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Abstract—Finite element analyses in both structural and geotechnical applications sometimes require the
freedom directions at certain nodes to differ from the global Cartesian directions. Examples of this include
modelling of oblique interface behaviour and implementation of ‘skew’ boundary conditions. A simple
method is described for performing the transformations at the element level, and a FORTRAN 77

subroutine is included to perform the operations.

1. INTRODUCTION

The boundary conditions incorporated in finite
element analyses in both structural and geotechnical
applications often require ‘rollers’ in the x- or
y-directions (in two dimensions). These particular
conditions usually imply smooth boundaries or lines
of symmetry and are a standard feature in the
majority of finite element software.

This paper is concerned with cases in which the
freedom directions at certain nodes are to differ from
the global Cartesian coordinate directions. Analyses
where this is necessary include the implementation of
‘skew’ boundary conditions, such as the inclined
‘roller’ shown in Fig. 1. Another case is shown in
Fig. 2 where a smooth interface is to be modelled
between a stiff wedge and a soil stratum. In this case,
the freedoms at the nodes along the interface are
transformed so that they are parallel and perpen-
dicular to the interface direction. By uncoupling the
freedoms in the parallel directions on each side of the
interface, smooth conditions can be reproduced.

general. If the transformations are performed at the
global level, the same principles will apply but ac-
count will have to be taken of the storage strategy
(e.g. banding, skyline).

The present work is limited to two-dimensional
analyses, but will be relevant to any applications
using planar, axisymmetric, beam—column or truss
elements (see e.g. [1]).

2. ELEMENT STIFFNESS MATRIX TRANSFORMATION

In order to develop the equations, the specific
example of a four-node planar element is considered.
In a regular two-dimensional analysis, this element
has eight degrees of freedom (four x- and four
y-displacements) and would yield an 8 by 8§
element stiffness matrix. Figure 3a shows a four-node
element with its local nodal numbering system
which counts in a clockwise sense. The stiffness
relationship for this element would have the form of
eqn (1)
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In order to achieve these transformations, the
stiffness matrix of the system must be modified
to account for the new freedom directions at the
required nodes. These operations can be performed at
either the global or local levels. In this paper, the local
level is chosen because it is more simple and more

where
k;; = stiffness coefficients
F,, = force in the x-direction at node 1
F., = force in the y-direction at node 2
u, = displacement in the x-direction at node 1
v, = displacement in the y-direction at node 2, etc.
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Fig. 1. Skew boundary condition.

Equation (1) relates forces to displacements at each
node resolved into x- and y-components; however,
the actual nodal force or displacement vector could
be resolved in any two orthogonal components.

Consider (Fig. 3b) the same four-noded element,
but with the displacement at node 4 resolved into
inclined x’- and y’-components as shown. The
notation used here signifies transformed displace-
ments and forces with a bar over the symbol, e.g. &,
F,,, etc. Equation (1) may now be rewritten in the
form
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Fig. 3. Conventional (a) and modified (b) displacement
directions.

expressed in terms of the modified components
(4, 7,) and the transformation angle o.

From Fig. 4, it can be seen that transformed and
untransformed displacement components are related
through the expressions
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with a sign convention given by the arrowheads,
which always point in the positive direction.
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where

k ;= modified stiffness coefficients
F,, = force in the x’-direction at node 4
F,,=force in the y’-direction at node 4, etc.

To compute the modified stiffness coefficients, the
original displacement components (u,,v,) must be
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Fig. 2. Modelling of smooth inclined interface.

By comparing eqns (1) and (2), and noting that a
similar relationship to that given by eqns (3) exists for
forces, it is readily shown that the transformed
stiffness terms are given by
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and 4
kg =kiy = sin a cos a(kes — ky7) + kpgcos 2a (5)
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Fig. 4. Sign convention for nodal displacements and
rotation.
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3. GENERAL FORMULATION

The example given above was for the specific case
where the 7th and 8th displacements were trans-
formed. In general we may wish the transformation
to apply to other nodes, or even several nodes in the
element.

Consider a finite element with » degrees of
freedom in which consecutive freedoms & and / are
to be rotated by a given angle «. The terms in the
stiffness relationship that will be affected by this
transformation are enclosed by the lines in eqn (8)

1011

4. ASSEMBLY OF TRANSFORMED ELEMENT MATRICES

Figure 5 shows two attached elements requiring
skew boundary conditions with an inclination of « at
nodes 4 and 6 in the global numbering system. Local
level transformations are therefore required to node
4 in element 1, and to nodes 1 and 4 in element 2.

Figure 6 shows an element with skew boundary
conditions on two sides. In this case the global and
local node numbers are the same, so 30° transform-
ations are required to both nodes 2 and 4. In cases
where more than one node in an element requires
transformation, it is not important in which order
this is done.

After transformation of the element matrices, they
are then assembled into the global stiffness matrix. If
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A general statement of the transformed stiffness
terms can be written as
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global node
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Fig. 5. Transformed node attached to more than one
element.

a skew boundary condition is required, it can be
treated in exactly the same way as oridinary ‘rollers’
in the x- or y-directions, namely the terms corre-
sponding to the zero displacement boundary con-
dition are ignored in the assembly process. After
solution of the equilibrium equations, the remaining
non-zero displacement obtained at the skew ‘roller’
represents the distance moved up (or down) the
incline.

5. TRANSFORMATION SUBROUTINE

The subroutine SKEW takes the untransformed
element stiffness matrix and modifies those terms

Fig. 6. Element with two nodal transformations.
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affected by a displacement rotation at a given node
through a given angle. The coding follows the deriva-
tions of eqns (9)—(12), and deals with one node at a
time. Hence, if more than one node in a particular
element requires transformation, the subroutine must
be called a corresponding number of times.

Subroutine arguments:

KM untransformed element stiffness matrix on
input, overwritten by transformed matrix
on output.

IKM number of rows of KM as declared at the
top of the main program.

NOD number of nodes in the element.

NODOF number of degrees of freedom per node.

NS node number (at the element level) requir-
ing transformation.

ALP angle of rotation in degrees 0 < « < 180°.
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6. CONCLUDING REMARKS

A simple method for transforming freedom direc-
tions at the element level has been described, and a
FORTRAN 77 subroutine to perform the operations
presented. The subroutine can be easily incorporated
in two-dimensional finite element programs which
seek to model skew boundary conditions or inclined
interface behaviour. The subroutine is directly
applicable to structural analysis involving truss
or beam—column elements, and to any planar or
axisymmetric analysis in solid mechanics.
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SUBROUTINE SKEW(KM,IKM,NOD,NODOF,NS,ALP)

aoQaoa

REAL KM(IKM,*)
PI=4.*ATAN(1.)
XYZ=ALP*PI/180.
CALP=COS (XYZ)
SALP=SIN(XYZ)
N1=(NS—-1) *NODOF+1
N2=N1+1
IDOF=NOD*NODOF
Do 1 I=1,IDOF

IF{I.EQ.N1.OR.I.EQ.N2)GOTO 1

THIS SUBROUTINE TRANSFORMS THE ELEMENT STIFFNESS MATRIX
TO ACCOUNT FOR FREEDOM ROTATIONS

KM(I,N1)=KM(I,N1)*CALP+KM(I,N2)*SALP
KM(I,N2)=-KM(N1,I)*SALP+KM(I,N2)*CALP

KM(N1,I)=KM(I,N1)
KM(N2,I)=KM(I,N2)

1 CONTINUE
Z1=KM(N1,N1)
Z2=KM(N1,N2)
Z3=KM(N2,N2)
Z4=2,*Z2*SALP*CALP

KM(N1,N1)=Z1*CALP*CALP+Z4+Z3*SALP*SALP
KM(N1,N2)=SALP*CALP* (-Z1+%3)+Z2* (CALP*CALP-SALP*SALP)
KM(N2,N2)=21*SALP*SALP—Z4+%3*CALP*CALP

KM (N2,N1)=KM(N1,N2)
RETURN
END



