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Transient passive earth pressure analyses
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INTRODUCTION
Many analyses of geotechnical problems assume
that the soil is either fully drained or fully
undrained. The validity of these assumptions
depends to a large extent on the permeability of
the soil, the drainage path lengths and the rate at
which loads are applied. This Technical Note
describes a finite element technique which takes
account of transient effects through a Biot
analysis, enabling coupling of the pore pressure
variations to a non-linear soil stress—strain law.
The algorithm, which can retrieve both drained
and undrained solutions as special cases, is
applied to a problem of passive carth pressure
with variable wall speeds. This type of analysis
has applications to dredging, in which the dilative
tendency of the soil is shown to have a significant
effect on its passive resistance. Related applica-
tions include offshore anchors and skirt-
foundation systems of offshore gravity platforms.
In this Technical Note, the Biot (1941) formula-
tion is used to study the coupled interactions
between the solid and fluid phases. This
approach, which treats the soil as a two-phase
material, has been used successfully in several
geotechnical applications, usually involving linear
soil models (see for example Hwang, Morgenstern
& Murray, 1971; Smith and Hobbs, 1976). Non-
linear soil models have also been incorporated
into the Biot formulation, for example by Small,
Booker & Davis (1976) in analysing boundary
value problems using an clastic—perfectly plastic
Mohr-Coulomb constitutive law, and by Hicks
and Smith (1986), who considered more compli-
cated soil models.

TRANSIENT ANALYSIS
INCORPORATING PLASTICITY

The non-linear soil behaviour is assumed to be
elastic-perfectly plastic, and is modelled using a
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viscoplastic type of algorithm. Each time step of
the transient behaviour is treated as a pseudo-
static analysis, within which stresses that have
violated the operating failure criteria are redis-
tributed iteratively.

The Biot and viscoplastic formulations are
described in detail elsewhere; the coding for both
is given in full by Smith and Griffiths (1988). In
this study, a fully implicit incremental formula-
tion is used (see, e.g. Hicks, 1990). This leads to
the matrix version of the Biot equations at the
element level
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where k,, is the element solid stiffness matrix, k, is
the element fluid ‘stiffness’ matrix, ¢ is the element
coupling matrix, Ar is the change in nodal dis-
placements, A¢ is the change in nodal excess pore
pressures, @, is the ‘old’ nodal excess pore pres-
sures, Af is the change in nodal forces, At is the
calculation time step and @ is the time stepping
parameter (=1 in this work).

After assembly of the global equations, re-
peated solution of simultaneous equations is
necessary. An advantage of using this approach
rather than an explicit (¢ = 0) method is that the
long-term or steady state solution can be
achieved in a single large time step, provided that
the left hand side matrix remains constant.

APPLICATION TO EARTH PRESSURE

The transient analyses were next applied to a
problem of passive earth pressure. The practical
applications of such a study relate to the dredging
process, whereby underwater soils are removed
by excavators in order to maintain sufficient
depth in ports, harbours, rivers and canals. The
choice of dredging equipment and the properties
of the soil to be excavated are of prime impor-
tance, as they have a significant influence on the
power required to remove the soil bed. A study
on the soil mechanics aspects of dredging by van
Leussen and Nieuwenhuis (1984) concluded that
the dilative properties of the soil could be highly
significant in an undrained or partially drained
environment.

Other applications include the estimation of
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Fig. 1. Mesh used for earth pressure analyses: side and
bottom boundaries impermeable

the holding capacity of anchors for ships and off-
shore structures. In such systems, the passive
resistance of the saturated soil is directly relevant
to the anchor capacity. Experimental and finite
element studies of loaded anchor plates have been
reported by Neely, Stuart & Graham (1973) and
Rowe & Davis (1982), but assume that the soil is
fully drained. The lateral soil resistance that can
be mobilized by a skirt-foundation system of an
offshore gravity platform during storm loading
also relates to the transient analyses presented in
this paper.

Influence of wall speed

The effect of wall speed on passive resistance of
non-dilative soils is now considered. The plane
strain mesh geometry is shown in Fig. 1. This
simplified problem (see for example Crisfield,
1987) disregards the shear concentration that
would normally be observed at the base of the
wall, but does not detract from the analysis in the
case of a smooth wall.

The excavation blade is idealized as a rigid ver-
tical smooth wall translated horizontally into the
soil bed. All boundaries of the mesh are imper-
meable except the top surface, at which drainage
can occur. The mesh consists of eight-noded ele-
ments for the solid (soil) phase and four-noded
elements for the fluid phase (Zienkiewicz, 1977).
The soil is saturated, with shear strength defined
by Mohr—Coulomb and parameters ¢’ and ¢'.
Two-point Gaussian quadrature has been used
throughout.

The soil is given the properties

E =1 x 10* kPa

v =025
¢ =0kPa
¢ =30° (K, = 3)
y = 10 kN/m?
K, =05
kfy, =1 % 1075 m*/kN s
¢, = 0-12 m?/s

where 9’ is the submerged unit weight and K, is
the coefficient of earth pressure at rest. The wall is
1 metre high.

Computation of failure loads is the priority in
the present work, so no attempt has been made to
model soil deformations accurately. Although the
value of Young’s modulus attributed to the soil is
arbitrary, it will be approximately inversely pro-
portional to the computed deformations. Hence,
if more realistic soil moduli were available the
resulting deformations could be estimated by
simple scaling.

A dimensionless dredging rate L is used to
represent the (constant) speed of the wall as it
moves into the soil. This quantity is defined as

_ dGx/H)
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with the time factor T, given by

c,t
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and the coefficient of consolidation ¢, by
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The height of the wall is H, and x represents the
distance moved by the wall after time ¢.

Assuming a non-dilative soil (' = 0°), the dis-
tribution of horizontal effective stress and excess
pore pressure adjacent to the wall are shown in
Fig. 2 for three different dredging rates. All three
parts of Fig. 2 give the stress state following a
total wall displacement of 7-2 mm, which was
achieved numerically using 60 equal increments.
The calculation time steps were 0-001 s, 0-1 s and
10 s respectively for the fast, intermediate and
slow cases.

At the fast dredging rate (L, = 1:0), the soil
behind the wall behaves in an undrained manner,
whereas at the slow dredging rate (L = 0-0001)
drained conditions are approximated. An inter-
mediate response is observed at the compromise
dredging rate (Ly = 0-01).

In the undrained case, analytical solutions
(Griffiths, 1985; Li, 1988) for the horizontal effec-
tive stress o, and excess pore pressure Au at
depth z adjacent to the wall in a non-dilating soil
at failure are given by
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which correspond to the net soil and excess pore
water forces
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Fig. 2. Soil and water pressures at failure: (a) fast
loading rate; (b) intermediate loading rate; (c) slow
loading rate

In the drained case, the simple Rankine solution
is obtained

(o) =v2K, &)
(Au), = (10)
corresponding to the soil force

P = ¥HK, (1
The finite element results agree with these solu-
tions, as shown in Fig. 2(a) for the fast wall
(undrained) and Fig. 2(c) for the slow wall. For
the intermediate wall, Fig. 2(b) shows the par-
tially drained nature of the results. As expected,
the computed pore pressures lie below the limit
given by equation (6), and the effective stresses lie
between the undrained and drained values given
by equations (5) and (9) respectively.

The effective and excess pore water forces are
computed by integrating the stresses in the
column of elements adjacent to the wall. The sum
of these reactions is plotted in dimensionless form
in Fig. 3(a) (effective) and Fig. 3(b) (excess). As the
soil model used in these analyses was non-
dilative, the slow-moving wall (drained) led to
greater passive resistance than the fast-moving
wall (undrained), in which compressive pore pres-
sures were generated. The computed drained and
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Fig. 3. Plots of: (a) effective force against displacement;
(b) water force against displacement

undrained limit loads agree closely with closed
form solutions deduced from equations (7) and
11).

: Izegarding the excess pore water forces shown
in Fig. 3(b), the fast-moving wall gave close agree-
ment with equation (8). In the case of interme-
diate rate of wall movement, the water force
initially increases and then starts to fall as the
pressures are redistributed.
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Fig. 4. Influence of wall speed on dilative soil

Influence of dilation angle

Figure 4 shows the effect of the dilation angle
on the effective force behind the wall for the fast
and slow cases. In the fast case, the effective force
continues to rise well beyond the drained
Rankine solution. In the slow case, the dilation
angle makes virtually no difference to the solu-
tion, and the result converges on the drained sol-
ution given by equation (11).

In the present work, the dilation angle is con-
stant; this is a deficiency of the simple model. In
real soils, continuous shearing will reduce the rate
of dilation until the critical state is reached, at
which point soil continues to shear at constant
volume and constant pore pressure (see e.g., Seed
and Lee, 1967). The reduction of pore pressure is
also limited in practice by cavitation.

The analysis was repeated for both the dilative
and non-dilative soils with a variable wall speed.
In this case the wall was initially moved at the
fast rate for 60 increments of displacement, fol-
lowed by 60 increments at the slow rate as shown
in Fig. 5. The reason for the slow wall movement
was to allow any excess pore pressures to drain
away while still applying additional shear stresses
to the soil.

The plots of the soil force against the wall are
shown in Fig. 6(z). In the non-dilative soil, the
effective force rapidly reaches its undrained limit
value given by equation (7). Subsequent pore
pressure dissipation during the slow period causes
the pore pressures next to the wall to fall, and the
shear strength of the soil to rise until the Rankine
(drained) value is reached as given by equation
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(11). In this case, the minimum passive resistance
is achieved in the short term (undrained).

In the dilative soil, the effective force rises
steeply at first, but during the ‘slow’ pore pressure
dissipation results in rising pore pressures, and
the shear strength of the soil gradually falls until
the Rankine (drained) value is again reached. In
this case, the minimum passive resistance is
achieved in the long term (drained).

The plots of the excess pore water force are
shown in Fig. 6(b). During fast loading, the water
force in the non-dilative soil rapidly reaches the
undrained limit given by equation (8) and tem-
porarily remains at that value. The dilative soil
shows an initial rise in pore pressure due to
elastic compressibility, followed by a sudden fall
in pressure as the dilative soil tries to expand.
After reduction of the wall speed to the slow rate,
both water forces tend to zero as drained condi-
tions are established.

CONCLUSIONS

The influence of loading rate and soil dilation
on the passive resistance of saturated soils was
examined using a finite element technique. With
reference to dredging of soils, it was shown that if
the soil has a tendency for dilation during shear,
a fast rate of excavation might be undesirable
because the resulting passive resistance would be
higher than the drained value. Conversely, a fast
dredging rate would facilitate the excavation
process in a non-dilative soil, because the gener-
ation of compressive pore pressures would lower
the passive resistance to less than the drained
value.
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Fig. 5. Variable wall speed (not to scale)

With reference to other applications involving
saturated soil: the holding capacity of an anchor
or the soil resistance in a skirt-foundation system
could be greatly enhanced by the dilative ten-
dency of the soil in which it is embedded. If the
soil is non-dilative, however, the holding capacity
could be considerably reduced by compressive

pore pressure generated during short-term
loading events.
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Fig. 6. Plots of: (a) effective force against displacement
(variable wall speed); (b) water force against displace-
ment (variable wall speed)
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