FAILURE CRITERIA INTERPRETATION BASED
ON MoHR-CouLoMB FRICTION

By D. V. Griffiths'

ABSTRACT: The use of numerical methods such as finite elements to make ac-
curate predictions of failure or collapse of geomaterials must utilize a suitable fail-
ure criterion that is able to represent the shear strength for all stress paths likely
to be encountered. The best-known failure criterion is that of Mohr-Coulomb, but
several others have been proposed. Using a dimensionless form of principal stress
space, this paper reviews some of these other criteria in a unified way by presenting
them in terms of the equivalent Mohr-Coulomb friction angle implied at various
locations on their periphery. Circular conical surfaces in stress space can greatly
overestimate the strength of soil for certain stress paths, and sometimes contain
singularities as implied by an equivalent friction angle of 90°. Noncircular conical
surfaces have also been considered. These give a more acceptable range of equiv-
alent friction angles, as they are based on actual test data. These “sophisticated”
criteria can still predict equivalent friction angles that differ from each other by
several degrees, however.

INTRODUCTION

Prediction of failure stresses for frictional soils has traditionally been based
on the Mohr-Coulomb criterion, which remains the most widely used in geo-
technical practice. The popularity of this model lies in its simplicity and
conservatism, where, for cohesionless soils, failure is indicated when the
principal stress ratio reaches a limiting value given by

R Ky vnon sm ol 505 4608 S00000 550 350 Suile smmne ot mimsy poote e oiste sinss Sonce stomiars s (1)
where
g,
R i v SR S B BUTEN T 50 B0 Y rss s et mretarss morce s aon (2)
a3
— 2 o ¢L"
K, = tan”{ 45° + E“ ............................................ 3

and ¢; = friction angle measured in triaxial compression.

For more advanced applications, especially in a computational environ-
ment, the Mohr-Coulomb criterion has been criticized on the grounds that
it takes no account of the intermediate principal stress o. It is well known,
for example, that the friction angle in plane strain can be several degrees
higher than its triaxially measured counterpart. The friction angle in triaxial
extension is also thought to be higher than in triaxial compression, although
the former is more sensitive to the experimental technique used to obtain it,
and is therefore less reliable.

The Mohr-Coulomb criterion, based on a strength test in triaxial compres-
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sion, is undoubtedly conservative, and partly for this reason, more realistic
failure criteria have been proposed, which take equal account of all three
principal stresses. A further objection to the Mohr-Coulomb criterion has
been made in relation to its shape in principal stress space, which takes the
form of an irregular hexagonal cone with its apex at the origin. The shape
of the surface and, particularly, the corners, leads to difficulties with certain
numerical algorithms. It turns out however, that this particular difficulty is
quite easily overcome by introducing a local rounding of the corners (Smith
and Griffiths 1988).

Another problem with the Mohr-Coulomb criterion occurs in multisurface
kinematic models (Mroz 1967; Prevost 1985), in which a set of similar nested
surfaces are used to model the yielding of soil from first loading through
failure. The straight sides of the Mohr-Coulomb surface in the deviatoric
planes would lead to ambiguity over the point of tangency when two surfaces
came into contact. Implementation of such models clearly requires the use
of smooth convex surfaces.

When using the finite element method in two or three dimensions to com-
pute collapse loads, the complex stress fields encountered have led analysts
to seck more general failure criteria [see e.g., Humpheson (1976), Vermeer
(1988), and Smith (1988)]. These criteria are broadly similar to Mohr-Cou-
lomb, except they usually take equal account of all three principal stresses.

The purpose of this paper is to review some of the failure criteria that
have been proposed as smooth alternatives to Mohr-Coulomb. The surfaces
are dealt with in a unified way by expressing them in terms of the equivalent
Mohr-Coulomb friction angle &,,.. The angle &,,. is defined as the angle of
friction of the Mohr-Coulomb surface that would pass through the particular
point under consideration. This approach enables direct comparisons to be
made between different failure criteria using a familiar soil mechanics pa-
rameter. It is shown that some criteria can lead to serious over- and under-
estimations of the actual strength of soil, whereas others even contain sin-
gularities for certain stress paths.

REvVIEW OF STRESS SPACE AND STRESS INVARIANTS

To study the general stress fields that occur in a complicated boundary
value problem, it is convenient to use principal stress space, which also leads
to a convenient geometric representation of various failure criteria. A stress
point in principal stress space can be defined using the following invariants
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FIG. 1. Dimensionless Principal Stress Space

From Eqs. 4-7, s represents the perpendicular distance of the deviatoric
plane containing the stress point from the origin, ¢ represents the radial dis-
tance of the stress point from the space diagonal, and 8 is the lode angle
giving an angular measure of position within the deviatoric plane. In this
context, the lode angle varies in the range

where 8 = —30° corresponds to triaxial extension, and 8 = 30° to triaxial
compression. It is often useful to nondimensionalize principal stress space
as shown in Fig. 1, by dividing all lengths by the invariant s leading to
normalized coordinates
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This overcomes any ambiguity over the sign convention, as it is recog-
nized that the majority of geotechnical engineers use a compression-positive
convention. Other invariants that will be used are the stress invariants, f,,
I3, I. For completeness these are defined in the following.
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MoHR-CouLomB ANGLE IN RELATION TO PRINCIPAL STRESS SPACE

The equivalent Mohr-Coulomb friction angle &,,. corresponding to a par-
ticular location in stress space, can be found from invariants L and 6. Due
to the comers on the Mohr-Coulomb surface, the general expression can be
written in the form

V3L cos 8 ]
V2 + Lsin 0

where, with reference to Fig. 1 and taking account of symmetry about the
o, /s axis:

¢y, = arcsin [

B =a + 60° =90 =< =30 ... ... i, (13a)
0= -« if =30 = a < +30°. ... (13b)
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CircuLAR ConicaL CRITERIA

These were among the earliest surfaces (Drucker and Prager 1952; Drucker
et al. 1957) suggested as being suitable for representing the strength of soils.
They project as circles in deviatoric planes, and are usually fitted exactly to
Mohr-Coulomb’s hexagon at certain locations on their circumference. Many
circular fits are possible (Humpheson 1976; Zienkiewicz et al. 1978), but
the three considered here are the limiting internal and external cones (Grif-
fiths 1986), and an anisotropic cone (Prevost 1985), of the type that has
been proposed in early versions of kinematic plasticity models for frictional
soil.

External Cone

Referring to Fig. 2, the external cone is fitted to the Mohr-Coulomb cri-
terion at the apexes of the hexagon corresponding to triaxial compression.
When viewed in a deviatoric plane the circle is centered at the origin with
a radius given by

. 2V2 sin !

where ¢, is the friction angle of the circumscribed Mohr-Coulomb surface.
Substituting L into Eq. 12 gives the following expression relating the equiv-
alent friction angle ¢, to the angular invariant 9.
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Due to the sixfold symmetry in stress space, this relationship is illustrated
in Fig. 3 over a 60° sector of principal stress space for three external cones
fitted to ¢. = 25° 30° and 36.87°. As expected ¢, = ¢! for triaxial
compression stress paths (6 = 30°), however, considerable overestimates of
strength can occur for other stress paths. For example, a cone fitted at ¢/
= 30° could predict an equivalent friction angle ¢, as high as 49.11° for a
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FIG. 2. Mohr-Coulomb with External and Internal Cones

stress path given by 8 = —23.58°, falling only slightly to 48.59° in triaxial
extension (8 = —30°). The well-known singularity (Bishop 1966) of this
surface is also shown in Fig. 3, which occurs when the cone is fitted to a
triaxial compression friction angle given by

de = aresin (0.6) = 36.87° .. ... .. (16)
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FIG. 3. Equivalent Friction Angle Variation for Three External Cones
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FIG. 4. Equivalent Friction Angle Variation for Three Internal Cones

In this case an infinite shear strength is predicted in triaxial extension as
indicated by ¢,,. = 90°. The external cone is clearly an unacceptable failure
surface for frictional soil.

Internal Cone

Referring to Fig. 2, the internal cone is internally tangent, and hence rep-
resents a lower-bound circular fit to the Mohr-Coulomb surface. This surface
will clearly predict equivalent friction angles that are less than or equal to
the that of the surrounding Mohr-Coulomb surface for all possible stress
paths. The radius of the internal cone as viewed in a deviatoric plane is given
by

V2 sin ¢/
(3 + sin?d)”?

where ¢, is the friction angle of the surrounding Mohr-Coulomb surface.
The point of tangency of the two surfaces is readily shown to occur at the
angular location given by (Griffiths 1986)

—sin ¢;]
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Substituting L into Eq. 12 gives the following expression relating the equiv-
alent friction angle &, to the angular invariant 6.
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Due to the sixfold symmetry in stress space, this relationship is illustrated
in Fig. 4 over a 60° sector for three internal cones fitted to &, = 20°, 30°,
and 40°. As expected, the maximum value of ;. occurs at a value of 0
given by Eq. 18. Although the internal cone will always give conservative
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estimates of soil strength, certain stress paths produce unacceptably pessi-
mistic predictions. For example, a cone internally tangent to Mohr-Coulomb
with ¢, = 40° would predict an equivalent friction angle as low as &,,. =
26.39° in triaxial compression (6 = 30°).

Anisotropic Cone

An anisotropic cone is shown in Fig. 5 relative to a typical Mohr-Coulomb
surface to which it might be fitted. This cone is symmetrical about the o,/
s axis, hence, due to the twofold symmetry, a 180° sector must be consid-
ered. It may also be noted that the use of this surface implies that the prin-
cipal stresses can be considered as completely independent coordinates, rather
than the usuval restriction in which

oyl = oo = [0 oo (20)

The cone is fitted to Mohr-Coulomb at the same friction angle ¢, in both
extension and compression along the o, /s axis, and intersects the hexagon
at two other locations on each side of the line of symmetry. The cone will
clearly overestimate the Mohr-Coulomb strength for the majority of stress
paths, but for some stress paths adjacent to the o,/s and o;/s axes, the cone
will actually underestimate the Mohr-Coulomb strength. As shown in Fig.
5, angular positions in the deviatoric plane are measured using the angle «,
which varies in the range *+90° and is defined as
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FIG. 6. Equivalent Friction Angle Variation for Three Anisotropic Cones

The radius of the circle is given by

6V2 sin ¢!
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and the distance of its center from the origin by
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Hence, the distance of the circumference of the circle from the origin can
be written as

L=bsina+ [rF— b cos®alV? .. . . . (26)

Substitution of L into Eq. 12, and noting the substitutions that are necessary
between o and 8, gives a function of the form

U A @7

This function is plotted in Fig. 6 for three anisotropic cones fitted to &,
= 20°, 30°, and 40°. It is clear that serious overestimations of strength are
possible. For example, a cone fitted to Mohr-Coulomb at ¢, = 40° would
predict an equivalent friction angle as high as 83.5° for a stress path given
by a = 39.7°. As with the external cone, a singularity occurs (Griffiths and
Prevost 1988) in the function described by Eq. 27 giving an equivalent fric-
tion angle of 90°. This situation arises when

bf = arcsin (V7 — 2) = 40.22° . oo (28)
and
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SMOOTH APPROXIMATIONS TO MoHR-CouLOMB

Although simple geometrically, the circular cones have given very poor
representations of soil strength. A more rational approach is to find a failure
criterion without corners, based on shear-strength data obtained from a true
triaxial device. Two such surfaces are now considered, both of which are
supported by experimental evidence produced by their authors.

Lade and Duncan Failare Criterion

This surface, shown in Fig. 7, coincides with Mohr-Coulomb in triaxial
compression, but runs outside the hexagon for all other stress paths. The
criterion is expressed in invariant form as follows.

L K (30)
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As before, because of the sixfold symmetry, only a 60° sector needs to
be considered. By substituting for /; and I, from Eq. 11, and replacing o,
by the following expression in terms of o,, o5 and 0
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FIG. 7. Lade and Duncan, and Matsuoka and Nakai Surfaces in Relation to Mohr-
Coulomb (¢, = 30°%)
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FIG. 8. Equivalent Friction Angle Variation for Three Lade Surfaces
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rearrangements lead to a cubic in terms of the Mohr-Coulomb stress ratio at
failure R (Egs. 1-3), thus

g+ aR + @R+ R =0 o (33)
where

=27 +27V3tan 0 + 27 tan’0 + 3V3tan’0. . ................... (34a)
a; = (81 — 4K;) — V3(4K, — 27)tan § — 27 tan® — 9V3 tan’9. ... ... (34b)
a, = (81 — 4K,) + V3K, — 27)tan 6 — 27 tan®d + 9V3 tan’d. . ... .. (34¢)
a; = 27 — 27V3 tan 6 + 27 tan®0 — 3V3tan’0. ... (34d)

By choosing a value of &, which fixes K;, the cubic can be solved for R
over the range —30° = 6 =< 30°. It may be noted that every time the cubic
is solved, only one of the three roots is relevant. When this root is found,
the equivalent friction angle &, is easily back-figured from Eq. 35, thus

ik = DTN IR = 907 wn wns wopoien s wovmsas A% Sans DTS MR R DS B (35)

The variation of &, with 8 is shown in Fig. 8 for three Lade surfaces
corresponding to ¢, = 20°, 30°, and 40°. As expected, the surfaces coincide
with Mohr-Coulomb when 6 = 30°, but run outside it for all other stress
paths. For example, when the Lade surface is fitted to Mohr-Coulomb at &,
= 40°, a maximum equivalent friction angle of 48.9° is reached at 6 = 0°,
falling to 46.2° in triaxial extension (8 = —30°).

Matsuoka and Nakai (1974) Failure Criterion
This surface, also shown in Fig. 7, coincides with Mohr-Coulomb at all
apexes corresponding to triaxial extension and compression. The relationship
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FIG. 9. Equivalent Friction Angle Variation for Three Matsuoka and Nakai Sur-
faces

between this surface and Mohr-Coulomb is analogous to that between von-
Mises and Tresca. The criterion is expressed in invariant form as follows.

LI,
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By substitution of 1,, I, I5, and o, from Eqs. 11 and 32, a cubic of the type
given in Eq. 33 is obtained, but with the rather simpler coefficients given

by

G =3+4V3tan 0 +3tan®0 . ... ... (38a)
a, = (15 = 2Kyy) — 2V3(Kyy — 3tan 0 — 3tan®0 .. ............... (38b)
a, = (15— 2Kyw) + 2V3(Kyy — NDtan 6 —3tan®0 .. ............... (38¢)
@G =3 —4V3tan 0 + 31’0 .. (384)

By choosing a value of ¢/, that fixes K, the cubic can be solved for R
in the range —30° = 6§ = 30° and the equivalent friction angle back-figured
from Eq. 35. Typical values are shown in Fig. 9 for three Matsuoka Nakai
surfaces corresponding to &, = 20°, 30°, and 40°. As expected, the surfaces
coincide with Mohr-Coulomb in both triaxial positions (6 = +30°) and reach
a maximum at an intermediate location. For example, if the Matsuoka Nakai
surface is fitted to Mohr-Coulomb at ¢, = 40°, a maximum equivalent fric-
tion angle of 44.93° is reached at 6 = 13°.

Not only is this surface more conservative than Lade’s for all stress paths,
but the maximum value of ¢, occurs at a different location. In the Lade

996



max=48,9°

507 Lade o / -
N e,

45 —45°

Matsuoka / Nakai

40

\ i T
-30° ~20° -10° 0° 10° 8 20° 30°
FIG. 10. Lade and Duncan, and Matsuoka and Nakai Surfaces Fitted at (¢, = 40°)

surface, the maximum always occurs at § = 0°, whereas in the Matsuoka
Nakai surface, the maximum depends on ¢;. For comparison, both surfaces
corresponding to &, = 40° are shown together in Fig. 10. It can be noted
from this figure that even these sophisticated surfaces predict equivalent Mohr-
Coulomb friction angles that differ by as much as 6° in triaxial extension.
To put this in perspective, under plane strain conditions a change in the
friction angle of 4° from 44° to 48° causes the predicted bearing capacity of
a strip footing to increase by a factor of three (Lambe and Whitman 1969)!

CONCLUSIONS

A unified approach to the portrayal of failure criteria for cohesionless soils
has been presented. The method has enabled various failure criteria to be
expressed in terms of an equivalent Mohr-Coulomb friction angle varying
as a function of the angular invariant. This approach has been used so that
some of the failure criteria currently being used in finite element analyses
of boundary value problems can be interpreted in terms of the familiar Mohr-
Coulomb friction angle. A convenient form of dimensionless principal stress
space has been used to illustrate the differences between the criteria.

Circular conical surfaces, although convenient geometrically, were shown
to contain singularities and lead to considerable variations in predicted soil
strength, depending on the stress path followed.

Noncircular conical approximations to Mohr-Coulomb were also consid-
ered. These surfaces are preferred, as they are based on actual soil data.
However, their interpretation in terms of a friction angle requires the solution
of cubic equations. It was noted that even the sophisticated surfaces based
on carefully conducted triaxial tests could differ by several degrees when so
interpreted. Such differences in the case of a bearing-capacity problem could
lead to predictions differing by up to a factor of three for surfaces fitted to
Mohr-Coulomb at 40°.

For analyses involving materials whose friction angles lie in this range,
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the Mohr-Coulomb criterion remains attractive on the grounds of its sim-
plicity and conservatism.
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AppenDIX Il. NOTATION

The following symbols are used in this paper:

do,-..a; = coefficients in cubic expressions;
b = distance of circle center from origin;
I,...Iy = stress invariants;
K; = constant associated with Lade and Duncan criterion;
Kyuny = constant associated with Matsuoka and Nakai criterion;
K, = passive earth pressure coefficient;
L = dimensionless shear stress level (z/s);
R = oprincipal stress ratio at failure (o,/03);
r = radius of circle;
§ = mean stress invariant;
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shear-stress invariant;

Cartesian coordinates;

angular measure in stress space;

lode angle;

principal stresses;

friction angle in triaxial compression; and
equivalent Mohr-Coulomb friction angle.
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