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FOUNDATIONS
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SUMMARY

A simple method for analysing laterally loaded piles is to consider the problem as a beam on an elastic
foundation. In this representation, the finite element method is used to solve the governing differential
equation, in preference to the more popular finite difference approaches. The pile is modelled using beam
elements, and two different methods are compared for introducing the soil stiffness. The ‘consistent’
approach, where the governing differential equation is discretized using a Galerkin formulation, is shown
to be considerably more accurate than a ‘lumped’ approach. The improvement is particularly noticeable
when the finite element discretization becomes coarser. Some examples are presented to illustrate the
differences, and comparisons are made with closed-form solution.

INTRODUCTION

Provided axial forces are much smaller than those values that would cause buckling, the
behaviour of laterally loaded piles is analogous to the classical problem of a beam on an elastic
foundation. Particularly relevant to geotechnical engineering is the case where the soil stiffness
increases with depth. The simplest assumption to make is that there is a linear relationship
between depth and stiffness, although other power laws could be used.

Closed-form solutions"? containing hyperbolic functions give displacements and moments
within the pile provided the foundation stiffness variation is represented by simple functions.
Even for a linear variation in foundation stiffness, these solutions become quite cumbersome,
and numerical solution techniques are often preferred. For nonlinear foundation behaviour,
however, where the springs reduce in stiffness as a function of displacement or reach an
ultimate value, numerical methods represent the only means of tackling the problem.

The most popular numerical approach, and the one that has received the most attention, is
the finite difference method (see e.g. Reference 3). Here the governing differential equation
is written in finite difference form and applied at a number of discrete peints along the length
of the pile. This leads to a set of linear simultaneous equations in the unknown transverse
deflection at each grid point.

An alternative approach to solving the problem numerically is to use the finite element
method (see e.g. reference 4). In this case beam elements are used to discretize the pile, allowing
a translation and a rotation at each node. The shape functions of these simple elements are first-
order Hermite polynomials, and allow a cubic variation of transverse deflection between nodes.
Incorporation of the foundation stiffness can be achieved either by lumping at the nodes using
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‘p—y’ springs or by a consistent approach in which the governing differential equation is fully
discretized using a Galerkin formulation. These two approaches are now briefly reviewed.

Lumped approach

In this method, the global stiffness matrix is built up in the usual way from the beam element
stiffness matrices. Once this is done, the foundation stiffness is added to the appropriate
diagonal terms corresponding to translations only. This takes account of the effect of the
foundation on transverse defections, but ignores the effects of rotations. A typical distribution
of spring stiffnesses for a pile in a soil of uniform properties is shown in Figure 1(a), and for
a soil of linearly increasing modulus in Figure 1(b). These values were obtained by considering
the ‘fixed-end’ reactions that would act on the beams for the given loading distribution.

Consistent approach

This method enables the foundation and beam stiffnesses to be merged at the element level.
Thus for a uniform foundation stiffness, the governing equation is

d*y
El —+ky=w |
dx4 y ( )
where the symbols are as defined in Figure 2. As shown, a typical element has four degrees of
freedom with a translation () and rotation (¢ =dy/dx) at each node. Discretization of
equation (1) leads to an element stiffness matrix in which all terms contain contributions from
the beam and the foundation:
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Figure 1. Equivalent spring stiffnesses
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where
§=[y 6 y» 62]7

and
P=[P, M, P, M)T

P, and M, being the shear force and moment acting at node 1, and so on.
The stiffness matrix K can be written as

K =KM + MM (3)
[12/1% 6/L —12/L° 6/L%]
4L  —6/L? 2/L
where KM =ET ! / 3 / 5 (4)
12/L? —¢lL
symmetrical 4/L |
156 221 G4 137 ]
kL 4L* 13L ~FE2
and MM =50 156 Yy (5)
symmetrical 4L2_

It may be noted that KM represents the beam stiffness matrix, and MM closely resembles the
beam mass matrix due to the term ky in equation (1). These matrices are fully populated, so
there is full coupling between translations and rotations that occur between beam and
foundation.

If the foundation stiffness k, or the pile stiffness EI, varies across each element, one approach
would be to assume a step-function approximation in which properties are constant within each
element, but differ from one element to the next. Alternatively, the element stiffness matrices
KM and MM may be formed numerically,* in which case the actual variation of the properties
can be more accurately represented with relatively few elements.

The most efficient way of performing this integration is to use Gaussian quadrature, by
replacing the beam co-ordinate x in the range [0, L] by the local co-ordinate £ in the range
[—1,1], as shown in Figure 2, using the transformation

x=3L(E+1) (6)

Assuming that beam displacements are given by

Y=Niyi+ Noby+ Nay, + Nab N
where
Ni=3(-3t+2), M=}LE-£-t+1)
Ny={(—-£+3t+2), Ne=}LE+8-5-1) &
then typical terms of the element stiffness matrices are given by
KMy, = % g 11 EI(¢) d;g" % dt
K,1L=1,2,3,4 9

L 1
MM = 5 S k(£)NkN, dg
i
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If the function k(£) is linear, then typical terms in MM require the integration of seventh-order
polynomials. Such polynomials are integrated exactly using four Gaussian integration points
per element.

COMPARISON OF LUMPED AND CONSISTENT METHODS

A pile of length 10 m was used for the comparisons, and three different element discretizations
were considered, as shown in Figure 3. Corresponding to each of these, three different relative
stiffnesses were assigned to the pilefsoil system according to Hetenyi’s definition: '

Short beams BL<L0-6
Intermediate beams 06 <L <5 (10)
Long beams S5<BL
k
=af{ L
where &1 (4EJ) (11)

Two distributions of foundation stiffness & were considered: in the first case k=1 was
maintained along the full length of the pile; in the second a linear distribution of & was taken,
varying from zero at the ground surface to k = 2 at a depth of 10 m, as shown in Figure 4. In
the second case the value of & at the mid-depth of 5 m (k = 1) was taken for defining the pile
‘length’ according to equation (11). In all cases, EI was taken to be constant, as shown in
Table I.

no.of elements 10 % 2
Figure 3. Mesh gradations
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Figure 4. Foundation stiffness

Table [. Values of ET and effective length
(assuming k = 1)

BL EI
0-6 19290
2:5 64
5-0 4
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The two loading cases, shown in Figure 5, namely a lateral force and a moment of one unit,
were applied respectively at the tip.

Figures 68 show results of lateral deflection 8, against pile depth x. In all cases using the
consistent approach, it was found that the computed displacements at all pile depths were
virtually indistinguishable from the closed-form solution.! This was also true in the case of the
lumped solution with 10 elements. The results that have been plotted are the lumped solutions

1~

Figure 5. Loading cases
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Figure 6. Pile deflection due to unit lateral load at tip; uniform stiffness
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Figure 7. Pile deflection due to unit lateral load at tip; stiffness increasing with depth

using two and five elements (2" and 5" respectively) and the closed-form solution for ‘short’
and ‘long’ piles.

Figures 6 shows results for the pile subjected to unit lateral load in a foundation of uniform
stiffness. The ‘short’ pile exhibited a simple rigid rotation and translation which were quite well
reproduced by the numerical solutions. The two-element case, however, underestimated the tip
deflection by 25 per cent. The agreement was even worse when a flexible pile was considered
under the same loading conditions. In this case even the five-element solution underestimated
the tip deflection by nearly 25 per cent. Figure 7 shows equivalent plots for unit lateral loading
with a foundation stiffness increasing linearly with depth. A similar picture emerges of a rapid
deterioration of agreement as the number of elements is reduced in the lumped case.

Finally, in Figure 8, the lateral deflection of the pile due to a unit moment applied at the tip
is shown. In this case the two-element solution underestimated the tip deflection by over 75 per
cent. A summary of the error in the computed tip deflection for the more interesting case of
linearly increasing stiffness with depth is given in Table II.
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Figure 8. Pile deflection due to unit moment at tip

Table II. Percentage error in computed tip deflection (k = 0-2x)

BL st 5¢ 2k ar 5t 5¢ 2% 28
Unit load Unit moment

06 9 0 35 0 10 0 40 0

2-5 7 0 35 0 7 0 38 0

5-0 17 0 66 5 19 0 77 2

CONCLUDING REMARKS

A comparison between lumped and consistent methods of modelling soil stiffness in a laterally
loaded pile analysis has been performed. The pile/soil system was treated as a beam on an
elastic foundation with either uniform or linearly varying modulus. For both force and moment
loading on the pile tip, the consistent approach gave consistently better results than the lumped
approach when compared with closed-form solutions. The constrast became particularly
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significant as the number of finite elements was reduced. It appeared that, even though the
closed-form solutions contain hyperbolic functions, the cubic polynomial interpolations used
in the finite element discretization were quite adequate for the cases considered.
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