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SUMMARY

A simple hyperbolic function is often used to illustrate typical stress—strain behaviour of geomaterials during
monotonic loading. This approach has the disadvantage that the failure condition is approached
asymptotically, whereas in reality failure must occur at a finite value of strain. A modified hyperbolic function
with one adjustable parameter is proposed in this paper. The function is shown to be capable of spanning all
likely soil stress—strain data up to and including peak strength.

INTRODUCTION

Recent constitutive soil models, especially those involving multisurface plasticity’—* require
stress—strain curves, typically obtained from triaxial tests, in order to generate the parameters
associated with each yield surface. If such models are to be implemented in finite element codes for
the solution of complex boundary value problems,* a great many stress—strain curves are required
corresponding to each element or even Gauss point within the mesh. When dealing with frictional
soils, where confinement has a big influence on stiffness and strength, it is impractical for detailed
laboratory data to be available for all locations. In such cases, it becomes necessary to generate
stress—strain curves automatically using some mathematical function relating stress to strain. The
minimum amount of information required to generate such a curve comprises (i) the initial
gradient, and (ii) the stress and strain levels at failure. Clearly the shear stress to cause failure in a
‘Mohr—-Coulomb’ material and the initial gradient will both depend on the confining pressure (see
Appendix).

The best known and most widely used function is a hyperbola,® which has been applied to some
quite complex soil deformation problems, most notably by Duncan and Chang.® The simple
hyperbola has the disadvantage that it is not able to model failure very realistically. This is
because, if the function is forced to pass through a particular point corresponding to the nominal
failure stress and strain, the asymptote may be considerably greater than the true failure stress
level. This has prompted the authors to consider alternative functions for describing typical shear
stress/shear-strain curves for soil from first loading through to failure. The effect of shear stresses
on volumetric strains is not considered in this paper.
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CURVE GENERATION: GENERAL CONSIDERATIONS

A curve is to be generated relating g and & where these are the principal stress and strain
differences defined as
4=0,—03 (1)

E=g,—8&; (2)

For monotonic loading with no softening the function g(¢) must satisfy the following
conditions:

) 4(0)=40
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(v) £>0 andﬁf<0 for 0<i<iy,
where g, is the initial value of g, allowing for the possibility of anisotropic initial stress conditions,
G, is the initial shear modulus, &,), is the strain value when failure is reached and g, is the stress
value at failure (see Appendix). Conditions (i) to (iv) give two points through which the curve must
pass together with the corresponding gradients. Condition (v) merely states that the curve must be

smooth with no points of inflexion.

REVIEW OF THE SIMPLE HYPERBOLA

The basic curve has the equation

£
LI
2Gy  (qu—40)

q= +40 ©)

which immediately satisfies conditions (i), (ii) and (v), but as the function is asymptotic to gy,
conditions (iii) and (iv) are not satisfied.

If the hyperbola is forced to pass through a ‘failure’ point with co-ordinates (€, g,;), thus
satisfying condition (iii), the modified curve will tend to a new asymptote g, given by

P‘u
qda= (qul( - qO) !
Tl Gui— 490

ult 260

+4o (4)

where g, > qy,,.

Such a curve will always be capable of overestimating the failure stress g, as shown in Figure 1.
A horizontal cut-off line could be introduced at g, but this would have the undesirable effect of
introducing a discontinuity.
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Figure 1. Hyperbolic stress-strain curve, equation (3)
MODIFIED HYPERBOLIC FUNCTION
A modified hyperbolic function is proposed with the equation
8 g a [ gte 4 )
T e Mot e B 140 D
where
q
41 6
a 26, (6)

and ¢, is a reference stress which depends on the curve-fitting parameter o.

Inspection of equation (5) and its derivatives indicates that conditions (i), (i), (iv) and (v) are
satisfied provided that o and g, are both positive. In order to satisfy condition (iii), we make the
substitution £=¢,, and solve for q, to give

b b (que—d0) M2
fauao-E] s msT)

q,= Fix (7

(qun—%)—m

where
b=2G,&,, (8)

In order for g, to remain positive it is readily shown that & must be chosen according to the
following criteria:

(Gu—a0) _1
Ifo<———<— 0
<3 Gotn, ~ @ then o> (9)
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Figure 2. Range of permissible values of « for modified hyperbola
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Conditions (9), (10) and (11) are summarized in Figure 2. In order to use this method, the
following sequence could be followed:

(a) compute (qu—4go)/2G o8

(b) choose a according to condition (9), (10) or (11)

(c) compute g, from equation (7)

(d) compute the relationship between ¢ and z from equation (5).

The value of o chosen at step (b) gives a small amount of control over the shape of the curve
between the initial tangent and the failure point where the curve flattens out. In general, small
values of o concentrate the changes in gradient towards &,;, whereas larger values of  concentrate
the changes in gradient near the origin, as indicated in Figure 3. Further examination of «
however, shows that this parameter has no significant effect on the characteristics of the
stress—strain curve. It is therefore recommended that at stage (b), the parameter a is chosen to take
the value

1
a=114— -1 12
{1 _(Quh*qo) } ( )
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Figure 3. Modified hyperbolic functions, equation (5)
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Figure 4. Modified hyperbola with a range of initial gradients
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which satisfies all of conditions (9), (10) and (11). Using this value of o, and assuming g,=0, a
number of curves are plotted in Figure 4. The number shown against each of the curves is the
initial stiffness ratio g,,/(2Go&,), which can be varied in the range 0 to 1. Clearly, the curves of
Figure 4 span all likely soil test data up to and including peak strength.

CONCLUDING REMARKS

The popular hyperbola for representing shear stress—strain behaviour of soil has been reviewed,
and shown to be restrictive owing to the lack of control over the asymptote. It appeared that under
some circumstances the failure stress could be considerably overestimated. A modified hyperbolic
function with one fixed parameter has been proposed, and is shown to be quite versatile, having all
the necessary features of a soil stress—strain curve up to failure.
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APPENDIX
Definitions
7 effective mean stress (o', + o5 + ¢3)/3
q principal stress difference (o) —d%).
Pos o initial values of p" and ¢
o, effective friction angle in triaxial compression
b’ effective friction angle in triaxial extension
c effective cohesion
s effective stress path (dp’/dg)
din q at failure in triaxial compression
Ao g at failure in triaxial extension
K, passive earth pressure coeflicient (tan? (45° + ¢'/2))

Assuming that ¢} > 07, and that the material has a shear strength given by the Mohr—Coulomb
criterion,
oy =03K,+2¢ /K, (13)

we wish to find g, under triaxial conditions given

(i) initial stress py, g,
(ii) shear strength ¢, ¢’
(iii) stress path s

Triaxial compression (q positive)

g=(d7—0%) (14)
P'=(0+204)/3 (15)

Hence
o1=(3p'+2q)/3 (16)

a3=(3p'—q)/3 (17)
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Substitution into (13) gives the equation of the failure line, i..

3(1(;*1) ,+6c’\/K1‘;
K:+2 K242

Accounting for initial stress conditions and stress path, we obtain

o _ 3K —1)(po—go5)+6¢'/KS
Bl Ko+2—3s(Ko—1)

Triaxial extension (q negative)
g=—(0)—0%)
P'=(20+0%)/3
Hence
7, =(3p'—q)/3

o3=(3p"+29)/3
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Figure 5. Failure lines and stress path in a triaxial plane
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Substitution into (13) gives the equation of the failure line, i.e.

(Ke—1) , 6¢ /K

=_3 = 2
=7k +1? T2Ks+ 1 )
Accounting for initial stress conditions and stress path, we obtain
& __3(K;—1)(PEJ"‘QOS)_6C’V K; (25)

T R 1+ 35K — 1)

It should be noted from equations (18) and (24) that the compression and extension failure lines
are not symmetrical about the p’-axis, and do not in general meet on the axis unless ¢'=0 or
¢.=¢.. Figure 5 shows a typical plot in the triaxial plane for the case ¢, = ¢, =30°.
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