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ABSTRACT

A simple procedure for accurate calculation of pore
pressures in undrained elasto-plastic materials is
described. An 8-node element is used, with ‘reduced’
integration during stress redistribution, and ‘full’
integration to form the global stiffness matrix for
the modified Newton—Raphson procedure. An
analysis of passive earth pressure in an undrained
soil is used to demonstrate the algorithm and
computed results are compared with a closed-form
solution.

INTRODUCTION

For two-phase saturated soil systems, a method
of including a nearly incompressible pore fluid is
used to introduce a large bulk modulus into the
effective elastic stress—strain matrix as suggested by
Naylor!?, ie. in 2-D (assuming symmetrical
matrices):
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where D is the ‘total” stress strain matrix, E', v' are
the effective eclastic properties, and K, is the
apparent fluid bulk modulus.

Addition of the bulk modulus K, into the effective
D’ matrix is equivalent to giving the composite
soil/fluid mixture the following ‘total’ elastic
properties:
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From (3), for large values of £, v— 1 and the
material approaches elastic incompressibility.

In an earlier study®, it was suggested that the
value:

Bps=20 (5)

was sufficient to give virtually incompressible
behaviour without any numerical difficulties. Using
this value of B, together with a typical effective
Poisson’s ratio v of 0.3, a total Poisson’s ratio v of
0.4951 is given from (3).

In the analysis of elasto-plastic soils, further
volumetric constraints are imposed by the plastic
flow rule. For example, if a dilation angle of zero
is prescribed, the material will yield with zero
volume change.

Accurate computation of pore pressures in
virtually incompressible materials such as undrained
soils, is a problem that has received much attention
in the finite element literature. Various computa-
tional devices have been proposed for overcoming
numerical difficulties associated with incompres-
sibility (see e.g. Hughes*).

In a typical modified Newton—Raphson iterative

scheme, two main integrations are required (see e.g.
Smith and Griffiths?),

(i) Formation of stiffness matrices

JJ B"DB dx dy (6)

where B is the element strain/displacement
relationship.
(ii) Stress redistribution

J‘J‘ B'6'7 dx dy (7

where ¢'? are the ‘plastic’ stresses.

Previous calculations® in which both integrations
(6) and (7) were performed using ‘reduced’
integration, led to stable stress calculation, but gave
pore pressures which tended to oscillate about the
correct solution. Naylor' suggested an averaging
process to overcome this difficulty.

Pore pressure Au is calculated from the relation:

Au=K,A¢® ®)
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Figure T Undrained passive earth pressure problem

where Ag” is the volumetric strain of the composite
material computed at the reduced integration Gauss
points. In general for a yielding soil, volume changes
will result from both elastic and plastic strains. For
a non-dilative soil with zero plastic volume change,
the volume changes can only originate from the
elastic stage of the stress—strain behaviour. As K,
(or 8,,) gets bigger, Ae"” gets smaller, but the product
tends to a constant within the limitations of the
computer accuracy.

In this paper, a form of selective integration with
8-node elements is proposed whereby the stiffness
integration of (6) is performed using ‘full’ (3 x 3)
integration, whereas the plastic stress redistribution
integration of (7) remains with ‘reduced’ (2x2)
integration. It will be shown that a considerable
improvement in the accuracy of the computed pore
pressure is obtained.

The assessment of accuracy in pore pressure
calculations is helped considerably if a closed form
solution is available for comparison. In the next
section a solution is presented for a passive earth
pressure problem involving undrained frictional
soil. This is followed by finite element solutions to
the same problem, where the performance of the
full/reduced integration scheme is demonstrated.

PASSIVE EARTH PRESSURE

Consider the case of a smooth vertical wall of height
H translated horizontally into a bed of undrained
soil as shown in Figure 1. The soil is assumed to
be saturated with properties defined by the following
parameters:

E',v" effective elastic properties,

K, apparent fluid bulk modulus,

@', ¢’ effective shear strength parameters,
Yy’ submerged unit weight,

K, ‘at rest’ earth pressure coefficient.

We wish to find the limiting effective passive force
P, and water force U on the wall at failure.
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It is assumed that the soil is cohesionless, and
that the stress paths followed by soil elements
adjacent to the wall take place at constant mean
effective stress. As shown in Figure 2, if K,< 1, the
stress path initially falls to the p’-axis as the element
passes through an isotropic stress state and
subsequently reaches the failure line, defined:
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where q=(o,—a;)/2 (10)
p'=(0o,+04)/2 (11)
and K,=tan?(45+¢'/2) (12)

Figure 2 has been made dimensionless by dividing
all stresses by the initial mean effective stress pj,.

Consider a typical element of soil, adjacent to the
wall which has fully consolidated under its own self
weight. The vertical and horizontal stresses acting
on the element are given by:

00=7y and  g,,=Kyy'y (13)

where y is the depth of the element below the top

of the wall. As the wall is translated into the soil o,
increases, but ¢, remains constant, hence at failure,

(Koy'y+Ac,;—Au,)= K,(yy—Au;) (14)

where Ao, =change in total horizontal stress at
failure, Au,=excess pore pressure at failure.

From elastic theory in plane strain, Ag,, and Au,
are related through the expression®:
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where f8, is the dimensionless parameter defined in
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Figure 2 Effective stress path for typical soil element
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Combining (14) and (15) and rearranging gives
the pore pressure at failure:

’.\IJ’.V(KE - K_O)ﬁps

YK, DB+ (e)
The effective stress at failure is given {rom:
Opp=0po+ Aoy, —Au, (17)
hence
VKK DB g

a
A (K,+1)f,+1

Both (16) and (18) give a triangular distribution
of effective stress and pore pressure behind the wall,
varying from zero at the surface to a maximum at
the base.

It follows that the net forces on the wall are given

by:

=12 A(KPKO).ﬁP:‘-_}

U=3'H [(Kp+1)ﬁps+1 (19)
: e (Ko+1)ﬁps+1}
and P,=37 Kpl:(Kp+1)ﬁps+l (20)

Rankine’s drained solution can be retrieved from
(19) and (20) as a special case, by letting f,,=0.

These equations form a basis for comparison with
finite element calculation as will be shown in the
next section.

COMPUTED RESULTS

In an earlier publication?, it was shown that good
agreement with (20) could be obtained using 8-node
elements with reduced integration throughout.

It was found that even with quite large values of
B, the finite element computations gave stable
effective stresses, but unstable pore pressures when
sampled at the reduced integration Gauss-points.

Unstable pore pressures imply unstable volumetric
strains, from (8). In a conventional displacement
finite element approach, therefore, the problem
must originate in the global stiffness matrix.
‘Reduced’ integration is commonly used in finite
element analysis of non-linear materials in order to
overcome the troublesome volumetric constraint

imposed by incompressible plastic flow. The
‘relaxation’ brought about by the ‘reduced’
integration, introduces small errors into the

volumetric strain energy approximation. These
errors, although small, are magnified by the ‘large’
fluid bulk modulus when the product given by (8)
is formed. Selective reduced integration techniques
such as those described by Hughes* would not help

matters, because the volumetric components of the
stiffness matrix remain under-integrated.

A compromise is therefore suggested, whereby the
global stiffness matrix is formed using exact
integration (i.e. 3 x 3), but ‘reduced’ integration is
retained for the plastic stress redistribution. As a
full modified Newton—Raphson iterative algorithm
1s used, this scheme represents very little additional
computation because the global stiffness matrix is
formed once only.

The mesh shown in Figure 3 was used to
demonstrate the effects of the two integration
schemes. Eight node quadrilateral elements were
used throughout, and the program mentioned
previously® was modified slightly to give the option
of using full integration in the stiffness matrix
formation. Only two lines of the program needed
to be changed.

The following soil properties were assigned to the
mesh:

¢'=30"
¢'=0
v' =10 kN/m?
K,=0.5and 1.0
E'=10° kN/m? Bps=52
wi=0.3 E=1.15x10° kN/m?
K, =100 F v=0.498

A condition of no plastic volume change was
enforced by letting the dilation angle equal zero.
The 2 m high wall was simulated by prescribing
equal horizontal displacement increments to the 9
nodes at the wall/soil interface.

After each displacement increment and con-
vergence of the algorithm, the horizontal effective
stresses and excess pore pressures were computed
at each of the 8 Gauss points closest to the wall

(Figure 3). The computed pore pressures and
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Figure 3 Mesh used for finite element analysis
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Figure 4 Comparison of computed and analytical pore pressures

effective stresses at failure for two different K, values
are summarized in Figures 4 and 5 respectively
together with the closed form solutions from (16)
and (18). A striking improvement in the computed
pore pressure response was obtained by using ‘full’
integration in the global stiffness matrix formulation.
The tendency for the computed pore pressure to fall
towards the base of the wall was due to the
singularity introduced by the displacement discon-
tinuity at the bottom of the fourth row of elements.
As expected, the effective stresses in Figure 5 were
not influenced by the order of integration, with both
cases agreeing closely with the analytical solution.
Similar behaviour regarding pore pressure
smoothing has also been observed by Li and
Griffiths® for rapid draw-down problems.

CONCLUSION

In the context of undrained analysis, whereby a large
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Figure 5 Comparison of computed and analytical effective stress

fluid bulk modulus is added into the soil effective
stress/strain matrix, a method of accurate pore
pressure calculation has been demonstrated. When
using 8-noded elements, a considerable improvement
in the computed pore pressures was observed when
the global stiffness matrix was formed using ‘full’
(3 x 3) integration as opposed to ‘reduced’ (2 x 2)
integration. This modification made little difference
to the runtimes, because the exactly integrated
global matrix was formed once only for the modified
Newton—Raphson procedure. The modification
made little difference to the effective stresses
nowever, which could be computed quite satisfac-
torily using ‘reduced’ integration throughout.
Although it is recommended that the global stiffness
matrix should be formed using ‘exact’ integration,
it is still suggested that ‘reduced’ integration be used
during plastic stress redistribution.
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Equation (1) in the paper is incorrect and should be as follows:

) (1-») v , 0 V: K. K. 0 K,

D - E v (l—y) 0 v 4 K. K. 0 K,
(1+2)(1 -2 0 0 (1-20")/2 0 0 0 0 o0
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