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SUMMARY

Sampling points and weighting coefficients of the Gaussian type are presented for integrands typically
encountered in axisymmetric finite elements. The proposed method is a generalization of Gaussian
Integration of Moments for non-zero limits of integration. The method achieves one extra order of accuracy
in the integration of polynomials as compared with the Gauss—Legendre method with the same number of
sampling points. Although the locations of sampling points require the solution of non-linear equations,
analytical solutions are presented for the cases of one and two sampling points. Special cases of these general
expressions are shown to include both Gauss—Legendre integration corresponding to an integration range at
a considerable distance from the axis of symmetry, and Fishman integration corresponding to an integration
range whose lower limit lies on the axis of symmetry.

INTRODUCTION

Integration of finite element matrices in axisymmetry frequently involves evaluation of ex-
pressions of the form:

re
j rf(r)dr (0
ro
where r is the radial distance from the axis of symmetry.

The best known example of this type in axisymmetric elasticity is the formation of the element
stiffness matrix (see e.g. Zienkiewicz and Taylor?):

K, = ([ B/ DB;rdrdz 2

where r and z are the radial and axial co-ordinates, K° is the element stiffness matrix, B is the
axisymmetric strain/displacement matrix and D is the constitutive matrix. In axisymmetric
elasticity, the B matrix depends on its radial co-ordinate with 1/r terms appearing in the stiffness
formulation. Owing to the appearance of these reciprocal terms, the axisymmetric stiffness matrix
cannot be integrated exactly using conventional quadrature.

This paper considers numerical integration formulae suitable for evaluating expressions of the
type given in equation (1). The aim is to find the radial sampling points and weighting coefficients
such that accuracy is optimized. Advantage will be taken of the fact that r always appears
explicitly in the integrand.
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130 D. V. GRIFFITHS

In contrast to Gauss—Legendre quadrature, it will be shown that this can be achieved by
locating the sampling points non-symmetrically about the centre of the range of integration.

INTEGRATION OF MOMENTS

Sampling points and weighting coefficients for integrands of the type

jlrf(r)drz
0 i

have been published! under the heading Gaussian Integration of Moments. Fishman’s formulae
assume limits of integration of [0, 1], whereas in the present work, these formulae are extended to
cover general limits of integration [ro, 7, ], as indicated by equation (1), but in the modified form

jrf(r ~ 3 Winf ) @

where the new weighting coefficients are equivalent to those given by Fishman divided by the
corresponding sampling point, i.e.

1=

wi f(r) (3)

1

]

Wo="" forall i=12...,n )

i
This rearrangement leads to a more general formulation as will be shown, and is also more

convenient for implementation in finite element codes such as those published by Smith and
Griffiths.?

CALCULATION OF SAMPLING POINTS AND WEIGHTS

It is readily shown that the locations of the sampling points are given as the roots of a family of
orthogonal polynomials. The order of the polynomial depends on the number of sampling points
required.

In the case of n sampling points, we define the following polynomial whose roots will be the
required sampling points:

G, () =ay+a,;r+ari+ - a4 6)

We then perform analytical integration on the following expressions, equating the result in each

case to zero:
rr
j rG,(r)dr=0
ro

™

rr
Jﬂ@@@:n

o

leading to n linear equations in the unknown coefficients a, a;, 43, ...,4,-,. Once these
coefficients are found, the polynomial G,(r) is defined and its roots can be estimated using any
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suitable numerical method. Analytical solutions for the roots of G, (r) are readily found only for n
equal to one or two, and these are described in subsequent sections.

Having found the roots of G,(r) (ie. #,,7,,...,r,), the corresponding weighting coefficients
(le. Wy, Wy, ..., W,) are found by solving the set of linear equations

1
Wirit Wara & o + War, = (3 — 1)
1
Wi+ Word+ -+ + Wars =303 =13)
)

1

Wil + Wary 4+ - 4 W,rth=
n+1

(5t =t

The results of applying this method to the cases where n = 1,2 and 3 are now described below.

One-point formula (global)

The polynomial is of the form

GinN=ay+r 9)
where
202 + ror, + 132
B — (f ofy 5) (10)
3y + 7o)
leading to a sampling point and weighting coefficient given by
2 2 2
)= (rs +rory +13) (11

S(rf + ro)
and

W, = 3y —ro)ry + 1) (12
47 +rpro +r2)

Two-point formula (global)

The polynomial is of the form

Gy(r)=ay + a;r+r? (13)
where
G 3(rf + 4r}r02+ 10r}rg + 42rfr3 +r8) (14)
10(rf + 4r,ro + 13)
and
4 = m6(rf+r0)(r}+3rfr0+r§) (15)

50} + 4rprg + 1)
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leading to sampling points and weighting coefficients given by

3(,/6D + F./B)

Fi, 1y = 16
sk 5./6E e}
and
5(3,/6/BC +24)
Wi, W, = (17
36(,/6./BD + FB)
where
A=1$+9r3r, + Irfry — 38131 + IrFrd + 9rprg + 1§
B =7% + 10r}rg + 28r5r3 + 10r,13 + 15
C=r}+drjro —4rpg — 13
(18)

D=r}+4rkrg + drprg + 13
E=r%+4rmry+r1d

F=r;—rp

Three-point formula (global)

The analytical expressions are becoming very messy, so for the three-point formula only the
polynomial coefficients are provided. The polynomial is of the form

G3(r) = ap + a7 + a,r* + 13 (19)
where
4(rS + 9riry + 45rhrd + 65r3rd + 45r2r% + 9rpry + 1§
U &= — ff f £ J i S (20)
0 35(r% + 8rpro + 13)(r; + 1)
4 = 6(r% + 5rpro + 13)(rf + 3rpro + 13) Q1)
5 703 + 8rpro +13)
and
12 4 9 3 s 15 2.2 9 3 e 4
ay = — (rf + rfro rfro + ?‘fl‘o 1‘0) (22)

7(rf A= ?‘0)(?‘?« + Srfro + r%)

and a suitable numerical technique can be used to find the roots of G4(r).

NORMALIZATION

A further refinement to the weights and sampling points described here is to normalize them with
respect to a local radial co-ordinate system varying between - 1and + 1. This is the local co-
ordinate system used in many finite element codes involving quadrilateral finite elements, and is
particularly convenient for Gauss—Legendre quadrature in which the weight and sampling points
are symmetrical about the mid point of the element.

This transformation leads to local sampling points given by

(ri — (ry +10)/2)

e N TE

forall i=1,2,...,n (23)
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and local weighting coefficients given by
W.

H=——H—— foralli=1,2,...,n 24

(rf —ro)/2 (24)

One of the advantages of this normalization process is that the local weights and sampling points
can be expressed in dimensionless form in terms of the ratio of the global limits of integration r,
and r, where

7
R=-=2 (25)

Tr
With reference to the analytical expressions obtained in the previous section, the weights and

sampling points in local co-ordinates are now obtained for the cases where n=1 and 2.
Numerical solutions are also provided for the case where n = 3.

One-point formula (local)
The local sampling point is given by
1-R

) o
and the local weighting coefficient by
3(1 + R)?
( ) @

'T21+ R+ RY

The generality of these expressions is demonstrated by considering limiting cases of R. As the
lower limit of integration r, approaches the axis of symmetry, the ratio R tends to zero, and the
local sampling point and weight from equations (26) and (27) take the values

¢1

X
s

(28)

and
H,

&
o

(29)

Reverting to limits of integration in the range [0, 1], the global sampling point and weighting
coefficient become

rr2 (30)
and
W,y~3 hence w;~1 (31)

which are identical to the Fishman values for one sampling point with limits of integration [0, 1].

Alternatively, at a considerable distance from the axis of symmetry, the effects of axisymmetry
become negligible, the ratio R tends to unity, and the local sampling point and weight from
equations (26) and (27) take the values

€1 ~0 (32)

and
H =~ (33)

which are identical to the Gauss—Legendre values for one sampling point with limits of
integration [ — 1, 1].
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The variations of &, and H, in the range 0 < R < 1 for one-point integration are given in
Table I and shown graphically in Figure 1.

Two-point formula (local)

The local sampling points are given by

6
s 2ROV

(34)
and the local weighting coefficients by
125./6a*
Hy,H;= . (35)
18[4./6bc + 3de/c]

where

a=1+4R + R?

b=2+ 10R + 21R* + 10R® + 2R*

c=1+ 10R + 28R? + 10R?® + R* (36)

d =14 10R + 38R? + 10R® + R*

e=1—R?

Considering the same limiting values of R discussed in the previous section, when the ratio R

0.9 0.9
|
0.8 0.8 !
1
1
0.7 0.7 :
|
0.6 0.6 [
1
|
0.5 0.5 |
]
0.4 0.4 1
1
0.3 0.3 Hy ‘E
(3}
|
0.2 0.2 [
[
0.1 0.1 '
- |
1
S + ) 0.0 ! } + }
L H
-0.8 -0.4 0.0 0,4 0.8 5 ) L7 1.8 ] 2.0

Figure 1. Sampling point £ and weighting coefficient H vs. ratio R = r/r, (one-point integration)



Table I. One-point integration (n = 1)

R ¢, : H,
0-00 0-333333 1-500000
002 0320261 1-529400
004 0307692 1557604
006 0-295597 1-584618
0-08 0-283951 1-610457
0-10 0272727 1-635135
0-12 0261905 1:658674
0-14 0251462 1-681097
0-16 0241379 1702429
0-18 0231638 1722699
0-20 0222222 1741935
022 0-213115 1:760170
0-24 0-204301 1777435
026 0-195767 1793763
028 0-187500 1-809187
030 0-179487 1-823741
0-32 0171717 1837458
034 0-164179 1-850371
0-36 0-156863 1-862513
0-38 0-149758 1-873918
0-40 0142857 1-884615
0-42 0136150 1-894638
0-44 0129630 1-:904016
046 0123288 1912778
0-48 0117117 1920954
0-50 0111111 1928571
0-52 0-105263 1935657
0-54 0-099567 1-942236
0-56 0-094017 1-948335
0-58 0-088608 1:953976
0-60 0-083333 1959184
0-62 0-078189 1963979
0-64 0-073171 1-968384
0-66 0-068273 1972418
0-68 0-063492 1-976102
0-70 0-058824 1-979452
072 0054264 1-982487
074 0-049808 1-985225
076 0045455 1-987680
078 0041199 1-989868
0-80 0037037 1-991803
0-82 0032967 1-993500
0-84 0028986 1-994972
0-86 0-025090 1-996230
0-88 0021277 1997288
0-90 0-017544 1-998155
092 (0-013889 1-998843
094 0-010309 1:999363
096 0-006803 1999722
098 0-003367 1999932
1-00 0-000000 2-000000

R =ryfr;

ry= ("f +70)/2 + éz("f —710)/2

} foralli=1,2,..,
W, = Hi(rf —ro)f2
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tends to zero, the local sampling points and weights from equations (34) and (35) take the values

14 /6
51962 =~ *5‘\4 (37)
and
125./6
ATV AL (38)
18(8./6 + 3)

Reverting to limits of integration in the range [0, 1], the global sampling points and weighting
coefficients become
6 +./6

10

it &

(39)

and

12

Wlswzzﬁ_ hence Wl’wzgw
36(8./6 + 3) 12(8./6 + 3)

which are identical to the Fishman values for two sampling point with limits of integration [0, 1].

When the ratio R tends to unity, the local sampling points and weights from equations (34) and
(35) take the values

(40)

Crala™ ¥—rp (41)

and
H, H,~1 (42)

which are identical to the Gauss-Legendre values for two sampling points with limits of
integration [ — 1, 1].

The variations of ¢,, &, and H,, H, in the range 0 < R < 1 for two-point integration are given
in Table IT and shown graphically in Figure 2.

Three-point formula (local)

The coefficients given in equations (20)—(22) have been obtained in the range 0 < R < 1 and the
roots of G,(r) found numerically. The weighting coefficients were then computed from equa-
tions (8). Following normalization, the variations of &,, &,, &5 and H,, H,, H; in the range
0 < R < 1 for three-point integration are given in Table III and shown graphically in Figure 3.

DISCUSSION OF METHOD

The weights and sampling points described in this paper are specially designed for integrands of
the type described in equation (1). The formulae are a generalization of Gaussian Integration of
Moments for arbitrary limits of integration [ry, 1.

Sampling points and weights given by Fishman and Gauss-Legendre are both special cases of
the proposed formulation. This is clearly indicated in Figures 1, 2 and 3 which show the transition
from Fishman (R = 0) to Gauss—Legendre (R = 1) sampling points and weighting coefficients. In



Table II. Two-point integration (n = 2)

R 5 H, & H,

0-00 — 0289898 1024972 (689898  0-752806
0-02 — 0314007 1044020 0-684092  0-766898
0-04 — 0335148  1-060176  0-678949  0-779363
0-06 — 0353833 1073568 0674322 0790554
0-08 — 0370466  1-084420 0670104  0-800726
0-10 —0-385366  1-092998 0666217  0-810067
012 —0-398791  1-099578 0662602  0-818720
0-14 — 0410949 1104426 0659215  0-826795
0-16 — 0422014 1107789  0-656019  0-834377
0-18 — 0432126  1-109890  0-652988  0-841535
0-20 —0-441404 1110926 0650100  (-848323
0-22 — 0449948  1-111069 0647335 0-854785
0-24 — 0457844  1-110469  0-644680  0-860957
026 — 0465162  1-109252  0-642121  0-866871
028 — 0471965 1107528 0639650  0-872552
0-30 — 0478305 1105390 0637257  (-878020
0-32 — 0484230  1-102917 0634935  0-883293
034 — 0489779 1100173 0632678  0-888389
036 — (-494988  1-097217 0630480  0-893319
0-38 — 0499887 1094093 0628336  0-898097
040 —0-504504 1090843 0626243  0-902731
0-42 - (+508863  1-087498 0624197  0-907231
044 — 0512985 1084087 0622194  (-911606
046 — 0-5168%0  1-080633 0620233 0915861
0-48 — (-520595 1077155 0618310 0920004
0-50 — 0-524115 1073669  0-616423  0-924040
0-52 — 0527465 1070188 0614571  0-927974
0-54 — (-530655  1-066724  (0-612751 0931811
0-56 — 0533699 1063284 0610961 0935555
0-58 — 0-536605  1-059877 0609201 0939211
0-60 — (539384  1-056508 0607470  0-942781
0-62 — 0-542044 1053182 0605764  (-946268
0-64 — 0544593 1049902 0604085 0949677
0-66 — 0547037 1046672 0602430 (953009
0-68 — 0-549383 1043494 0600799 0956268
0-70 — 0551638 1040370  0:599190  0-959456
0-72 —0-553806 1037300 0597604 0962574
074 — 0-555893  1-034285 0596039 0965626
076 —0-557903 1031326 0594494 0968613
0-78 — 0559841 1028422 0592969 0971536
0-80 — 0561711 1025574  0:591463  0:974399
0-82 —(0-563516 1022781  (-589976 0977202
0-84 —0-565260  1-020042  0-588507  0-979948
0-86 — 0566946 1017357 0587056  (0-982637
0-88 — 0568577 1014726 0585621 0985271
0-90 — (0-570156 1012146  0-584204 0987852
0-92 —0-571685 1009618  0-582802 0990381
0-94 — 0573166  1-007141  (-581416  0-992859
0-96 — 0574603  1-004713 0580046  0-995287
0-98 —0:575997 1002333  0-578691  0-997667
1-00 —0-577350  1-000000  0-577350  1-000000

R =ry/r;

rp=(rp+7)/2+ &lry —1y)/2

} forall i=12,...,n
W,=Hr; —1)/2




Table II1. Three-point integration (n = 3)

R 3 H, 3 H, & H,

0-00 — 0575319 0657689 0181066 0776387 (822824 0440924
0-02 — 0602947  0-668858  0-166627  0-790048  0-819697  0-448705
0-04 — 0624503  0-676001  0-155039  0-800900 0817174  0-454976
0-06 — 0641782  0-679637  0-145314  (0-809855 0815040 0-460274
0-08 — 0655941  0-680546 0136889  (-817456  0-813173  0-464901
0-10 — 0667759 0679461 0129418  0-824042 0811499  0-469042
012 — 0677777 0676981 0122677  0-829836  0-809971 0472814
0-14 — 0686380 0673560 0116512 0834994  0-808556  0-476297
016 — 0693853 0669534  0-110817 0839625 0-807233  0-479548
018 — 0700407 0665146  (-105513 0843813  0-805985  0-482608
0-20 — 0706206 0660565 (100541  0-847619  0-804799  0-485508
0-22 — 0711375 0655913 0095855 0-851094  0-803667 0488270
0-24 — 0716015 0651273 0091419 0854276  0-802581  0-490913
0-26 — 0720203 0646700  0-087204  0:857197  (-801535 0493452
028 — 0724006 0642231 0083188  0-859885  0-800525  0-495897
0-30 — 0727475 0637891 0079350 0-862363 0799547  0-498260
032 — 0730654 0633693 0075674  0-864648  0-798597  0-500548
034 — 0733579 0629645 0072147  0-866759  0-797673  0-502767
0-36 — 0736280  0-625750 0068757  0-868709  0-796772  0-504924
0-38 — 0738783 0622008  0-065493  0-870512  (-795893  (-507023
0-40 — 0741110  0-618414 0062346  0-872179  0-795034  0-509068
0-42 — 0743279  0-614966 0059308 0873720 0794193  0-511064
0-44 — 0745307 0-611658 0056373  0-875145  0-793370  0-513014
0-46 — 0747208  0-608485 (0053533  0-876462  0-792562  0-514920
0-48 — 0748993  0-605440 0050783  0-877678 0791770  0-516785
0-50 — 0750674  0-602517  0-048118  0-878801 0790991  0-518612
0-52 — 0752260  0-599712  0-045534  0-879837 0790226  0-520401
0-54 — 0753759  0:597016 0043025 0-880792 0789473  0-522156
0-56 — 0755178  0-594426  0-040588  0-881670  0-788733  (-523879
0-58 — 0756524 0591936  0-038220  0-882478  (-788003  0-525569
0-60 - 0757803 0589540 0035917 (-883219 0787284  0-527229
0-62 — 0759020 0-587233 0033677 0-883898  (-786576  (-528%61
0-64 — 0760179  0-585012  0-031495  0-884518  0-785877  0-530465
0-66 — 0761285  0-582871  0-029370  0-885084  (-785187  0-532042
0-68 — 0762342 0580806 0027299  0-885598  0-784506  0-533594
0-70 — 0763352 0-578813 0025280 0886064 0783834  0-535121
072 — 0764320 0576889 0023310  0-886485 0783171  0-536625
0-74 — 0765248  0-575030 0021389  0-886864 0782515  0-538105
076 — 0766138  0-573234 0019512 0887202 0781866  0-539564
078 — 0766993 0571496 0017680  0-887503  0-781225  0-541001
0-80 — 0767815  0-569814 0015890  0-887769  0-780591  0-542417
0-82 — 0768607 0-568186 0014141 0-888002 0779964  0-543813
0-84 — 0769369 0566608 0012431  0-888203  (:779344  (0-545189
0-86 — 0770104  0-565079 0010758  0-888375 (0-778730  0-546546
0-88 — 0770813  0-563595  0-009122  0-888519  (0-778122  0-547885
0-90 — 0771497  0-562156  0-007521  0-888638  0-777521  (-549206
0-92 — 0772159  0-560759  0-005953  0-888731 0776925  0-550509
0-94 — 0772798  0-559402  0-004419 0888802  0-776335  0-551795
096 — 0773417 0558084 0002916 0888851 0775750  0-553065
098 — 0774016 0556802 0001443 0888880 0775171  0-554318
1-:00 — 0774597  0-555556  (-000000 0-888889  (0-774597  0-555556

R =ryfr,
ri=(ry +r0)/2+ &ilry —14)/2

W= H(r; —r5)/2

} forall i=1,2,...,n
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Figure 2. Sampling points ¢ and weighting coefficients H vs. ratio R = ro/r, (two-point integration)
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Figure 3. Sampling points ¢ and weighting coefficients H vs. ratio R = ro/r; (three-point integration)

both the two- and three-point integration formulae (Figures 2 and 3), the weighting coefficient
corresponding to the smallest sampling point exhibits a maximum value. In Figure 2, the
maximum occurs in H, when R ~ 0-22, and in Figure 3 when R ~ 0-08. The significance of these
stationary points is not fully understood at present.
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The Fishman coefficients have been normalized with respect to limits of integration [ — 1, 1]
and are given in the Appendix for formulae up to and including five sampling points. These
sampling points and weighting coefficients are suitable for numerical integration over any
domain whose lower limit of integration lies on the axis of symmetry (r, = 0) and correspond to
those given in Tables I-III with R = 0. The case when R = 0 deserves a special mention, because
this is when the influence of the radial co-ordinate r is most pronounced.

Accuracy

Owing to the assumption that the variable r always appears explicitly in the integrand as
shown in equation (1), the formula given in equation (4) achieves one extra order of accuracy in
the integration of polynomials as compared with the Gauss—Legendre method with the same
number of sampling points. For example, a two-point formula as proposed here will give exact
solutions for the function f () up to third order, whereas a two-point Gauss-Legendre formula
would only give exact solutions for f(r) up to second order. This is illustrated in the following
simple example.

Example. Evaluate the following integrand using a two-point integration rule:

2
rr dr
1

Comparing with equation (1), f(r) = r* with limits of integration r, = 1 and r = 2. By Gauss-
Legendre,

r=121132 and r, = 178868
W,=05 and W, =05
hence from equation (4),

rrr3dr ~ 0-5(1-21132* + 1-78868%) = 6-19444
1

By the present method and equations (16) and (17),
ry =123794 and r,= 180821
W, =053683 and W, = 046202
hence from equation (4),

2
j rr* dr = 0-53683(1-:23794%) + 0-46202(1-80821%) = 6:20000

1

which, as expected, agrees with the exact solution.

FINITE ELEMENT IMPLICATIONS

In this section, the Integration of Moments described previously is compared with Gauss—
Legendre integration with respect to the integration of some simple finite element matrices.
Stiffness and mass matrices are considered as given by the expressions

K¢ = ‘[J‘BfDB}-rdrclz (43)
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and
Mg, = pJJN?erdFdZ (44)

respectively, where p is the mass density and N represents the shape functions.

Discussion is limited to the case where rectangular finite elements are oriented parallel to the
global r- and z-axes. The sampling points in the z-direction are of the Gauss-Legendre type and
are symmetrical about the centreline. The sampling points in the r-direction are of the Moments
type and are shifted away from the axis of symmetry. For the case in which the lower radial limit
of integration lies on the axis of symmetry (R = 0), the sampling point and weighting coefficient
are given in the Appendix.

Four-node element

A four-node axisymmetric element with one integrating point in each direction is shown in
Figure 4. This one-point method is now used to form the element stiffness and mass matrices.

The stiffness matrix given by equation (43) requires integration of expressions which include
terms with powers ranging from r® to r~!. Assuming symmetry, the maximum and minimum
powers of r in each term of the matrix B'DB are given below:

—dd —28 44 ~15 b1 —132 a7
e K| 0,2 01 02 01 02

—-2,2

Figure 4. One-point integration of a four-node element

-22 -1,1 -1,2 0,1 -1,2 0,1
0,2 0,1 0,2 0,1 0,2
(43)
0,2 0,1 0,2 0,1
0,2 0,1 0,2
0,2 0,1
M 0,2
Axis of fo=0
symmetry R=o
F—
L —o0.3333
™
Normalised co-ordinates i
assuming limits i
of [-1,1] sl gy selessgn §
L
. |
L=
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Noting that all terms are multiplied by » before integration, all integrands include at least r2
terms. Hence, a one-point Gauss-Legendre approach would be unable to exactly integrate any of
the components of this matrix.

When using the Moments approach, the radial multiplier r is already taken into account, so
only the powers of r present in the B'DB component of the integrand need to be considered. One-
point Moments integration will exactly integrate linear terms in BT DB which correspond to those
marked with the letter E below:

¥ % % % % B x E

* %= x E x E =

* * x H x E

+ E = E =
(46)

* E % E

* E =%

* E

The improved performance of the present method over Gauss-Legendre regarding linear terms in
BTDB should be set against an inferior performance when integrating the terms with negative
powers of r. For example, the terms in B"DB containing r~* can be integrated exactly by
Gauss-Legendre after multiplication by r provided a sufficient number of sampling points are
included. Moments integration will never be able to exactly integrate the terms containing r~ .

Gauss-Legendre will also perform better on the terms containing r~2 because these are
increased by one order after multiplication by r. This means that, when comparing the per-
formance of the two methods with two sampling points, Gauss—Legendre performs better,
integrating 60 terms exactly (out of 64) compared with 44 by Moments integration. Neither
method is capable of exact integration on the r~2 terms, however, irrespective of the number of
sampling points included.

Every term in the mass matrix given by equation (44) requires integration of terms which
contains positive powers up to r>. Assuming symmetry, the maximum and minimum powers of
in each term of the matrix NN are given below (radial terms only included):

0,2 0,2 1,2 1,2

0,2 1,2 1,2 »
a5 5 47
23

Although in this case Moments integration would be more accurate than Gauss—Legendre,
neither method is capable of exact integration of any of the terms of the mass matrix with only
one sampling point. Both methods with two points, however, will integrate the mass matrix

exactly.
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Eight-node element
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An eight-node axisymmetric element with two integrating points in each direction is shown in

Figure 5. This two-point method is now used to form the element

The stiffness matrix given by equation (43)
terms with powers ranging from r° to r~
powers of r in each term of the matrix BT

F 2,4 —1,3
0,4

DB are given below:

-23 —-1,2 -24 -1,3 —14 0,3 -1,4 0,3 —-1,3
- 1,2 0,3 -1,3 0,4 0,3 0,4 0,3 04 0,2
-22 —-1,1 -23 —-1,2 —13 0,2 -13 02 -1,2
0,2 -1,2 0,3 0,2 0,3 0,2 0,3 0,1
—-24 —-13 —-14 03 —1,4 0,3 !
0,4 0,3 0,4 0,3 0,4 0,2
0,4 1,3 0,4 1,3 0,3
0,4 1,3 0,4 1,2
0,4 1,3 0,3
0,4 1,2
0,2
Axis of o=
symmetry Reo
A
t
0289914 co00
%
Normalised co-ordinates + 1 + T
assuming limits | 0.5774
of [-1,1] et et SR SN M.
: <0.5774
+ 1 &
L
z 1
L

0,2
0,3
0,1
0,2
0,2
0,3
12
0,3
1,2
0,3
0,1
0,2

Figure 5. Two-point integration of an eight-node element
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0,3
-1,3
0,2
- 1,4
0,3
0,4
1,3
0,4
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1,3

0,4

stiffness and mass matrices,
requires integration of expressions which include
!. Assuming symmetry, the maximum and minimum

0,3]
0,4
0,2
0,3
0,3
0,4
1,3
0,4
1,3
0,4
2
0,3
1,3

0,4
i3

04|

(48)
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Noting that all terms are multiplied by r before integration, two-point Gauss-Legendre will
exactly integrate terms in BT DB containing powers of r ranging from r~* to r?, as indicated with

the letter E below:

E

*

23] sl s i v s IS 4

*

es]

E

*

[es B v IR 4

*

*

(49)

Two-point Moments integration will exactly integrate terms in BT DB containing positive powers

up to r3, as indicated in equation (50).

*
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*
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Considering the whole matrix of 256 terms, two-point Gaus-Legendre integrates 59 terms exactly
compared with 147 by two-point Moments integration.

As noted previously, the terms in B"DB containing negative powers of r can never be
integrated exactly by the Moments approach. Gauss—Legendre can integrate exactly those terms
containing r~' due to the axisymmetric multiplier r, but not those containing r~ 2. This means
that, when comparing the performance of the two methods with three sampling points,
Gauss—Legendre performs better, integrating 249 terms exactly compared with 199 by Moments
integration.

The consistent mass matrix given by equation (44) for eight-node elements requires integration
of terms with positive powers up to r°. Assuming symmetry, the maximum and minimum powers
of r in each term of the matrix N'N are given below (radial terms only included):

[0,4 03 0,4 1,4 1,4 1,3 1,4 14]
0,2 03 1,3 1,3 1,2 1,3 1,3
0,4 1,4 1,4 1,3 1,4 1,4
2,4 2,4 2,3 2,4 2.4

2,4 2,3 2,4 2,4 Gl
2,2 23 23
2,4 2,4
2,4 |

Two-point Gauss-Legendre will exactly integrate terms in NTN with positive powers up to r?,
accounting for the terms marked with the letter E in equation (52).

(52)
* * * *
E * =
® %

Two-point integration by Moments will exactly integrate terms with positive powers up to 3, as
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marked in equation (53).

"« BE % = = E = * |
E-E E E E E

* % * B % %

*x % EBE % *

E E E

* %

L ¥

Consideration of the whole matrix of 64 terms shows that two-point Gauss—Legendre integrates 4
terms exactly compared with 28 by two-point Moments integration. Both methods with three
sampling points will integrate the mass matrix exactly.

CONCLUDING REMARKS

Numerical integration of moments is a specialized technique suitable for integrands of the form
given in equation (1). The method can exactly integrate polynomials of one order higher than the
corresponding Gauss-Legendre approach with the same number of sampling points. In the
present work, the method has been generalized to allow arbitrary limits of integration. By
presenting the results in a normalized form, it was shown that the sampling points and weighting
coefficients could be expressed in terms of the ratio of the limits of integration R = ry/r,. These
expressions tended to be quite complicated for higher order integration, but for the cases of one
and two sampling points analytical solutions have been derived. It was shown that
Gauss-Legendre weights and sampling points were given as special cases of the formulation
corresponding to R = L.

To illustrate the technique, it was applied to the integration of simple mass and stiffness
matrices of rectangular axisymmetric finite elements. It was shown that, for low order integration
formulae, the Moments approach led to a more accurate representation of both the stiffness and
mass matrices. For higher order integration, however, the Gauss—Legendre method led to a more

accurate stiffness matrix owing to the presence of terms containing r~' and r%,
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APPENDIX

Normalized abscissae and weights Jor Gaussian Integration of Moments
rr n
f rf(r)dr = 2 Wirif(r;)
0 i=1

where r; =r,;(1 + £;)/2 and W, = rrH2foralli=1,2,...,n

n é:f Hi
1 0-33333 33333 1-50000 00000
2 — 0-28989 79486 1-02497 16524
0-68989 79486 0-75280 61254
3 — 0-57531 89236 0-65768 86399
0-18106 62711 077638 69375
0-82282 40810 0-44092 44225
4 — 0:72048 02714 0-44620 78022
— 016718 08647 0-62365 30459
0-44631 39728 0-56271 20303
0-88579 16078 0-28742 71216
5 — 0:80292 98284 0-31964 07533
— (-39092 85468 0-48538 71883
0-12405 03795 0-52092 67831

0:60397 31642
092038 02860

0-41690 13342
0-20158 83853
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