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ABSTRACT
An evaluation of the spatial correlation length of two geological formations known as mudflows and 
residual soils has been conducted using standard penetration test (N1)60 values. The spatial correlation 
length is an important property in reliability-based design, in addition to the mean and standard 
deviation of soil parameters, but it is rarely estimated in geotechnical projects. Reported results in this 
paper from both geologies show the geological origin’s importance in the spatial variability analysis. 
Residual soils are more likely to display isotropic spatial correlation lengths horizontally when compared 
with the mudflows. The results show that the random field represents more accurately the mudflows’ soil 
variability when the residual soils must be complemented with shear strength tendency analyses.
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1 Introduction

Geotechnical engineering projects face daily uncertainties, par-
ticularly when they have to deal with soil properties, which can 
be highly variable. According to Elkateb, Chalaturnyk, and 
Robertson (2003), soil heterogeneity can be classified into 
two main categories: lithological heterogeneity and inherent 
spatial soil variability. The former is usually related to the 
variation of layers, the inclusion of different materials and 
human misinterpretation of the soils’ geological origin. 
Inherent spatial soil variability, measured by the auto- 
correlation function where the most important parameter is 
the correlation length (θ), is influenced by the geological pro-
cesses that result in a stochastic dependency of soil properties 
(Firouzianbandpey et al. 2015).

Soils’ inherent variability has been traditionally analysed 
through different statistical methods, such as first-order 
and second-order reliability methods (FORM and SORM) 
and the Monte Carlo (MC) simulation method. Statistical 
models can be integrated with the traditional limit equilibrium 
and finite element models in geotechnical designs. However, 
recently, soil inherent variability has been more accurately 
modelled as a random field due to the development of numer-
ical techniques, such as the Local Average Subdivision (LAS) 
(Fenton and Vanmarcke 1990). Combining the LAS method 
with finite elements allows for the Random Finite Element 
Method (RFEM) in geotechnical engineering (Griffiths and 
Fenton 1993; Fenton and Griffiths 1993). However, RFEM 
requires the definition of the spatial correlation lengths in 
addition to the mean and the standard deviation of soil para-
meters to generate a realistic soil model, which may represent 
a greater difficulty to perform these analyses.

The correlation length (θ) describes the distance over which 
the spatially random values tend to be correlated (Vanmarcke 
1977). Spatial variability in geotechnical engineering has been 

described by a number of authors (e.g., Baecher and Christian 
2003; Basarir et al., 2010; Cai et al. 2017; Cao and Wang 2013; 
Cheng et al. 2018; Chiasson et al. 1995; El Haj, Soubra, and 
Fajoui 2019; Fenton 1999; Firouzianbandpey et al. 2014; 
Gambino and Gilbert 1999; Jha 2014; Leung and Lo 2018; 
Luo et al. 2018; Papaioannou and Straub 2012; Ravi 1992; 
Salgado, Ganju, and Prezzi 2019; Soulié, Montes, and 
Silvestri 1990; H. Zhu and Zhang 2013; Zijun & Yu, 2013; 
Zhang et al., 2020a) According to the literature review, it is 
evident the difficulty in obtaining an accurate θ is due to the 
amount and quality of the field data and the difficulty of the 
autocorrelation function adjustment in the near-zero correla-
tion values. Also, the range for the horizontal correlation 
length is broad with values between 0.14 m and 80 m as 
reported by Ching et al. (2018). Therefore, due to the broad 
range, it is important to determine the factors that influence 
the correlation length magnitude for future analyses.

More recently and to a lesser extent, the SPT has been 
implemented in spatial correlation analyses (e.g., Oguz, 
Huvaj, and Griffiths 2018; Zhang and Chen 2012). However, 
none have analysed the geological origin’s influence on the 
correlation length estimation. The SPT implementation to 
obtain the spatial variability can be used to evaluate the varia-
bility of the soil’s undrained soil mechanical properties. The 
above is due to the SPT’s affinity with the undrained para-
meters evidenced throughout the different correlations avail-
able in the literature. According to the above, this paper 
investigates how geological origin influences the correlation 
length magnitude through statistical trends and the correlation 
of (N1)60 values for two geologies: mudflows (soils formed 
from ancient landslides) and residual soils (formed from the 
weathering of in situ rock).

Taking into account the geological origin as an ‘input vari-
able’ will allow researchers to determine the most appropriate 
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field research and models for the probabilistic geotechnical 
designs (e.g. Zhang et al., 2020b). The knowledge of the site 
local geology will allow us to have the previous conception about 
the possible horizontal correlation magnitude and thus be able to 
plan the soundings in a more consistent way for the future 
statistical analyses. The above will reduce, to some extent, the 
gap between the designs and the field behaviour of the geostruc-
tures (Fookes 1997; Viviescas, Osorio, and Cañón 2017).

2 Characteristics of the analysed geology

We analysed geology’s influence on the spatial variability of 
soils. A geology with abrupt changes and a stationary environ-
ment was selected. Therefore, mudflows and residual soils 
from the east side of Medellin city in El Poblado’s neighbour-
hood were analysed. These soils are commonly found in tro-
pical and high mountain geological environments.

Mudflows are soils formed by previous landslides and sub-
jected to transportation and particle sorting that can lead to 
tremendous uncertainties in the geotechnical shear strength 
properties (Zhao and Zhang 2014; Zhao et al. 2013). On the 
other hand, residual soils are materials formed directly from 
the weathering of in situ rocks. The main feature of this 
geological unit is an advanced weathering process favoured 
by the climatic and topographical conditions, without ever 
being transported (Mitchell and Soga 2005). Based on the 
Deere and Patton (1971) classification system, the residual 
soils in this study are classified as having an IC and IC-2A 
state of weathering.

3 SPT data

The same SPT equipment was implemented in this study to 
obtain each of the N values to reduce the uncertainty, to 
a certain degree, of the field measurements and data. Then, 
we correct the N-value from the SPT according to ASTM 
D1586 (ASTM 2011) standards to obtain the (N1)60. Table 1 
summarizes the collected information for each geology (num-
ber of boreholes, (N1)60, Unified Soil Classification System 
(USCS), maximum analysis depth, and the analysed area).

We previously performed cluster analyses to identify and 
remove outliers from SPT N-values caused by random factors, 
such as rock fragments and variations in the state of weath-
ering (Viviescas, Osorio, and Griffiths 2019). Outlier removal 
may prevent erroneous probabilistic designs due to missing 
correlation length calculations. The SPT data for mudflows 
and residual soils are shown in Figure 1. The spatial distribu-
tion of the mudflows project’s boreholes is shown in Figure 2 
and for the residual soils is shown in Figure 3.

4 Correlation length determination

Random fields associated with soil properties are usually 
defined by the correlation length (θ). θ is an important prop-
erty that defines the distance within which values are signifi-
cantly correlated (Fenton and Griffiths 2008). Of the various 
correlation functions available in the literature, the Markovian 
(exponential) and Gaussian (Squared exponential) are widely 
used in geotechnical engineering (e.g. Liu et al., 2019, Ching 
et al. 2018; Fenton and Vanmarcke 1990; Firouzianbandpey 
et al. 2015; Griffiths and Fenton 1993; Honjo and Setiawan 
2007; Li, Zhang, and Li 2015; Oguz, Huvaj, and Griffiths 2018; 
Phoon and Kulhawy 1999; Vanmarcke 1977; Zhang and Chen 
2012; Zhu and Zhang 2013; Ali et al. 2017). Therefore, the 
Markovian and Gaussian auto-correlation functions were 
employed in this paper to determine θ as shown in Eq. 1 and 
Eq. 2.

Markov 

ρ τð Þ ¼ exp �
2 τj j

θ

� �

(1) 

Gaussian 

ρ τð Þ ¼ exp � π
τ
θ

� �2
� �

(2) 

where τj j is the absolute distance between the analysed data.
To estimate θ, the following procedure was followed:
1.The respective N-value corrections and standardizations 

were made according to the ASTM D1586 (ASTM 2011) that 
recommends that the field measured SPT-N value should be 
standardized. The general equations for the SPT-N standardi-
zation are as follows (McGregor and Duncan 1998): 

N60 ¼ CBCCCECRCBFCSCAð ÞNfield (3) 

N1ð Þ60 ¼ CNN60 (4) 

where CB = Borehole diameter correction factor,CC = ham-
mer cushion correction factor, CE = SPT Equipment Energy 
ratio (60%)/60%, CR = rod length correction factor, CBF = blow 
count frequency correction factor, CS = liner correction factor, 
CA = anvil correction factor, Cfield= Field SPT -N Value and CN 
= overburden correction factor

2.After the SPT-N standardization, and considering that the 
same SPT equipment was implemented, a cluster analysis is 
performed to remove those outliers that do not represent the 
soil’s mechanical behaviour as an uncertainty decrease 
method, as was explained above.

3.Then, the vertical and horizontal distance matrices were 
defined for each borehole on each project.

Table 1. Numbers of SPT data obtained and soil index properties average results for each geological soil.

Location – Geology

Number of data

Max depth (m)

Soil index properties average results

Borings (N1)60 LL (%) PL (%) γ (g/cm3) USCS Reference

Poblado’s mudflows 17 132 16.6 61.9 41.7 1.65 MH Viviescas and Osorio (2015)
San Diego’s residual soil 19 146 14 46.1 30.5 1.78 ML Present study

Where LL = Liquid Limit, PL = Plastic Limit, γ = Moist unit weight, USCS = Unified Soil Classification System
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4.For the horizontal analysis, one borehole is set as fixed, 
and the correlation between this and the remaining boreholes 
at the same depth was obtained. For the vertical analysis, the 
first (N1)60 value was taken as the fixed point to start obtaining 
the variation of each vertical distance’s correlation coefficient.

5.The data present important trends in the vertical axis 
presents as it was evidenced by Viviescas, Osorio, and 
Griffiths (2019). Therefore, a general regression was initially 
performed on each of the boreholes.

6.Given the SPT values at xi and the measure depth (yi), 
the correlation function at each separation, or lag distance 
(k), can be determined by (adapted from Zhang and Chen 
(2012)): 

ρ kð Þ ¼
Pn� k

i¼1 yi � �yi
� �

yiþk � �yiþk
� �

Pn
i¼1 yi � �yi
� �2 (5) 

where k is the lag of the data (k =0,1, . . . .,k −1), n is the total 
number of y measurements, and �yi and �yiþk are the trend 
values at point xi and xiþk.

Eq. 3 allows, in conjunction to the obtained SPT tendency 
with depth, to remove the influence of the data trend in the 
obtained correlation function.
7.Finally, the correlation coefficient (ρ) versus the lag or abso-
lute distance (τ) was plotted for both vertical and horizontal 
directions. Then, an exponential and squared exponential 
goodness of fit was performed to obtain the correlation value 

Figure 1. (N1)60 values for Poblado’s mudflows and San Diego´s residual soils. (The values in red correspond to the outliers removed from the analyzes).
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on each project and direction (θH = horizontal and θV = 
vertical correlation length) according to Eq. 6 and Eq. 7: 

exp � a τj jf g ¼ exp �
2 τj j

θ

� �

and a ¼
2
θ

then θ ¼
2
a

(6) 

exp � b τj j2
� �

¼ exp � π
τ
θ

� �2
� �

and b ¼
π
θ2 then θ ¼

ffiffiffi
π
b

r

(7) 

Where a and b is the exponential and squared exponential 
goodness of fit coefficients

4.1 Spatial correlation length (horizontal direction)

According to the borehole distribution in Figure 2 and Figure 3, 
three projects for each geology, identified as Project 1 (P1), 
Project 2 (P2) and Project 3 (P3) were analysed for the mudflows 
and Project 4 (P4), Project 5 (P5) and Project 6 (P6) for the 
residual soils. The results of the horizontal spatial correlations for 

Figure 2. Spatial distribution of the boreholes in Project 1, 2 and Project 3 – mudflows.

Figure 3. Spatial distribution of the boreholes in Project 4, Project 5 and Project 6 – residual soils.
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both geologies are shown in Figure 4. It is shown that the best 
auto-correlation method on the horizontal direction for both 
geologies is the Markovian function (higher R2). The results of 
the mudflows’ horizontal correlation length show a better auto- 
correlation fit with a θH of 5.2 m and 10.3 m. The residual soils’ 
results have shown that the θH is up to three times greater than 
the mudflows’ horizontal length, with values around 20.2 m and 
22.7 m. The above correlates with the soil’s geological origin 

because soils that have not been transported in their geological 
history should have greater correlation lengths.

4.2 Spatial correlation length (vertical direction)

The results of the vertical spatial correlations for both geolo-
gies are shown in Figure 5. The results for both geologies show 
that the Gaussian auto-correlation gives a better fit (without 

Figure 4. Horizontal spatial correlation for mudflows and residual soils from (N1)60 results. Where θM;H ¼ Markovian horizontal correlation length and θG;H= Gaussian 
horizontal correlation length.

INTERNATIONAL JOURNAL OF GEOTECHNICAL ENGINEERING 5



much difference with the Markovian function). The results of 
the mudflows’ vertical spatial correlation show a θH of 1.1 m 
and 1.56 m and those of residual soils’ show a θV of 0.74 m and 
1.32 m. Taking into account the previous results, it can be 
shown that the θV has similar values for both geologies. The 
above may indicate that θV is mainly influenced by the vertical 
effective stress regardless of the soil’s origin.

5 Summary of results and discussion

It is shown that the best auto-correlation method is the Markov 
in the horizontal direction and the Gaussian for the vertical 
direction for both geologies. According to the results in Table 2, 

the θVand θV values for both geologies fell within the range of 
the reported values (Ching et al. 2018; Phoon and Kulhawy 
1999; Stuedlein et al. 2012). However, θH in residual soils is up 
to three times the mudflows’ horizontal length. The geological 
influence in the θH magnitude is related to the geological pro-
cesses that formed the soils. Materials with abrupt changes 
(mudflows) will present lower θH compared with stationary 
soils (residual soils). Therefore, soils formed by previous land-
slides will result in a more heterogeneous material compared 
with soils that were never transported and with changes in the 
state of weathering with depth than the residual soils.

The obtained values of the vertical correlation length, such 
as those presented in the literature, present values around θH ≈ 
0.5 to 1.5 m (Phoon and Kulhawy 1999; Stuedlein et al. 2012). 
The above may indicate that θV is mainly influenced by the 
vertical effective stress regardless of the soil’s origin. Therefore, 
the estimation of the horizontal correlation length is the most 
important parameter for the random field’s 1Based on pre-
vious results, a graphical model verification of the geotechnical 
properties’ spatial correlation lengths was performed using 
a random finite-element method (RFEM) software (Griffiths 
and Fenton 1993; Fenton and Griffiths 1993). RFEM combines 
an elastoplastic finite-element analysis with the Local Average 
Subdivision method (LAS) to generate a random field of the 

Figure 5. Vertical spatial correlation for mudflows and residual soils from (N1)60 results. Where θM;V ¼ Markovian vertical correlation length and θG;V = Gaussian vertical 
correlation length.

Table 2. Summary of the vertical and horizontal correlation lengths.

θ(m) Horizontal (Markov) Vertical (Gaussian)

Mudflows Project θH(m) R2* θV(m) R2*
P1 7.1 0.82 1.1 0.82
P2 10.3 0.87 1.42 0.82
P3 5.21 0.86 1.56 0.87

Residual P4 20.2 0.61 1.32 0.83
P5 21.5 0.67 0.74 0.75
P6 22.73 0.71 1.22 0.6

* R2 was adjusted for nonlinear functions fits according to the sum of squares of 
the residuals and the total sum of squares.
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soil properties (Fenton and Vanmarcke 1990). Considering the 
variability of the geotechnical properties, the LAS randomly 
defines finite elements with greater resistance (black elements) 
and with lower resistance (white elements). The results in 
Figure 6 show a comparative analysis between a field photo 
of the analysed soils versus three random field models.

The comparison between the field photos and the LAS 
models on mudflows was made through a pixel count corre-
sponding to the rocks in both the photos and the LAS models 
(where the rock corresponds to the dark pixels). Then, the 
rock pixel count was compared with the image’s total number 
of pixels to obtain the percentage of rock pixels. Figure 6 
shows that the random models present rock percentages 
almost identical between the field photo and the LAS model 
with 9% of rock fragments. The random model also shows 
that those higher resistance elements (rock fragments) in 
mudflows are randomly distributed similarly to the field sites.

However, the random models of residual soils show that, 
although the correlation length is obtained correctly, the RFEM 
model in Figure 6 shows a concentration of rigid zones at any 
depth, which is inconsistent with the residual soil’s behaviour. 
The inconsistencies are because the LAS model implemented 
does not consider the Shear Strength Tendency (SST), which is 
consistent with sedimentary soils. Lately, LAS models have been 
combined with a linear SST (e.g. Zhu et al. (2017), which differs 
from the reported SST in Residual soils (Viviescas, Osorio, and 
Griffiths 2019). Therefore, the challenge lies in modelling the 
residual soils by presenting functions other than linear.

6 Conclusions

The SPT-N values were used to obtain the spatial correlation 
length due to the SPT’s affinity with the undrained parameters. 
Determining spatial correlation lengths can be difficult due to 
SPT uncertainties and the auto-correlation model sensitivity. 
However, the results show that, in spite of the SPT data 

uncertainties, there is a clear difference between the correlation 
lengths of residual soils and mudflows. The residual soils have 
a lower spatial variability than the mudflows because the forma-
tion occurs in situ with the weathering processes, varying with 
depth. On the other hand, the mudflows are the result of land-
slides that mix materials with different degrees of weathering.

From these results, it is shown that the geological context is 
an important input characteristic for geotechnical practice and 
research. The prior knowledge of the local geology will allow us 
to have a previous conception about the possible horizontal 
correlation magnitude, which will help to adequately plan the 
sounding distribution in a more consistent way for the statis-
tical analysis, as it was suggested by Ching et al. (2018).

Random fields more accurately represent the variability of 
mudflow soils, where the LAS models show that the horizontal 
correlation length is an essential variable. The above is because 
RFEM models predict similar percentages of rock fragments to 
those that appear on the field photos, as shown in Figure 6. 
However, the random fields of residual soils must be comple-
mented with no linear shear strength tendency analyses to 
adequately determine resistance changes with depth due to 
these materials’ intrinsic weathering processes. Therefore, 
a geological characteristic can be used to build a random 
field through an image processing algorithm to obtain θ 
through an inverse calculation of the random field according 
to the input parameters’ probability density function.
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List of symbols

θV Blows per foot normalized to a 60% of the theoretical free – fall 
hammer energy of the SPT test.
SD Standard Deviation
R2Coefficient of determination
N1ð Þ60 Correlation function

ρ τð Þ Absolute distance between points
tj j Correlation length

θ Gaussian horizontal correlation length
θG;H Gaussian vertical correlation length
θG;V Markovian horizontal correlation length
θM;H Markovian vertical correlation length
θM;V lag of the data
k Total number of n measurements
y Trend values at point �yi

xiTrend values at point�yiþK

xiþk Variable x at position t
BH Bore Hole
X t0ð Þ Horizontal correlation length
θH Vertical correlation length
θV Exponential goodness of fit coefficient
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