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Computation of eollapse loads in geomechanics by finite elements*

D. V. Griffiths, Manchester

Summary: Recent interest in bifurcation and localisation in geomechanics has led to a re-examination of
traditional collapse calculations using finite element methods. This paper reviews some of the important
aspects of calculations of this type from a practical viewpoint. Examples of collapse predictions in appli-
cations of both bearing capacity and slope stability with strain softening are presented. Tt is shown that
localised zones of shear deformation can be modelled without any artificial inducements such as weak
elements or applied displacement fields.

Berechnung von Einsturzlasten in der Bodenmechanik mit finiten Elementen

Ubersicht: Das neuerliche Interesse an Verzweigung und Lokalisierung in der Bodenmechanik hat zu einer

Uberpriifung traditioneller Kollaps-Berechnungen nach der Finite-Element-Methode gefiihrt. Hier werden
vom praktischen Standpunkt einige wichtige Aspekte dieser Berechnungsmethode hesprochen. Beispiele
zur Versagensvorhersage bei der Tragfahigkeit und Hangstabilitit von entfestigendem Material werden
vorgestellt. Es wird gezeigt, dall lokalisierte Scherverformungen ohne Kunstgriffe mit nachgiebigeren
Elementen oder erzwungenen Verschiebungsfeldern modelliert werden kénnen.

1 Introduction

Computation of collapse loadsin geomechanics using numerical analysis has received considera-
ble attention in the literature over the past few years. Although it is not the intention of the
present paper to give a historical review, considerable contributions were made by the Swansea
school (e.g. [1—3]) during this period in developing robust implicit algorithms such as initial
stress and viscoplasticity. Early initial stress calculations were also being performed by workers
at Manchester (e.g. [4, 5]) and the viscoplastic formulation was later extended to cover a wide
range of problems of geotechnical interest by Griffiths [6—8].

Recent interest in bifurcation and localisation in geomechanics has brought renewed interest
in collapse caleulations, particularly those in which some perturbation triggers the failure
mechanism. Two types of perturbation can be distinguished; firstly due to meterial properties,
where a softening stress/strain curve or a weak element is introduced [9, 10], and secondly due
to geometric effects such as mesh design (e.g. [11]) or the introduction of a displacement field
corresponding to a mode shape (e.g. [12]). One point that is not often emphasised, is that elastic-
perfectly plastic materials also localise at failure. Indeed, any failure mechanism within a con-
tinuous body exhibits localisation between the failing material and surrounding material that
still has reserves of strength. A well refined finite element mesh will be required to capture the
zone of localisation, but a finite element mesh will always be limited in its ability to model large
relative movements, especially in the context of small deformations.
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Rather surprisingly, the accurate computation of collapse loads does not require such mesh
refinement. It has been shown many times that crude meshes are able to give good estimates
of collapse loads without accurately modelling the shearing zone.

The remainder of this paper discusses some of the jmportant features of collapse calculations
using finite clement methods from 2 practical viewpoint. Included in the discussion are comm-
ments concerning the correct choice of failure criterion, together with the best choice of element
and algorithm. Examples of bearing capacity and slope stability are also presented.

2 TFailure eriteria

91 Undrained clay

Undrained clay represents an extreme of soil behaviour whereby strength is not a function of
confining pressure. The most unambiguous failure criterion for this type of material is due to
Tresca:

|7y — 03 = 264 (H

where ¢, 18 the undrained cohesion and the principa& stress g, lies between oy and ¢, A more
popular function is the von Mises criterion, but this can lead to ambiguity in the definition of cy.
Tor example, under triaxial conditions (02 = ) the criterion becomes

VT, < 20./V3 (2)

whereas in plane strain (at failure: oy = (o, + a5)/2) the criterion becomes
V7. < (3)

where J, is the second deviatoric stress invariant. Referring to (2) and (3); Cu is the undrained
cohesion measured under triaxial and plane gtrain conditions, respectively-

9.9 Cohesionless soil

The other extreme of soil behaviour is described by cohesionless soils which are wholly depend-
ent on confining pressure for their strength. The best known criterion is due to Mohr-Coulomb
which leads to an irregular hexagonal pyramid in principal stress space. Conical circular approxi-
mations to this surface are completely unsuitable (e.g. [13, 14]), but more complex gmoothing
functions such as those by Lade and Duncan [15] and Matsuoka and Nakai [16] bave certain
advantages for computational work. These surface both lie outside the Mohr-Coulomb pyramid
and are based on experimental evidence in which full account is taken of the influence of a. A
typical quadrant of (dimensionless) principal stress space is shown in Fig.1 for the case of

¢, = 30°, where g, is the friction angle measured in triaxial compression. The three criteria are
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Fig. 1. Failure criteria for cohesionless soils
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Fig. 2. Equivalent friction angle as a function of Lode angle

defined

. = tan® (45° + ¢,/2) (Mohr-Coulomb), (4)
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where I,, I, and I, are stress invariants. Even though these criteria are based on carefully con-
ducted true triaxial tests, they differ by several degrees for certain stress paths. Figure 2 shows
the friction angle implied by the two surfaces when fitted to Mohr-Coulomb at @, = 40° as a
function of the Lode angle . All surfaces coincide in triaxial compression as expected, but for
different values of the Lode angle the differences between the criteria become clear. For example,
the Matsuoka-Nakai surface gives the same friction angle in extension and compression whereas
Lade’s surface indicates a triaxial extension friction angle some 6° higher. Under plane strain
conditions where 6 ~ 20°, both criteria give friction angles approximately 5° higher than in
triaxial compression. This latter observation is well supported by experimental evidence,
although the difference observed in triaxial extension is more open to debate due to possible
inherent instabilities caused by specimen necking.

In summary, even the most carefully derived failure criteria differ by several degrees for
certain stress paths. This reflects the current state of knowledge and the level of confidence
with which the friction angle can be measured in the laboratory.

3 Element type

The majority of publications in which collapse loads are predicted using finite element analyses
have used the 8-node quadrilateral element with reduced (2 by 2) integration. This element and
integration level have been shown to be reliable for both plane and axisymmetric strain appli-
cations. The element has been criticised however on the grounds that reduced integration is
necessary in order to relax the volumetric constraints imposed by different plastic flow rules.
If using exact integration, higher order elements such as the 15-noded, cubic strain triangle have
been suggested [17] as suitable for collapse predictions, especially in axisymmetry. For this
element in plane strain, 12 integration points are required whereas in axisymmetry, 16 points
are recommended. It should be noted however, that due to terms like 1/r in the strain-displace-

ment relationships, exact integration of the stiffness matrix in axisymmetry is impossible using
conventional quadrature rules.
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In spite of its added complexity, the 15-noded triangle is easily incorporated into finite ele-
ment software that is suitable modular [18]. When using the 15-noded triangle, far fewer ele-
ments will be necessary than a corresponding analysis with the same number of degrees of free-
dom using a lower order element such as the 9-noded quadrilateral. The bandwidths will be
correspondingly higher however, typically leading to twice as much storage requirement.

Future developments may well be away from high order elements towards even lower order
elements such as the 4-noded quadrilateral. This approach requires a computational gimmick
called selective reduced integration (e.g. [19]) and has been shown to be quite effective for some
collapse calculations [20]. Further testing of this element and integration scheme will be neces-
sary however, before any conclusive recommendations can be made about its effectiveness.

4 Algorithms for stress redistribution

Much discussion has recently centred around the best numerical method for redistributing
stresses that have strayed into illegal stress space outside the failure surface. Two main types
of algorithm have emerged which tackle this problem either locally or globally.

The global approach arranges for stresses to return to the failure surface in an average sense
only. Initial stress and viscoplastic algorithms are of this type, and the simplest approaches
use modified Newton-Raphson iterations with the global stiffness matrix formed once only. No
attention is paid to the route by which individual stress points return to the failure surface
once they have strayed outside. Clearly, the saving in computer time enjoyed from only having
to operate on one global stiffness matrix is offset by added iterations as failure is approached.
Variations on this theme are of course possible, whereby the global (tangent) stiffness matrix
is reformed occasionally to meet some efficiency compromise.

The local approach attends in some detail to the means by which individual stress points
return to the failure surface. Various algorithms have been proposed for integration of the
plastic rate equations, some of which are explicit while others require iterations at the local
level. A review of some of the alternatives has been summarised by Ortiz and Popov [21].

It would seem that many different methods are available for computation of collapse loads
in geomechanics. Unfortunately, research workers in this area rarely publish their code, so one
can only speculate as to how some of the trickier algorithmic details are dealt with. Until objec-
tive comparisons between software from different sources are made, progress towards more
accurate and efficient algorithms will be hindered. In addition, there is a danger that some
individual approaches for the computation of collapse loads may lead to conclusions which say
more about the algorithm used than the physics of the problem.

In the next section, two problems of collapse in geomechanics are presented. In both cases,
a simple viscoplastic global algorithm is used with a full modified Newton-Raphson iterative
scheme. The software is published in full in the text by Smith and Griffiths [18].

5 Analysis of bearing capacity

The example is of a rigid, smooth strip footing on an elastic-perfectly plastic, weightless soil
governed by the Mohr-Coulomb failure criterion. The footing is 4 m wide, but due to symmetry
only half the problem is analysed. The elastic soil parameters are F = 105 kPa, » = 0.3 with
shear strength values, ¢’ = 40°, ¢’ = 1 kPa. The dilation angle is put to zero, indicating a non-
associated flow rule with no plastic volume change. This problem was chosen because the com-
bination of a high friction angle and low dilation angle was considered quite a severe test of the
algorithm. An unsuccessful attempt to solve the same problem was made by de Borst and Ver-
meer [22], leading those authors to make rather general conclusions that were really only appli-
cable to their particular solution method.

In the present analysis, increments of prescribed displacements equal to 0.25 mm were
applied to the footing in the vertical direction. The mesh used to solve the problem is shown in
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Fig. 8. Bearing capacity of a weightless soil with ¢* — g — 40° (. dilatancy angle)

Fig. 3, together with a plot of the mobilised bearing capacity factor N, vs. footing displacement.
A smooth curve is obtained prior to failure, which takes place very close to the analytical solu-
tion of Prandtl (N, = 75.3). Beyond the peak, the curve becomes unstable due to numerical
softening ; a phenomenon also observed in some of the results obtained in [22].

6 Analysis of slope stability

The second example involves the analysis of a slope of undrained clay in plane strain under
gravity loading. A von-Mises failure criterion of the type given by (3) was used, incorporating a
softening stress strain curve of the type shown in Fig. 4. The material was assumed to remain
elastic until a peak strength given by cohesion ¢, was reached. Beyond the peak strain, the
material weakens at a rate governed by the gradient H of the softening limb of the curve. In
the present work, the stress/strain behaviour is defined in terms of the following invariants of
stress and strain:

1
G = ]/? V(Gm — o) + (0 — 0)2 + (0, — Op)® + 66-'2511’ 0
5% 3
& = l/‘%— ]/(Em: - eyy)a + (eyy == ezz)z + {85 — Eg)® + E" 63‘1} (8)
7

Fig. 4. Typical stress/strain curves for
softening model
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where g, = 0 in plane strain. With these definitions of stress and strain, the gradient of the
elastic portion of the curve equals 3¢/, where (¥ is the elastic shear modulus. The degree of post-
peak softening is therefore conveniently defined through a dimensionless brittleness coefficient
M which is the ratio of the gradients post- and pre-peak, thus

M = H/(3G). (9)

At any stage of the analysis, the cohesion is computed according to the formulae

c=¢, if £§<5g,

c=c, + H@E—)[V3 if 6>8, (11)
where

5, = 136,/(36).

(10)

(12)
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As shown in Fig. 4, the residual strength is assumed to equal zero, although a larger value could
easily be introduced if required.

The problem to be analysed is a 7 m high slope inclined at just under 50° to the horizontal.
The slope rests directly on a firm foundation as indicated by the mesh shown in Fig. 5 which
has 1540 degrees of freedom. Gravity nodal loads were generated in the usual way by numerical
integration of the shape functions assuming a total unit weight of 20 kN /m®. The gravity loads
were applied to the initially unstressed slope in a single increment, and failure wag generated
by keeping M constant and gradually reducing the peak cohesive strength in the form of g
stability number &, defined by

N = c,/(yH). (13)

Failure was said to have oceured when the algorithm failed to converge in 100 iterations with

It was found that even a gentle softening of the stress/strain curve could result in g very
sudden failure of the slope when a critical value of N was reached. This might be expected in a
load controlled environment once some of the Gauss points start to soften. The stress redistri-
bution following softening of one or two Gauss points would throw & considerable burden of
shear stress on neighbouring points, which in their turn would soften, and so on. Ag indicated
by the graphs of N vs. maximum displacement Omax in Fig. 6, the softening slopes transformed
quickly from an entirely elastic condition to complete collapse: For the elastic—perfectly plastic
case (M = 0), a more gentle curve was observed but close agreement was still achieved with
Taylor’s [23] solution.

figures, the elastic displacements due to gravity loading were subtracted from the total dis-
placements (after 100 iterations) to leave the plastic displacements. The displacements at failure
for the case of M — 0 (i.e. perfect plasticity) are given in Fig. 7a, and a rather diffuse mechanism
Is apparent with the entire mesh moving down and to the right. The displacements at failure
for the case of M — (.95 (Fig. 7h), clearly demonstrate the concentration of shear deforma.-
tions along a quite narrow shear band following an approximately circular Path. A finer mesh

Further numerical studies on the hehaviour of softening soils are currently being performed
at Manchester University by the author and others (e.g. [24]). These studies will be reported
more fully at a later date.

7 Coneclusions

The paper has reviewed some important considerations in the computation of collapse loads in
geomechanics using finite element methods. The importance of the choice of failure criterion,
especially for cohesionless soils was emphasised. Two failure criteria based on carefully performed
triaxial tests were examined, and a range of uncertainty of up to 6° for triaxial extension stress
paths demonstrated.

Numerical examples of bearing capacity and slope stability involving a strain softening
material were presented using a simple Newton—Raphson iterative approach [18]. The bearing
capacity exercise confirmed that a large difference between the friction and dilation angles
should not be an obstacle to accurate collapse prediction using finite elements. The slope stability
example with a softening stress/strain curve, demonstrated that localisation in the form of a
zone of concentrated shear deformation can be modelled in certain problems without any trigger-
ing in the form of weak elements or the application of special displacement fields.

I7*
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A considerable variety of algorithms for collapse calculations are used by different workers.

Although usually leading to similar solutions, occasional diserepancies cause confusion and can
lead to erroneous conclusions. In the future, greater interchange and publishing of software is
to be encouraged. This should lead to significant algorithmic improvements as the best features
from different methods are combined.
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