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TECHNICAL NOTE

A SPURIOUS ZERO-ENERGY MODE IN THE
NUMERICAL ANALYSIS OF PILED RAFT FOUNDATIONS

P. Clancy and D.V. Griffiths
Department of Engineering
University of Manchester
Manchester M13 9PL
UK.

ABSTRACT

Numerical analysis of piled raft foundations has been performed using 4-node
quadrilateral plate bending elements for the slab and axial elements for the piles.
Selective reduced integration in the plate stiffness matrix formation was shown
generally to improve the performance of the element, but led to the formation of a
spurious zero-energy mode in some circumstances. Several numerical examples are
presented to illustrate the reasons for such contrasting behaviour, and suggestions
are made as to how this zero-energy mode can be avoilad.

INTRODUCTION

When loads are applied to a pile group, additional settlement of the piles
occurs (over and above that which would occur with a s'milarly loaded single pile)
due to interaction effects in the soil mass (1). Mindlin’s solution for displacements
due to a point load in a semi-infinite elastic half-space has been applied to this
problem, and lends itself to numerical analysis in a boundary element form (2). In
the present analysis, the piles are modelled by one-dimensional rod finite elements,
while the soil next to the piles is represented by 't-z’ springs attached at the nodes,
and the Mindlin equation is used to model interaction between piles.

If a raft is used to cap the pile group, some redistribution of loads occurs,
dependent on the stiffness of the raft. Analytical solutions are available for the
case ui 4 rigid raft (o), und the present wura diciupgs W Yuaskudy ws vitos vl sai

e N AL i T A F T . ['s RPN S e I I 3 - A LTk 7 S

-~
mhealarr AR wAma  Ne Ao hA tas ws menome s .

modelled by plate-bending finite elements attached to the top of the pile group.
However, the particular choice of plate element gave an interesting example of

zero-energy mode formation in a problem of practical interest. This has been

demonstrated previously, but only by means of a somewhat contrived example (4).
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An eigenvalue analysis of the plate element under both full integration and selective
Lwaoducing two extra zero-energy modes.
Plate Bending Finite Element

To model the raft, a four-node quadrilateral isoparametric plate bending
element (4,5) was considered. Although in this application a 'thin platc’ *~2s being
considered (typically, siae length : raft thickness was greater than 100), e element
was based on "thick’ plate theory such that transverse shear strains were accounted
for.

The plate bending problem was represented by an irreducible formulation,
with the freedoms of the transverse displacement and two rotations at each node.
The shear and bending components of the stiffness matrixewere formed separately
so that 'full” integration (with 2x2 Gauss points), 'reduced’ integration (1x1 Gauss
point), or a selective combination (i.e. fully integrated bending with reduced
integrated shear) could be employed.

It has been demonstrated that under full integration the element would give
excessively stiff solutions in thin plate applications. This 'shear locking’
phenomenon is due to too many constraints on the shear deformation and can be

overcome by using selective reduced integration on the shear term.

To demonstrate this, a square simply-supported plate carrying a central point

load was considered, with the following dimensions and material properties :

Square side length = 10.

Plate thickness =0.1
Young's modulus = 10.92 E5
Poisson’s ratio =03
Applied load = 1.

Quadrant symmetry impiies that only a quarter of the plate needs to be
analysed (fig. 1). Both full integration and sciecive reduced integration were used,

and the results for the displacement under the iuu. aic _.ven in table 1 for various

mesh refinements. These compare with the analytical solution of 0.01160 given by

-~ Finite element
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Simply-suppc <3¢
square ziate

1 -

Finite element mesh
using quadrant symmetry

Figure 1

Simply supported square plate
under centrally applied load

Displacement

Mesh Fill Pzduszd Shear
Refinement Integration Integration
1x1 element 0.4278 E-4 0.1277 E-1
2x2 elements 0.1343 E-3 0.1153 E-1
3x3 elements 0.2832 E-3 0.1154 E-1
4x4 elements 0.4846 E-3 0.1155 E-1

5%x5 etements 0.7328 E-3 0.11598 E-1

Compare displacements with
analytical solution
of 0.01180

Tahle 1

Cent{al transverse displacemen:
of simply-supported square plate
under centrally applied point lcac

e
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Timoshenko and Woinowsky-Krieger (6).
Compuied Rafi-Pile Behaviour

To model a piled raft foundation, the plate bending finite elements were
Auaclol WS plics U Lial Yei Ucar uegrees or ireedoms were common a: the
connected nodes. At this stage, no aCCouni wus mage 0I rart-soil contact. To test
the adequacy of this arrangement, the raft was given a very high stiffness and a
load was applied which would give unit displacement of an equivalent free-standino
pile group (3).

Two pile group configurations were investigated: 2x2 and 3x3 piles, with an
overall square geometry. The number of plate element between each pile was
successively increased, and in each case the results from selective reduced

integration were compared.

Fig. 2 shows the behaviour of the raft mesh attached tc ‘he 2x2 pile group,
and fig. 3 is a similar set of plots for the 3x3 group. The 2x2 group demonstrates a
spurious zero-cnergy mode which appears to be dependent on the number of plate
elements between each pile. When this modeshape doesn t form, a unit
displacement of the raft occurs, as anticipated.

The 3x3 pile group also demonstrates the spurious zero-energy mode, but in
this case it occurs for all mesh refinements.

Eigenvalue Analysis

An eigenvalue analysis of an isolated plate bending element was undertaken to
investigate its zero-energy modes, under both full integration and selective reduced
integration. In each case plots were made of all twelve of the modeshapes (the
element has twelve degrees of freedom, three at each of its four nodes). Fig. 4
shows the fully integrated element, and fig. 5 the rosults of using selective reduced
integration.

The analysis was performed on a roughly square element, with one side being
1% longer than the other. This was to try and prevent modeshapes of equal

eigenvalue from combining with each other. The eigenvalues given adjacent to each

~

5.00

X
0.00

.3 B
i

r1x1 plate elements

|75X5 pic:ic slements

E

2x2 Squi
BehavioL




bending finite elements were
reedoms were common at th-
made of raft-soil contact. To test
iven a very high stiffness and a

nent ~f an equivalent free-standing

ated: 2x2 and 3x3 piles, with an
ement between each pile was

s from selective reduced

attached to the 2+2 pile group,
Ip. The 2x2 group demonstrates a
¢pendent on the number of plate

a

e 0t form, a unit

urious zero-energy mode, but in

ysis

nding clement was undertaken to
itegration and selective reduced
velve of the modeshapes (the

h of its four nodes). Fig. 4

sults of using selective reduced

ire element, with one side being

:nt modeshanes of equal

senvalues given adjacent to each

e -
( tx1 plate slements l <
NS
a {
|4x4 plate elemer&ts}
' <
N, >
i |
| |
|5x5 piate elements| 8x6 plate elements/
N .
Fiqure 2
2x2 Square Pile Group
Bebaviour o f Raft Mesh
L y




7 ™
|
L\& 2x2 plate eiements—l i4x4 plate eiemenp
S o )
ﬁ( N
|
‘| —_
[ lem | !
L Lxs plate sizments ! 8x8 plat? elemengl
Figure 3
3x3 Square Pile Group
Behaviour o f Raft Mesh
- J

A

&

of the modeshapes are for a square elemr
From fig. 4, it can be seen that un
zero energy modes, corresponding to th
displacement; rotation about the x-axis;
Unfortunately, it was not possible to isc
because they have a zero eigenvalue for
on a mesh must always be sufficient to
Fig. 5 shows that the element has
reduced integration, i.e. there are now t
form. Again, there is interference betw
fig. 4 it is possible to predict which of 1
become zero energy under reduced she:
this: they must have zero rotation at th
curvature at the four bending Gauss po
conditions are the fourth and seventh, i

respectively, under full integretion.

Under full integration, the plate t
demonstrate shear locking’ when used
integration on the shear terms, retainit
this excessive stiffness. However this
extra zero-energy modes, which the pl
are insufficient.

For an element to assume one of
two rotations at the single shear Gaus
derivative (6w/éxay) is free 10 take a ¢
nature of this term, i.e. é/sx(ow/ay) = ¢
element twist by an equal amount. C
a common edge ensures that all adjac

the mesh) must therefore deform in a

element is constrained from twisting,




‘8x8 plate eleme

aroup

Mesh

e

165

of the modeshapes are for a square element.

From fig. 4, it can be seen that under full integration the element has three
zero energy modes, corresponding to the rigid-body motions, i.e. transverse
displacement; rotation about the x-axis; and rotation about the y-axis.
wisoituanicly, it was not possible to isolate each of these zero-energy modes
because they have a zero eigenvalue for any ratio of side lengths. The restraints
on a mesh must always be sufficient to prevent these from forming.

Fig. 5 shows that the element has five zero energy modes under selective
reduced integration, i.e. there are now two spurious zero energy modes that can

form. Again, there is interference between the zero energy modes. Returning to

fig. 4 it is possible to predi.. which of the modeshapes under full integration will

become zero energy under reduced shear integration. There are two conditions for
this: they must have zero rotation at :ie single shear Gauss point; and zero
curvature at the four bending Gauss points. The two modes which satisfy these
conditions are the fourth and seventh, i.e. those with Eigenvalues of 570 and 26709

respectively, under full integration.
Discussion

Under full integration, the plate bending element has been shown to
JomCnSiitic swew socking’ when used in thin plate applications. Selective reduced
integration on the shear terms, retaining full integration on the bending, eliminates
this excessive stiffness. However this under-integration technique introduces two
Caifa ..v-cnergy modes, which the plate can form if the mesh boundary conditions
are insufficient.

For an element to assume one of the spurious zero-energy modeshapes, the
two rotations at the single shear Gauss point must be zero, but the second order
derivative (6?w/éxdy) is free to take a constant value. Due to the complimentary
nature of this term, i.e. 6/6x(ow/oy) = &/ay(ow/éx) = a*w/sxay, all four edges of the
element twist by an equal amount. Continuity of displacement and rotations along
a common edge ensures that all adjacent elements (and by extension, all element in

the mesh) must therefore deform in a similar way. Conversely, if one edge of an

element is constrained from twisting, the spurious zero-eniergy mode cannot occur
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anywhere within the mesh.

Such constraint may be provided by a built-in or simply supported boundary

condition, or where there are an even number of nodes between symmetrically
similar piles. This las: condit.on was demonstrated by the 2x2 square pile group,
and is explained with the aid of fig. 6. In each of fig. 6 a, b and ¢, the tw

el Jlplec. Uy NE same amount due to symmetry. It is obvious that all the
elements in fig. 6a and fig. 6¢ are able to form the twist mode while still allowing
the piles to displace by equal amounts. From fig. 6b it can be seen that if the

G pl.,,_

elements form this twist mode, the piles would be forced to displace by different

amounts. Thus in this case the twist mode is unable to form, and the plate
elements perform adequately.

( -

¥ e

R RE G-cemrenas ° O @------ ©-----0 CEEEE - SRRk TIEE - SERRY-)
o—eo— o 9 : :
(a) ' (b) (c)
_ J
Figure 6

All elements 'twist' by the same amount. Thus,
an even number of nodes between symmetrically similar
piles prevents formation of this spurious zero-energy mode
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Concluding Remarks

The use of selective reduced integration in this example of a piled raft

esundation improves the computed displacements, but introduced two spurious

Zero
boundary restraint conditions must be met. It has been shown that in this

-energy modes. In order to suppress the formation of these modes, certain

particular example, and for the \oading conditions under consideration, a Zero

energy mode will not occur provided that:

e.g. 2x2,

i

1. There are an even number of piles along each side of the pile group (

4x4 piles, etc.).
2 There are an even number of plate nodes between piles.

With these conditions satisfied, the symmetry of the problem dictates that the

two adjacent mid-edge piles must displace by the same amount, thus providing the

vertical constraint required.

Under other conditions, the piles to which the plate has been attached do not

provide sufficient vertical constraint to prevent the formation of a zero-energy

mode, and hence great care must be taken when using this element for such an

application.
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