetry 
* = 0” 
Ko = 1 

l Finiteelement results 

oJI 
I I I I 0 1 2 

Geometry 
rati~h’D 4 5 

Fig. 13. Passive mode, axisymmetry: ultimate load ratio 
plotted against H/D 
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Passive mode 
Axisymmetfy 

. Sutherland (1985) 
l Salla(1961) 

Fig. 14. Passive 
load with H/D 
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HID 

i 

mode, axisymmetry: variation of failure 

approach Balla’s prediction. This was in accord- 
ance with comments made by Vbic (1971), in that 
there is a characteristic relative depth H/D 
beyond which anchor plates start behaving as 
‘deep’ anchors. After this stage the failure load 
increases faster as H/D increases. Thus, the use of 
b was justified. 

Under axisymmetric conditions, higher H/D 
values were not considered, as they required large 
amounts of displacement to reach collapse. 

Analyses of this type would probably benefit from 
a ‘large deformation’ approach. Similar observa- 
tions were made by Rowe & Davis (1982) for 
plane strain conditions. 

ACTIVE MODE 
For the active mode of displacement, only the 

plane strain problem is considered, because as 
Vardoulakis et al. (1981) observed, the analysis 
does not differ very much from that of axisym- 
metry. 

In general, the active mode of the trap door 
problem could be used on two types of problem 

(a) to model the gravitational flow between two 
parallel vertical walls, along which two thin 
boundary layers are formed (Vardoulakis et 
al., 1981) 

(b) to model the ‘ground reaction curve’ (Pells, 
1978) for the soil-structure interaction 
problem of tunnel design. 

For the first type of problem, Vardoulakis et al. 
(1981) showed that with increase of the overbur- 
den pressure, the ratio P/y(D/2) tends to a con- 
stant value, and this problem is meaningful only 
for friction angles C$ c 30”. 

However, for the second type of problem, mon- 
itoring the ratio P/yH, the ‘ground reaction curve’ 
can be obtained for a particular soil in which a 
tunnel is to be constructed. Superimposing on 
this curve the stiffness of the tunnel lining, an 
equilibrium point can be computed in the sense of 
Brown, Bray, Ladanyi & Hoek (1983), which will 
define the soil-structure interaction load. If this is 
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Fig. 15. Active mode, plane strain: load ratio plotted against displaee- 
ment ; tj constant 
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Fig. 16. Active mode, plane strain: akimate load ratio plotted against 
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not done, support forces that are S&100% too 
conservative may be obtained, as pointed out by 
Einstein & Schwartz (1979). 

Figure 15 shows the computed failure loads for 
different HID ratios considering 4 = 20”, Ic/ = 0” 
and K, = 1. It was observed that increasing the 
H/D ratio resulted in a lower failure load ratio 
P/yH. However, for this particular friction angle 
the load ratios did not become zero, which 
implies that for a tunnel design there may exist an 
ultimate load ratio which must be carried by the 
tunnel lining. 

This load ratio tended to zero as the friction 
angle increased (Fig. 16). This implies that the 

lb 2b” 3b” 4b” 
Friction angle $ 

Fig. 17. Active mode, plane strain: variation of R,, and 
Rc, with friction angle C$ 

tunnel lining at high displacements may take no 
loading from the soil, as can happen for a tunnel 
constructed in ‘rock’ material. 

The Authors found that the soil behaviour of 
Fig. 15 can be closely approximated by the con- 
sideration of two types of failure mechanism: a 
‘shallow’ failure mechanism and a ‘deep’ failure 
mechanism. The change from one mechanism to 
another occurs at a depth ratio of around HJ 
D = 2.5. 

The following two expressions are proposed on 
the basis of the computed results for the active 
case. For shallow mechanisms (i.e. H/D < 2.5) 

P/yH = (RG1)G~H~D’a” 6 (9) 

and for deep mechanisms (i.e. H/D > 2.5) 

P/yH = GZ(RGI)G3H’D’an4 (10) 

G, 
_--c__~_*-__)------*----~ 

1 I 

10” 20 30” 40” 
Friction angle C$ 

Fig. 18. Active mode, plane strain: variation of G,, G, 
and G, with friction angle 4 
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Active mode 
cally. Practical applications of the solutions for 
the passive case include the prediction of pull-out 
resistance of anchor plates assuming that the soil 
possesses zero tensile strength. The solutions for 
the active case are relevant in the area of tunnel 
loading and may lead to the use of less conserva- 
tive design procedures. 

z 
s 4 ---_ 

‘\:‘ 30” ________-__--- 

0.8- 

1. 40” -._.- 

0.41 
I I 

0 1 ’ 
HID 

3 4 5 

Fig. 19. Active mode, plane strain: ultimate load ratio 
plotted against H/D 

where fb,, RG2, G,, G, and G, are parameters 
which depend on 4 as shown in Figs 17 and 18. 

The format of equations (9) and (10) is similar 
to that of the equation proposed by Ladanyi & 
Hoyaux (1969) for the same problem. These equa- 
tions, though, take into account additional 
factors, such as change of failure mechanism for 
HJD = 2.5 and the formation of an arched band. 

If a different dimensionless grouping is taken, 
namely the ratio P/y(D/2), then the problem of 
gravitational flow between two parallel vertical 
walls can be considered, as discussed by Vardou- 
lakis et al. (1981). Fig. 19 shows the variation of 
2PjyD with H/D, leading to the following obser- 
vations 

(a) for 4 = 30”, 2P/yD becomes less than one, 
confirming the findings of Vardoulakis et al. 
(1981) 

(b) 2P/yD tends to a constant value with increas- 
ing HID ratio 

(c) the change of mechanism is justified for H/ 
D > 2.5. 

CONCLUSIONS 
The finite element method has been imple- 

mented in both passive and active modes of dis- 
placement in the trap door problem. Results 
obtained have been presented as expressions 
obtained empirically using curve-fitting methods. 
The expressions take account of the geometry, the 
material properties and the type of failure mecha- 
nism developed above the trap door. 

The results have been validated against existing 
solutions obtained both physically and numeri- 
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