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ABSTRACT 
The spatial correlation length (SCL), or the scale of fluctuation, is a parameter for describing the spatial 
variability of soil and one of the important parameters used in random field theory. Studies reporting the 
spatial correlation length based on real field data of offshore/nearshore sea bottom soils are rather 
limited in the literature, so in this study, the vertical spatial correlation length is determined using site 
investigation data from two sites of the southern coast of Turkey. Based on quite extensive data, the 
vertical spatial correlation length is estimated using four different autocovariance functions. The values 
are within typical ranges reported in the literature for similar soil groups, both onshore and offshore. It is 
also noted that the widely-used exponential function almost always gives the lowest value of spatial 
correlation length. The results of this study add to the database of spatial correlation lengths based on 
real data and could be useful for future studies on reliability assessment of offshore foundations using 
random finite element method. 
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Abbreviations: Autoreg: second order autoregressive; CL: low plasticity clay; CH: high plasticity clay; 
CosExp: cosine exponential; COV: coefficient of variation; CPT: cone penetration test; CPTU: piezocone 
penetration test; cu: undrained shear strength; CU: consolidated undrained; DPL: dynamic probing; Dr: 
relative density; Exp: exponential; ML: low plasticity silt; MH: high plasticity silt; Pa: atmospheric pressure; 
SC: clayey sand; SCL: spatial correlation length; SM: silty sand; SP: poorly graded sand; SPT: standard 
penetration test; SPT-N: standard penetration test N value; SqrExp: squared exponential; Std: standard 
deviation; SW: well graded sand; RFEM: random finite element method; UC: unconfined compression; 
USCS: unified soil classification system; UU: unconsolidated undrained    

Introduction 

Variability and uncertainties in soil properties have been a 
topic of interest for geotechnical engineers, especially in the 
recent decades. In conventional geotechnical design, charac-
teristic/representative values of soil parameters are used lead-
ing often to a Factor of Safety which is unable to give any 
guidance on variability (e.g., Li and Lumb 1987; Cherubini 
2000). Because of the inherent variability of soil properties 
from site to site (and within a site), Baecher and Christian 
(2003) caution that it is “neither easy nor wise to apply typical 
values of soil property variability … for a reliability analysis”. 
The key issue here is that a single characteristic value is unable 
to model variability, which needs at least two numbers (e.g., a 
mean and a standard deviation). The importance and the 
effects of determining the variability in soil properties have 
been illustrated by various researchers with examples from 
actual case studies (e.g., Lacasse and Nadim 1996; Cho and 
Park 2009; Cho 2010; Zhang and Chen 2012; Carswell et al. 
2013; Sarma, Krishna, and Dey 2014; Liu et al. 2015; Jha 
2016). Parameters of soil used in any design, such as 
foundations, dams, natural slopes, road cuts, embankments, 
and levees, have significant uncertainties due to limited site 
investigations and laboratory tests in addition to the 

uncertainties and limitations involved in empirical 
correlations. Furthermore, there is no way to make enough soil 
investigations to get deterministic values for soil parameters at 
every point (Vanmarcke 1977). For this reason, in stochastic 
methods, the variability of soil parameters is defined by a 
mean, a standard deviation; and a spatial correlation length 
(SCL). The importance of SCL in soils was brought to the 
attention of the geotechnical engineering community in the 
mid 1990’s by Griffiths and colleagues (e.g., Griffiths and 
Fenton 1993; Paice, Griffiths, and Fenton 1996; Griffiths and 
Fenton 2007; Fenton and Griffiths 2008; Griffiths, Huang, 
and Fenton 2009) with the development of the Random Finite 
Element Method (RFEM). The SCL is defined as the distance 
over which the soil parameters tend to be spatially correlated. 
The SCL may be anisotropic (e.g., Cherubini 2000) with a 
higher value in the horizontal direction. In this study, 
however, only the vertical SCL is considered. 

Statistical evaluation of offshore field data is rare in Turkey 
but has significant potential benefits for reliability-based 
design of nearshore/offshore structures. In this study, site 
investigation data of two nearshore sites on the southern 
coast of Turkey is gathered; properties of these near-shore 
sediments are presented and the SPT-N data is analyzed to 
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obtain the vertical SCL using four different autocovariance 
functions. The results of the present study add to the database 
of spatial correlation lengths based on real data and could be 
useful for future studies on reliability assessment of offshore 
foundations using advanced tools such as the RFEM. 

Background 

Probabilistic models considering spatially varying soil 
properties are being used in studies on general foundations 
of structures (Paice, Griffiths, and Fenton 1996; Griffiths and 
Fenton 2000; Griffiths and Fenton 2001; Griffiths, Fenton, 
and Tveten 2002; Popescu, Deodatis, and Nobahar 2005; 
Griffiths, Fenton, and Ziemann 2006; Cassidy, Uzielli, and 
Tian 2013) as well as in offshore foundations, especially in 
the recent years (Andersen, Vahdatirad, and Sørensen 2011; 
Vahdatirad et al. 2011; Andersen et al. 2012; Vahdatirad 
et al. 2013; Liu et al. 2015; Nadim 2015; Overgard 2015). 
Significant economic and risk-associated benefits, and/or 
optimized design in terms of higher reliability index, and 
lower probability of failure for offshore foundations are pro-
vided with the use of spatial correlation length approach 
(Lacasse and Nadim 1996; Cho and Park 2009; Cho 2010; 
Zhang and Chen 2012; Carswell et al. 2013; Sarma, Krishna, 
and Dey 2014; Liu et al. 2015; Jha 2016). For example, Liu 
et al. (2015) compared the annual probability of failure 
obtained for axial pile capacity with and without accounting 
for the vertical SCL for undrained shear strength of clays 
and relative density of sands. Based on CPT cone tip resistance 
at an offshore piled jacket foundation site in Western Austra-
lia, Liu et al. (2015) calculated the vertical SCL in the range of 
0.1–0.5 m for sands, and 0.05–1.0 m for clays. Taking into 
account the vertical SCL gave higher annual reliability index 
and a lower probability of failure, which led to a more optimal 
and cost-effective pile penetration depth. The reduction is 
reported to be by a factor of 2 or 3 on the annual probability 
of failure (Liu et al. 2015). Therefore, the quantification of the 
vertical SCL is important and useful for the reliability-based 
design of offshore structures (Cho and Park 2009; Carswell 
et al. 2013; Liu et al. 2015; Jha 2016). Although there exist 
numerous studies investigating the value of vertical SCL of soil 
properties (Chiasson et al. 1995; Jaksa, Kaggwa, and Brooker 
1999; Akkaya and Vanmarcke 2003; Firouzianbandpey et al. 
2014), their number is rather limited for offshore/nearshore 
sediments (Phoon, Quek, and An 2003; Huber 2013; Liu 
et al. 2015; Zhang et al. 2016). 

The degree of spatial correlation can be represented by an 
autocovariance function, C(r), where r is the vector of the 
separation distance between two points. The normalized form 
of the autocovariance function {C(r)/C(0)} is known as the 
autocorrelation function, where C(0) is the autocovariance 
function at a distance r ¼ 0 (i.e., the variance of the data) 
(Lacasse and Nadim 1996). Exponential and squared-exponen-
tial equations (Table 1 and Figure 1) are examples of the most 
commonly used autocovariance functions in modelling soil 
properties (DeGroot and Baecher 1993; Akkaya and 
Vanmarcke 2003; Huber 2013; Firouzianbandpey et al. 2014; 
Zhang et al. 2016; Peng et al. 2017). In the exponential models, 
the distance at which the autocovariance function [C(r)] 

decays to a value of 1/e (where e is the base of the natural 
logarithm) is called the autocorrelation distance, ro. This 
length is a measure of the extent of the spatial correlation. 
Fluctuation of a soil property is shown in Figure 1 to illustrate 
the autocorrelation distance and the variance (DeGroot and 
Baecher 1993). 

When calculating the SCL, some important considerations 
are noted in the literature: (1) subdivision of a soil profile into 
similar layers and detrending inside each layer, have a 
significant impact on the correlation length (Overgard 2015), 
(2) the correlation length might be dependent on the sample 
size, and it is recommended to sample with a distance between 
the measurement points that is at least smaller than 1/5 to 1/4 
of the correlation length (Huber 2013), (3) spatial correlation 
in soil properties is somewhat dependent on the soil type and 
testing method, and is extremely site-dependent (Uzielli et al. 
2007). 

Large values of SCL indicate that the soil parameters vary 
smoothly over large distances and within which the soil 
parameters tend to be close to each other (highly correlated). 
However, small values indicate that the field is rough and 
the parameters change rapidly in space with short correlations. 
Figure 2 shows the visual representation of different vertical 
SCL values in a random field for a bearing capacity problem, 
where the random field is generated assuming log-normal 
distributed cohesion values, and using RBEAR2D software 
(Fenton and Griffiths 2008), where horizontal and vertical 
SCL are assumed to be the same value. 

It may be noted that an increasing body of literature (e.g., 
Griffiths et al. 2016) using RFEM has demonstrated the 
existence of a “worst case” spatial correlation length for failure 
problems, indicating that an infinite SCL may not always be 

Table 1. Autocovariance functions used in this study (Vanmarcke 1977). 
Autocovariance function Scale of fluctuation  

Exponential: e� s=að Þ 2a 
Squared exponential: e� s=bð Þ

2 ffiffiffi
p
p

b 
Cosine exponential: e�

s
c cos s=cð Þ c 

Second order autoregressive: e� s=dð Þ½1þ s=dð Þ� 4d 

τ is the lag distance (spacing). 
a, b, c, d are constants of the best fit equation.   

Figure 1. (a) Commonly used autocovariance functions, (b) effect of autocovar-
iance distance and variance (DeGroot and Baecher 1993; Lacasse and Nadim 
1996).  
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conservative. Therefore, evaluation of SCL has significant 
importance for geotechnical design problems, especially for 
high-cost and high-risk offshore/nearshore designs. In this 
study, SCL based on SPT-N data in the vertical direction is 
evaluated for nearshore sea bottom soils. In the literature, 
the vertical SCL based on various data sets (both field test data 
and laboratory test data) have been studied by many 
researchers for different type of soils, and a summary is 
presented in Table 2. 

Description of the sites 

This study uses site investigation data at two sites in nearshore 
soils in the Mediterranean Sea of the southern coasts of Turkey 
(Figure 3). Summary of the available data used in this study is 
presented in Table 3. 

Both sites are located at the intersection of Arabian, African 
and Anatolian Plates and their geological formations are simi-
lar, which are mainly composed of the weathered Mesozoic 
Limestone, Ophiolitic Rocks and Eocene-aged limestones of 
Amanos Mountain and sediments transported by alluvial riv-
ers, consisting of gravel, sand, and clay that settled in the 
Holocene Epoch (Derinsu 2011a, 2011b, 2014, 2015). All soil 
units in the coastal regions are mixtures of various materials 
transported and weathered. The majority of the sea-bottom 
sediments at both sites are composed of “mixture soils”, that 
is silty, clayey and sandy materials with different proportions, 
which are classified as CL, CH, ML, MH, SM, SC, SW, SP 
according to Unified Soil Classification System (USCS). Only 
in some boreholes, clay layers (CL) of varying thicknesses were 
identified. Therefore, to determine the vertical SCL, the soil 
layers are grouped into two: (1) clay layers (Figure 4b) and 
(2) mixture layers, composed of silty, clayey and sandy mate-
rials with different proportions (Figure 4a), gravelly parts are 
not included in the SCL evaluation in this study. Results of 
Atterberg limits tests and sieve analyses at both sites are illu-
strated in Figure 4. 

The SPT-N data, site description of the soils in borehole 
logs and laboratory classification tests (sieve analysis, hydrom-
eter data, fines content, USCS classification and Atterberg lim-
its), are used to identify sublayers that can be described as a 
relatively homogeneous soil layer. At both sites, the standard 
penetration tests are conducted at 1.5 m vertical spacing. 

The data in the same sublayer are counted and presented in 
Table 4, which also provide the mean and coefficient of vari-
ation of the SPT-N data from two sites. Identification of rela-
tively homogeneous sublayers and the need for studying the 
vertical SCL of each sublayer within itself are also noted by 
Phoon and Kulhawy (1999a, 1999b), Uzielli et al. (2007), Over-
gard (2015) and Firouzianbandpey et al. (2014), among others. 
After identifying the layers which tend to be sufficiently 
homogeneous, the raw SPT-N data are analyzed to estimate 
the mean value and standard deviation of vertical SCL. If the 
measured data shows a trend, trend analyses can be conducted 
by separating the random process into a deterministic trend 
and a residual variability around the trend (Overgard 2015). 

The inherent variability of SPT-N measurements is 
reported in Phoon, Kulhawy, and Grigoriu (1995) by COV 
value in the range of 25–49% in sandy and silty soils, whereas 
this value is 37–57% in clayey soils. In this study, COV of SPT- 
N data of both sites varies between 71 and 88%. 

A very limited number of laboratory shear strength (UU 
triaxial) tests are available on undisturbed samples in cohesive 
soils. Therefore, undrained shear strength (cu) is determined 
by utilizing the relationship between SPT-N blowcount and 
cu (Eq. 1) depending on plasticity index (Stroud 1974), 
acknowledging the limitations of the method. Figure 5 shows 
that the cu of clay layers increases linearly with depth below 
mudline and Table 5 shows the rate of increase of cu with 
depth at sites 1 and 2. 

cu ¼ f1N60 ð1Þ

where N60 is the SPT-N value corrected for 60% energy 
efficiency and field procedures, and f1 is a coefficient depend-
ing on the plasticity index of clay (Stroud 1974). At site 1, soft 
to stiff clay layers exist having an undrained shear strength (cu) 
in the range of 5–100 kPa. At site 2, clays can be classified as 
soft to medium stiff clays with max cu values of 50 kPa. The 
rate of increase in cu with depth is found as 2.1–2.2 kPa/m 
(for both sites) by utilizing the relationship between SPT-N 
blowcount and undrained shear strength (Eq. 1). The rate of 
increase of cu with depth, at both sites in this study, are within 
reported values in the literature (Table 5). 

By using empirical equations (Eqs. 2 and 3) based on the 
SPT-N blowcount, the effective friction angle (Kulhawy and 
Mayne 1990; Schmertmann 1975) and relative density (Gibbs 

Figure 2. Effect of small and large SCL values on the random field for a bearing capacity of a foundation generated by RBEAR2D software (Fenton and Griffiths 2008) 
(horizontal and vertical SCL are the same) (a) SCL ¼ 2 m, (b) SCL ¼ 10 m. (darker colors indicate larger values of elastic modulus).  
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and Holtz 1957) are estimated for all borehole soundings 
where mixture layers are identified. 

Dr ¼
N

12r0vo þ 17

� �0:5

½2�

/0 ¼ tan� 1 N

12:2þ 20:3 r0vo
Pa

� �

2

4

3

5

0:34

½3�

where N is the SPT-N blowcount, Pa is atmospheric pressure, 
100 kPa and r0vo is the in-situ vertical effective stress (saturated 
unit weight is taken as 17.5 kN/m3). In addition, the friction 
angle is also obtained using the NC (normally consolidated) 
curve provided by Stroud (1988). 

The estimated effective friction angle and relative density 
are provided in Figure 6 and the results are tabulated in 
Table 6. The relative density results show that the upper parts 
of the seabed profile have greater Dr than deeper layers which 

Table 2. Summary of spatial correlation length in the vertical direction from the literature (number in parenthesis is the mean value). 
Reference Vertical SCL (m) Soil type Remarks  

Alonso and Krizek (1975) and 
Lumb (1975), reported by 
Huber (2013) 

0.3–4 Clean sand and sand fill SPT-N value 

Vanmarcke (1977) 2.4 Sandy SPT-N value 
Keaveny, Nadim, and Lacasse 

(1990) 
0.3–1.0 Offshore cohesive soils Undrained shear strength, CU triaxial 

Phoon et al. (1995) 0.1–2.2 Sandy silty Cone tip resistance 
0.7–1.1 Clay Cone tip resistance 
2.0–6.2 Clay Undrained shear strength obtained by 

vane test, 
0.8–6.1 Clay Undrained shear strength obtained by 

various lab tests 
Chiasson et al. (1995) 2 m autocorrelation  

distance 
Lightly overconsolidated and highly 

sensitive clay deposit 
Piezocone cone resistance and in-situ 

vane 
Phoon and Kulhawy (1999a, 

1999b) 
0.8–6.1 (2.5) Clay Undrained shear strength 
0.1–2.2 (0.9) Sand, clay Cone tip resistance 
0.2–0.5 (0.3) Clay Corrected cone tip resistance 

2.0–6.2 Clay Undrained shear strength from vane 
shear test 

1.6–12.7 (5.7) Clay, loam Natural water content 
Jaksa et al. (1999) 0.63–2.55 Relatively homogeneous, stiff, 

overconsolidated clay known as 
Keswich Clay 

Detrended residuals of cone tip 
resistance measurements 

Cafaro and Cherubini (2002) 0.19–0.72 Clay Cone tip resistance 
Valdez-Llamas, Auvinet, and 

Núñez (2003) 
0.8–2.0 Superficial soft clay Natural water content 

21 Deep deposits with alternating clayey 
and sandy soils 

Natural water content 

Akkaya and Vanmarcke 
(2003) 

0.61–3.72 Sand Cone tip resistance 
0.36–3.53 Sand CPT sleeve friction 
0.26–3.l4 Clay Cone tip resistance 
0.30–3.62 Clay CPT sleeve friction 

Phoon et al. (2003) 0.38–0.8 Offshore sediments CPT data, lab-measured shear strength 
(UC etc) data 

Uzielli, Vannucchi, and Phoon 
(2005) 

0.13–1.11 (0.70) Sand, Clay, Silt (Mixture) Cone tip resistance 
0.12–0.60 (0.36) Sand, Clay, Silt (Mixture) CPT friction ratio 

Schweiger, Peschl, and 
Pöttler (2007) 

1.0–10.0 for “materials such as keuper and 
middle trias formations” 

Reports literature values 

Liu and Chen (2010) 1.86  
0.82 

onshore alluvial deposits (loose sandy 
soils, cohesive soils, medium dense 
to dense sands and clay layers) 

CPT cone tip resistance  
CPT sleeve friction 

Akbas and Kulhawy (2010) 4.0–6.2 Ankara Clay Liquid limit, wL 
2.5–5.5 Ankara Clay Natural water content, wn 
1.0–3.0 Ankara Clay Undrained shear strength, su 
3.0–3.8 Ankara Clay SPT-N value 

Zhang and Chen (2012) 1.36–3.01 Sandy SPT-N value 
Lloret-Cabot et al. (2014) 0.40–0.44 Filled sand in artificial island Cone tip resistance 
Firouzianbandpey et al. 

(2014) 
0.45–0.50 Clayey silty sand Normalized cone resistance 

0.2 Clayey silty sand Normalized friction ratio 
Liu et al. (2015) 0.1–0.5  

0.05–1.0 
Offshore sands  

Offshore clays 
CPTU cone tip resistance 

Nadim (2015) 0.18–0.39 Different soil units Cone tip resistance 
Overgard (2015) 0.4–3.0 Offshore sand and clay sublayers CPT cone tip resistance 
Shuwang and Linping (2015) 0.16–0.32 (0.23) Very soft clay (sand inclusion) Static cone penetration test 

0.14–1.00 (0.37) Mud and very soft clay 
0.16–0.57 (0.37) Very soft clay and clay 
0.13–0.32 (0.24) Clay 
0.10–0.43 (0.23) Silty clay 

Bouayad (2017) 0.32–1.32 (0.78) Onshore sandy soils (loose to medium 
dense sands, dense fine sands and 
silty sands) 

CPT cone tip resistance 

Pantelidis and Christodoulou 
(2017) 

0.11–0.29 Onshore two clay sites UC tests and light dynamic probing 
(DPL) in-situ tests   
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does not seem to be realistic. It should be noted however, that 
the empirical relative density equation (Gibbs and Holtz 
(1957) uses an overburden corrected SPT-N value, i.e., N1,60 
(in-situ effective vertical stresses are normalized by 100 kPa). 
This may result in a misinterpretation of the in-situ density 
state of the soil for the shallow sea bottom sands. The weighted 
average relative density of the mixture layers at both sites is 
29% (it is 28% for site 1 and 40% for site 2) and the mixture 
of marine soils of this region can be classified as loose to 
medium dense. 

Method of analyses 

During standard penetration testing, disturbed and 
undisturbed soil samples are obtained from the field at each 

SPT depth. In this study, the soils at each borehole (e.g., 
Figure 7) are first classified according to the Unified Soil 
Classification System using laboratory tests (sieve analyses, 
hydrometer test, and Atterberg limits) and observations from 
the field as reported in borehole logs interpreted. The layers 
are then grouped into two: (1) mixture layers and (2) clay 
layers to calculate the corresponding vertical SCL based on 
SPT-N data. The soil layers classified as sandy gravel, gravelly 
sand or fill are eliminated because of SPT-N refusal data 
within these layers. The same type of soil layers at the same 
boreholes are not lumped together to obtain a single vertical 
SCL. Instead, they are considered separately and each layer 
has its own vertical SCL. In this study, the vertical SCL is 
not calculated for layers that are less than 7.5 m thickness. 
Twenty seven boreholes at site 1 (average borehole depth of 
31 m from seabed) and 14 boreholes at site 2 (average borehole 
depth of 25 m from seabed) are investigated and vertical SCL’s 
based on SPT-N blowcounts are reported. In the evaluation of 
SCL, the SPT-N data is not corrected for energy efficiency, 
borehole diameter, rod length etc. It is known that SPT is 
prone to measurement errors (equipment-related and operator 
effects, etc.), however, this has not been considered in the cur-
rent work. Therefore, evaluated spatial correlation lengths 

Figure 3. Locations of sites 1 and 2 in the southern coast of Turkey (Google Earth images are dated 2017, boreholes are done in 2010–2011).  

Table 3. Information about the data used in this study.  
Number of  
boreholes Water depth (m) 

Depth of boreholes  
from seabed (m)  

Site 1 27 2.8 to 18.2  
(average 8.9 m) 

16 to 50.5  
(average 30.5 m) 

Site 2 14 5.2 to 25.7  
(average 16.1 m) 

13.8 to 35.4  
(average 25.2 m)   

Figure 4. Classification of soils at both sites, (a) sieve analyses, (b) Atterberg test results.  
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based on SPT-N data represent not only the inherent varia-
bility of soils but also the effect of measurement errors. 

Exponential and squared-exponential autocorrelation func-
tions are widely used to calculate SCL in the literature (e.g., 
DeGroot 1996; Akkaya and Vanmarcke 2003; Zhang and Chen 
2012; Huber 2013; Fenton 1999; Firouzianbandpey et al. 2014; 
Zhang et al. 2016; Peng et al. 2017). In this study, four autocor-
relation functions proposed by Vanmarcke (1977) (Table 1) 
have been utilized to see the effects of the autocorrelation 
functions on SCL and their corresponding coefficient of deter-
mination (R-squared) values. The evaluation of the SPT-N 
data and calculation of vertical SCL values are conducted by 
a MATLAB code developed in this study, which analyzes the 
data, and fits the autocorrelation functions and reports the 
SCL. 

The SPT-N data can be treated as stationary (i.e., “constant 
mean with depth”) or nonstationary (i.e., “depth-dependent 
mean (trend)” approach). In these approaches, the fluctuations 
about the mean are considered and the corresponding SCL is 
evaluated. Vanmarcke (1977) states that the initial steps of the 
spatial variability analysis should be the determination of the 
existence of a trend (i.e., stationarity or nonstationarity) and 
standardizing the data. This check can be done by calculation 
of mean first order increment (Eq. 1) of the data in the vertical 
direction (Chiasson et al. 1995). If there is an increase or 
decrease in values with increasing depth, the data should be 
treated nonstationary (“trend approach”). 

�d sð Þ ¼
1
n

N zi þ sð Þ � N zið Þ½ � ½1�

where �d sð Þ is the mean first order increment, N(zi) is the 
SPT-N blowcount at depth zi, τ is the spacing and n is the 
number of data points separated by τ (lag distance). 

In this study, the calculated SCL’s for both “constant” and 
“trend” approaches are compared. Treating the data as having 
constant mean and depth-dependent mean are illustrated in 
Figure 8. It is clear that these two approaches will result in dif-
ferent SCL’s and it is reported that removing the trend 
(detrending) eliminates the longer fluctuations (Akkaya and 
Vanmarcke 2003). If there exists a trend, the means should 
be subtracted from the measurements and then this deviation 
should be divided by standard deviation at each depth (Eq. 2). 

NC zð Þ ¼
N zð Þ � �N zð Þ

rN zð Þ
½2�

where the N(z) and �N zð Þ are the real measurement and trend 
(mean) at depth z, respectively, NC(z) is standardized data, and 
rN zð Þ is the standard deviation of the measurement. By doing 
this, the data can be treated as statistically homogeneous which 
means that the mean (l ¼ 0) and standard deviation (r ¼ 1) 
are constant with depth. The similar procedure is called as 
“detrending” in the literature (DeGroot and Baecher 1993; 
Phoon and Kulhawy 1999a, 1999b; Firouzianbandpey et al. 
2014). Detrending of the data also provides stationarity (con-
stant mean and variation). The only difference between stan-
dardizing and detrending is that standardizing provides unit 
standard deviation. In this study, in the “constant mean” 
approach, the average of the measurements is taken as the 
mean of the data and kept constant with depth. In the “trend 
approach”, a linear function is used as the trend of the mea-
surements, and the fluctuations about that trend is evaluated. 
It is found out that, a linear trend in SPT-N data is generally 
sufficient to represent the depth-dependency (the fit for the 
linear trend-line has an average of 0.60 coefficient of 
determination). 

The developed MATLAB code calculates the autocorrela-
tion coefficients (Eq. 3) of the data and plots these coefficient 
versus lag distance which is the distance between two points of 
concern. It should be noted that the data sampling interval 
between observation points has to be constant (Vanmarcke 
1977; Fenton and Griffiths 2008; Liu and Chen 2010; 

Table 4. Variability of SPT-N data for two sites.  
Sublayer  

identification 
Number of  

data 
Mean  
SPT-N COV (%)  

Site 1 Mixture Soil (clayey, silty, sandy)  330  17  71 
Clay  100  10  80 

Site 2 Mixture soil (clayey, silty, sandy)  89  22  77 
Clay  73  8  88   

Figure 5. Undrained shear strength profile at sites 1 and 2 by utilizing empirical 
equation of Stroud (1974).  

Table 5. Rate of increase of undrained shear strength with depth. 

Reference 
Rate of increase of cu  

with depth (kPa/m) Remarks  

This study 2.1 (range: 0.6–4.0, std. 
dev.: 1.0) at site 1 

Clays 
nearshore 
Turkey  

2.2 (range: 1.7–2.8, std. 
dev.: 0.4) at site 2  

Basack and Purkayastha 
(2009) 

2.5 – 

Cao and Wang (2014) 1.6 Marine clays 
Hossain et al. (2014) 1.02–2.55 Clays at 14 

sites, Gulf 
of Mexico 

Wei, Pant, and Tumay  
(2010), Kamei and Iwasaki 
(1995), Li-Zhong et al. 
(2008), Terzaghi, Peck, and 
Mesri (1996) 

0.8–3.5 
forðcu=r

0
vÞ ¼ 0:12 � 0:35�

– 

*Using buoyant unit weight of 7 to 10 kN/m3.   
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Firouzianbandpey et al. 2014; Lloret-Cabot et al. 2014; Yan 
and Guo 2015; Zhang and Chen 2012). The SCL is calculated 
by utilizing autocorrelation functions provided by Vanmarcke 
(1977) (Table 1). 

Autocorrelation coefficient is defined as: 

qk ¼

Pn� k
i¼1 Ni � �Nið Þ Niþk � �Niþkð Þ

Pn� k
i¼1 Ni � �Nið Þ

2 k ¼ 0; 1; 2; . . . ; n � 1ð Þ

½3�

where the Ni and �Ni are the real measurement and trend 
(mean) at depth i, respectively, and Ni+k is the measurement 
at depth i+k. The autocorrelation coefficient is constrained 
by [−1.0, 1.0]. If the coefficient is positive, both variables tend 
to be higher and lower together. However, if the coefficient is 
negative, high value of one variable tends to be associated with 
a low value of the other variable (Kottegoda and Rosso 2008). 
In the literature, the same autocorrelation function is also 
defined in terms of autocovariance function. The autocovar-
iance of the SPT-N blowcounts may be calculated by the 
method of moments (Eq. 4) and the autocorrelation coeffi-
cients may be calculated by normalizing with the data vari-
ation (Eq. 5). It is seen that combining Eqs. 4 and 5 results 
in Eq. 3. 

Autocovariance function: 

ck ¼ Cov Xi;Xiþkð Þ ¼ E Xi � �Xð Þ Xiþk � �Xð Þ½ � ½4�

where k is the lag distance, Xi is the value of parameter X at the 
location of i and E is the expectation operator. 

Autocorrelation function: 

qk ¼
ck

c0
½5�

where qk and ck are the autocorrelation coefficient and the 
autocovariance at lag k, and c0 is the autocovariance at lag 0. 

Estimation of SCL remains as a significant challenge due to 
a lack of high-resolution measurement data in geotechnical 
practice. Among the in-situ tests, the cone penetration test 
data has the highest resolution (typically on the order of a 
few cm’s). However, other properties of soil such as water 
content, unit weight, undrained shear strength (from labora-
tory tests), and SPT-N data from the field can also be used 
to calculate the SCL, even though they have larger spacing 
between observation points (lower resolution) (Table 2). Using 
the conventional statistical method described in the manu-
script, vertical SCL values found based on SPT in the literature 
are 2.4 m (Vanmarcke 1977), 0–4 m (Alonso and Krizek 1975 
reported in Huber 2013), 0.3 m (Lumb 1975 reported in Huber 
2013), and 1.36–1.63 m (Zhang and Chen 2012). 

It is also seen that if the mean of the measurement, �N, is 
taken as the trend value in Eq. 3, there is no need to standar-
dize or detrend the measurements. That is, the computed SCL 
for normal data, detrended data (zero mean) and standardized 
data (zero mean and unit standard deviation) become the 
same in case of taking mean as trend value. 

Figure 9 shows an example plot of autocorrelation coeffi-
cients versus lag distance for a sample borehole at site 1. 
The four autocorrelation functions in Table 1 are utilized to 

Figure 6. Estimated (a) effective friction angle, (b) relative density, with depth.  

Table 6. Friction angle and relative density obtained through SPT-N correlations.  
Friction angle (°) Dr (%) 

Schmertmann (1975) Stroud (1988) Gibbs and Holtz (1957) 

Site 1 Site 2 Site 1 Site 2 Site 1 Site 2  

Average  33.6  37.6  31.7  34.2  28.3  39.6 
Range  18.0–47.7  20.0–53.6  27.3–41.1  27.8–46.3  9.6–85.9  12.1–100 
Stan. Dev.  6.1  8.5  2.9  4.9  11.7  20.1 
COV (%)  18.0  22.7  9.0  14.4  41.2  50.7   
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fit the data and corresponding SCL’s and coefficient of 
determinations of fit are provided in Table 7. The results indi-
cate that although the coefficient of determination does not 

change significantly for “trend” and “constant” approaches, 
evaluated SCL values in the vertical direction do. 

Results 

The SPT-N data at both sites are statistically evaluated. Auto-
correlation coefficients and the vertical SCL’s are calculated by 
utilizing four different autocorrelation functions (Table 1). 
The mean values, ranges and the standard deviations of the 
SCL’s with “trend approach” are tabulated in Table 8, 
Figure 10a,b. In Table 8, the results are reported as the mean 
vertical SCL obtained by exponential autocovariance function 
and by all four autocorrelation functions for all boreholes. 
Figure 10a shows the SCL of mixture soils and Figure 10b 
shows that of clay layers, with four autocorrelation functions, 
for both sites 1 and 2. 

The mean vertical SCL based on SPT-N data of both sites 
using all four autocovariance functions and using the “trend 
approach”, is 1.72 m (�0.91 m standard deviation) for clay 
layers, whereas it is 2.03 m (�1.29 m standard deviation) for 
mixture layers. The vertical SCL values are within typical 
ranges reported in the literature for similar soil groups, both 
onshore and offshore (Table 2). 

In the analyses, two different approaches, constant and 
trend, have been used and, as stated in the study of Akkaya 
and Vanmarcke (2003), the “trend approach”, where the 
fluctuations about the trend are considered, results in shorter 
fluctuation (shorter SCL). While the average of SCL’s with the 
“trend approach” for clays and mixtures are 1.72 and 2.03 m, 

Figure 7. YDSK-1 borehole at site 1.  

Figure 8. (a) Constant mean and (b) depth-dependent mean approaches.  

Figure 9. Autocorrelation coefficient vs lag distance for borehole YDSK-16 and utilized autocorrelation functions (a) “constant approach” (b) “trend approach”.  

Table 7. The spatial correlation lengths, SCL (both “constant” and “trend” 
approaches) for four autocorrelation functions for borehole YDSK-16. 

Correlation Function 

“Constant mean with depth” 
approach 

“Trend” 
approach 

SCLm) R2 SCLm) R2  

Exponential  6.05  0.75  2.30  0.71 
Squared-Exponential  6.49  0.79  2.93  0.76 
Cosine-Exponential  5.77  0.84  2.23  0.81 
2nd Order Autoregressive  6.43  0.78  2.75  0.74   
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respectively, the SCL’s with “constant-mean with depth” 
approach are 3.85 and 4.20 m, for clays and mixtures, respect-
ively. This indicates that the SCL with “constant-mean” 
approach is larger than the SCL with “trend approach”. 
Figure 8 also illustrates the difference in two approaches. 
The fluctuation about depth-dependent mean (trend line) is 
more frequent than the fluctuation about constant mean, 
which means that constant mean approach results in larger 

SCL. In addition to these, it should be noted that, the order 
of the trend function is important, as the order of the poly-
nomial increases, the SCL decreases (Phoon 2008). 

When all four utilized autocorrelation functions are com-
pared, the results show that squared exponential (Gaussian) 
autocorrelation function gives the highest SCL (in 72% of all 
evaluations) compared to the others; while the exponential 
(Markov) autocorrelation function results in the lowest SCL 

Table 8. The mean, and standard deviation of SCL (with “trend approach”) for clays and mixtures.   
Site 1 Site 2 

Mixtures Clays Mixtures Clays  

Four Functions Mean (m)  2.19  1.75  1.52  1.67 
Range  0.07–5.20  0.06–3.19  0.08–4.55  0.06–3.13 
Standard Deviation (m)  1.27  0.93  1.25  0.89 

Exponential Function only Mean (m)  1.94  1.45  1.23  1.36 
Range  0.07–5.03  0.06–2.66  0.08–4.17  0.06–2.53 
Standard Deviation (m)  1.34  0.94  1.30  0.93   

Figure 10. Spatial correlation length of (a) all mixture soils, (b) all clay layers, for both sites 1 and 2, using “trend approach.”  
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(in 78% of all evaluations). In addition, the autocorrelation 
functions, exponential and cosine-exponential mostly gives 
closer SCL’s to each other (in 43% of all evaluations). 

Cao and Wang (2014) state that selection of the most suit-
able correlation function is an important issue and the good-
ness of fit can be used to help select the most suitable 
functions. Table 9 shows the goodness of fit in terms of R2 

values for all the SPT-N data reported in the manuscript with 
their means and ranges. All R2 values are in the range of 0.55 
and 0.86 with an average of 0.70. Results with a coefficient of 
determination smaller than 0.50 are not considered. Consider-
ing all boreholes data for the mixture soils and for the clay 
soils, the Cosine Exponential Autocorrelation Function gives 
the highest R2 values (greater than 0.64 with an average of 
0.74), i.e., seems like the best fit among the four types of 
autocovariance functions. 

Concluding remarks 

In this study, the vertical spatial correlation length is deter-
mined using site investigation data from two sites on the 
southern coast of Turkey, based on SPT-N values at 1.5 m 
depth intervals, from 41 boreholes (depths of 14 to 51 m from 
seabed) at average water depths of 8.9 and 16.1 m for sites 1 
and 2, respectively. At both sites, marine deposits exist where 
the soil profile generally consists of mixture layers (clayey, silty 
and sandy materials with different proportions) and low plas-
ticity clay layers. The clay layers at both sites are generally in a 
soft to medium stiff state (0–50 kPa of cu), but a few clay layers 
are observed with an undrained shear strength of 50–100 kPa. 
For “mixture” layers at both sites, the mean friction angle is 
34° and it is seen that the mixture soils are mostly in loose 
to medium-dense state with a mean relative density of 
about 29%. 

Vertical spatial correlation length based on SPT-N data is 
calculated using four autocovariance functions; namely, expo-
nential (Markov), squared-exponential (Gaussian), cosine 
exponential and second-order autoregressive. The results indi-
cate that clays and mixtures have mean SPT-N based SCL of 
1.72 and 2.03 m, respectively. The results of this study contrib-
ute to the SCL studies in the literature and serve as an example 
from Turkish offshore/nearshore sea bottom soils, and also 
can be useful in future studies on reliability-based design of 
offshore/nearshore structures. 
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