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Seepage beneath water retaining structures founded on spatially
random soil

D. V. GRIFFITHS* and GORDON A. FENTON+}

The effect of stochastic soil permeability on con-
fined seepage beneath water retaining structures
has been studied. Random field concepts for the
generation of soil permeability properties with a
fixed mean, standard deviation and spatial corre-
lation structure have been combined with finite
element methods to perform Monte Carlo simula-
tions of the seepage problem. Analyses have been
performed for a dam with two cut-off walls. The
results of parametric studies to gauge the effect of
the standard deviation and correlation structure of
the permeability on the output statistics relating to
seepage quantities, exit gradients and uplift pres-
sures are presented. In all cases, comparison is
made with results that would be achieved on a
deterministic basis. Flow rates and other quantities
are shown to be affected significantly by the stan-
dard deviation and the correlation structure of soil
permeability.

KEYWORDS: cut-off walls and barriers; dams; numeri-
cal modelling and analysis; permeability; seepage; sta-
tistical analysis.

L’article étudie P'influence de la permeéabilité d’un
sol stochastique sur Pinfiltration confinée existant
sous une structure de retenue d’eau. Des analyses
aléatoires, permettant de générer les propriétés de
permeabilité du sol pour une moyenne, un écart-
type et un facteur de corrélation donnés, ont été
combinées 4 des méthodes par éléments finis afin
de réaliser des simulations de Monte-Carlo pour
Pinfiltration. Des analyses ont été réalisées pour un
barrage comportant deux parois étanches. L’on
présente les résultats de I’étude parameétrique réali-
sée afin de quantifier Pinfluence de Pécart-type et
du facteur de corrélation de la permeéabilité sur les
statistiques relatives aux quantités infiltrées, an
gradient de sortie et aux pressions ascendantes.
Dans chacun des cas, des comparaisons ont été
établies avec les résultats que on aurait obtenus a
partir d’une base déterministe. Les débits et autres
quantités semblent &tre significativement affectés
par Pécart-type et le facteur de corrélation de la
permeéabilité du sol.

INTRODUCTION

Most geotechnical analysis is deterministic in that
the soil properties used are assumed to be
average values. Variations in the soil properties
are then accounted for by the use of safety factors
which are often applied arbitrarily to the com-
puted result.

This average approach to the definition of soil
properties has tended to be applied not only to
classical soil mechanics calculations, but also to
numerical computations using sophisticated
numerical techniques such as the finite element
(FE) method. Properties are usually assigned on
the basis of a limited number of laboratory tests.
In reality, these properties vary from point to
point and can be determined deterministically
only through numerous field tests. Since this is
expensive and impractical, random field models
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can be used to represent the geomaterial. The
parameters of these models can be estimated from
a limited number of test results.

Mean soil properties are fairly well established,
and recently there has been an improvement in
the availability of data on second moment sta-
tistics  (standard  deviation and  spatial
correlation). The data gathering has been moti-
vated largely by the availability of random field
simulation algorithms and their potential for
producing useful results. The increased per-
formance of computers has also enabled more
detailed discretization of boundary value prob-
lems, and better modelling of the statistical
properties of the input parameters.

The FE method is an ideal vehicle for model-
ling materials with a spatial variation in proper-
ties. Stochastic FE analysis has been implemented
in a number of areas of geotechnical interest (see,
¢.g., Beacher & Ingra (1981) and Righetti &
Harrop-Williams (1988) for stress analysis and
settlements of foundations, Ishii & Suzuki (1987)
for slope stability and Smith & Freeze (1979a,
1979b) for confined seepage).
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Stochastic FE can be interpreted in different
ways. Statistical properties can be built into the
FE equations themselves (see for example Van-
marcke and Grigoriu (1983)), or multiple analyses
(Monte Carlo) can be performed, with each
analysis stemming from a realization of the soil
properties treated as a multi-dimensional random
field. In the present work the latter approach has
been used to examine confined seepage, with par-
ticular reference to flow under a water retaining
structure founded on stochastic soil. While the
Monte Carlo approach tends to be computa-
tionally intensive, it has the advantage of being
able to model highly variable input properties.

CONFINED SEEPAGE

In the study of seepage through soils beneath
water retaining structures, three important quan-
tities need to be assessed by the designers (Fig. 1):
seepage quantity, exit gradients and uplift forces.
The classical approach used by civil engineers to
estimate these quantities involves the use of care-
fully drawn flow nets (Casagrande, 1940; Ceder-
gren, 1967; Verruijt, 1970). However, various
alternatives to flow nets are available for solution
of the seepage problem: in order to perform quick
parametric studies, for example relating to the
effect of cut-off wall length, powerful approximate
techniques such as the method of fragments
(Pavlovsky, 1933; Harr, 1962; Griffiths, 1984) are
increasingly employed. The conventional methods
are deterministic in that the soil permeability is
assumed to be constant and homogeneous,
although anisotropic properties and stratification
can be taken into account.

In this Paper, an approach to the modelling of
soil properties is adopted whereby the per-
meability of the soil underlying a structure such
as that shown in Fig. 1 is assumed to be stochas-
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tic, i.e. the soil property in question is assumed to
be a ‘random’ field (see, e.g, Vanmarcke, 1984)
with certain statistics. Although the best-known
statistics are the mean and standard deviation, it
is well known that spatial dependencies also
exist——the soil properties at two points separated
by 1 cm are likely to be more similar than those
at two points separated by 1 m or 1 km. This
spatial dependence is often characterized by the
scale of fluctuation which, loosely, is the distance
over which properties show appreciable corre-
lation. In general, for a site of fixed size, as the
scale of fluctuation increases the soil properties
become more uniform over the site.

The analysis in this Paper uses a technique
called local average subdivision (LAS) to generate
realizations of the random permeability fields
with given mean, standard deviation and corre-
lation structure. This technique is fully described
by Fenton (1990) and Fenton & Vanmarcke
(1990). The resulting field of permeabilities is
mapped on to an FE mesh, and potential and
stream function boundary conditions are speci-
fied. The governing elliptic equation for steady
flow (Laplace) leads to a system of linear equi-
librium equations which are solved for the nodal
potential values throughout the mesh by use of
conventional Gaussian elimination.

Only deterministic boundary conditions are
considered in this Paper, the primary goal being
to investigate the effects of randomly varying soil
properties on the engineering quantities already
noted. The method is easily extended to random
boundary conditions corresponding to uncer-
tainties in upstream and downstream water levels.

A brief description of the FE technique and
the method by which permeability values are
assigned to the mesh is given. The statistics of the
output quantities relating to flow rate, exit gra-
dients and uplift are discussed.
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FINITE ELEMENT ANALYSES

The steady flow problem is governed in two
dimensions by Laplace’s equation, in which the
dependent variable ¢ is the piezometric head or
potential at any point in the Cartesian field x—y

2% ¢
* 5x2. ¥ ayl
where k, and k, are the permeabilities in the x
and y directions. In the present work and at the
element level, the permeability field is assumed to
be isotropic (k, = k, = k). While the method dis-
cussed here is easily extended to the anisotropic
case (through the generation of a pair of corre-
lated random fields), it is felt that such an exten-
sion is best restricted to a particular site of
interest, the complexity it introduces to a general
discussion being unwarranted.

Equation (1) is strictly valid only for constant
k. In this analysis the permeability is taken to be
constant within each element, its value being
given by the local geometric average of the per-
meability field within the domain of the element.
From element to element, the value of k will vary,
however, reflecting the random nature of the per-
meability. This approximation of the permeability
field is consistent with the approximations in the
FE method and is superior to most traditional
approaches, in which the permeability of an
element is taken to be simply the permeability at
some point within the element.

A typical FE mesh used in this study is shown
in Fig. 2. It contains 1400 elements, and rep-
resents a model of two-dimensional flow beneath
a dam that includes two cut-off walls. The
upstream and downstream potential values are
fixed at 10 m and O m respectively. The cut-off
walls are assumed to have zero thickness; the
nodes along these walls have two potential values
corresponding to the right and left sides of the
wall.

The FE code for the solution of Laplace’s
equation is broadly similar to that given by Smith
& Griffiths (1988). The element conductivity

k =0 (1
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matrices are assembled into a global matrix in the
usual way, resulting in a system of linear equa-
tions in the ‘unknown’ nodal potential values.

The global conductivity relationship after
assembly becomes
Ko =0 @)

Once the global conductivity equations are
solved leading to nodal potential values held in
@, the output quantities relating to flow rates,
uplift pressures and exist gradients are easily
deduced. More details on how these values are
obtained are given later.

For each boundary value problem considered,
multiple solutions were obtained by use of suc-
cessive realizations of the permeability field. The
random permeability field is characterized by
three parameters defining its first two moments,
namely the mean p,, the standard deviation o,
and the scale of fluctuation 6. In order to obtain
reasonably accurate estimates of the output sta-
tistics, it was decided that each run would com-
prise the analysis of 1000 realizations. Using the
mesh of Fig. 2, the Manchester University
Amdahl vector processor (VP1100) typically took
about 8 min of CPU time to generate the random
field realizations and perform the FE analysis
1000 times.

GENERATION OF PERMEABILITY VALUES

Field measurements of permeability have indi-
cated an approximately log-normal distribution
(see, e.g., Hoeksema & Kitanidis, 1985; Sudicky,
1986). The same distribution has therefore been
adopted for the simulations generated in this
Paper. Essentially, the permeability field is
obtained through the transformation

k; = exp (pax + 010, 9) (3

where k; is the permeability assigned to the ith
element, g, is the local average of a standard
Gaussian random field g over the domain of the
ith element, and u,, and oy, are the mean
and standard deviation of the logarithm of k
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Fig. 2. The FE mesh: all elements are 0-2 m x 0-2 m squares
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(obtained from the target mean and standard
deviation y, and o).

The LAS technique gives realizations of the
local averages g; that are derived from the
random field g having zero mean, unit variance
and a spatial correlation controlled by the scale
of fluctuation. As the scale of fluctuation goes to
infinity, g; becomes equal to g; for all elements i
and j, ie. the field of permeabilities tends to
become uniform on each realization. At the other
extreme, as the scale of fluctuation goes to zero, g;
and g; become independent for all i # j—the soil
permeability changes rapidly from point to point.

In the two-dimensional analyses presented in
this Paper, the scales of fluctuation in the vertical
and horizontal directions are taken to be equal
(isotropic) for simplicity. For a layered soil mass
the horizontal scale of fluctuation is generally
larger than the vertical scale due to the natural
stratification of many soil deposits. The two-
dimensional model used here implies that the
out-of-plane scale of fluctuation is infinite—soil
properties are constant in this direction—which is
equivalent to specifying that the streamlines
remain in the plane of the analysis. Although this
is a deficiency of the present model, it is believed
that useful information on the variability of flow
quantities can be gained. Further details of the
simulation approach for random fields of the type
used in this Paper are given by Fenton (1990) and
Fenton & Vanmarcke (1990).

DETERMINISTIC SOLUTION

For the seepage problem shown in Fig. 2, a
deterministic analysis was performed in which the
permeability of all elements was assumed to be
107° m/s and constant. This value of per-
meability is typical for very fine sands and silts,
and was also used as the mean of subsequent sto-
chastic analyses. Both the potential and inverse
streamline problems were solved, leading to the
flow net shown in Fig. 3.

All output quantities were computed in non-
dimensional form. In the case of the flow rate, the
global flow vector @ was computed by forming
the product of the potentials and the global con-

ductivity matrix from equation (2). Assuming no
sources or sinks in the flow regime, the only non-
zero values in @ correspond to the freedoms on
the upstream side at which the potentials were
fixed equal to 10 m. These values were summed
to give the flow rate Q in m*/s per m, leading to a
non-dimensional flow rate @ defined by

@ = Q/(m H) 4)

where p, is the (isotropic) mean permeability and
H is the total head difference between the
upstream and downstream sides. {J is equivalent
to the number of flow channels divided by the
number of equipotential drops ng/n, that would
be observed in a carefully drawn flow net; it is
also equal to the reciprocal of the form factor
used in the method of fragments.

The uplift force on the base of the dam U was
computed by integration of the pressure distribu-
tion along the base of the dam between the
cut-off walls. This quantity was easily deduced
from the potential values at the nodes along this
line together with a simple numerical integration

scheme (repeated trapezium rule) A non-
dimensional uplift force U was defined
U = U/(Hy, L) 5)

where y,, is the unit weight of water and L is the
distance between the cut-off walls. U is the uplift
force expressed as a proportion of the buoyancy
force that would occur if the dam were sub-
merged in water alone.

The exit gradient i, is the rate of change of
head at the exit point closest to the dam at the
downstream end. This was calculated using a
four-point backward difference numerical differ-
entiation formula of the form

fe @ (Lldg — 18¢_ +9h_, —2¢_3)/6b  (6)

where the ¢, values correspond to the piezometric
head at the four nodes vertically below the exit
point as shown in Fig. 4, and b is the constant
vertical distance between nodes. The downstream
potential head is fixed equal to zero, thus ¢, =
0-0 m. The use of this four-point formula was

Fig. 3. Deterministic flow net: n, = 4, n, = 18
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Dam Downstream

$o = 0 (i, computed here)
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Downstream —
cut-off wall

Fig. 4. Detail of downstream cut-off wall

arbitrary, and was regarded as a compromise
between the use of very low-order formulae which
would be too sensitive to ‘random’ fluctuations in
the potential, and high-order formulae which
would involve the use of correspondingly high
order interpolation polynomials that would be
difficult to justify physically.

With reference to Figs 1 and 2, the constants
described were given the values

H=10m

W= 1073 m/s
7, = 9-81 kN/m?
L=6m
b=02m

A deterministic analysis using the mesh of Fig. 2
led to the output quantities

J =0226
U=0671
i, = 0-688

This value of i, would be considered unacceptably
high for design purposes, as the critical hydraulic
gradient for most soils is approximately unity,
and a factor of safety against piping of 4-5 is
often recommended (see, e.g., Harr, 1962).
However, this value of i, is proportional to the
head difference H, which in this study has been
set to 10 m for the sake of simplicity and conve-
nience of normalization.

STOCHASTIC ANALYSES
In all the two-dimensional stochastic analyses
that follow, the soil was assumed to be isotropic

with a mean permeability of y, = 10™° m/s. More
specifically, the random fields were generated
such that the target (geometric) mean per-
meability of each FE was held constant at 103
m/s. Parametric studies were performed on the
effect of variation of the standard deviation e,
and the scale of fluctuation 0, of the permeability
field. After 1000 realizations, statistics relating to
output quantities @, U and i, were calculated.

Single realization

An example of what a flow net might look like
for a single realization is shown in Fig. 5 for per-
meability statistics g, = 107° m/s, o, = 107° m/s
and 6, = 1-0 m. In Fig. 5(a), the flow net is super-
imposed on a grey scale which indicates the
spatial distribution of the permeability values.
The correlation length of 1 m can easily be
observed.

Dark areas correspond to low permeability and
light areas to high permeability. The streamlines
clearly try to avoid the low permeability zones,
but this is not always possible, as some realiza-
tions may generate a complete blockage of low
permeability material in certain parts of the flow
regime. This type of blockage is most likely to
occur where the flow route is compressed, e.g.
under a cut-off wall. Flow in these (dark) low per-
meability zones is characterized by the stream-
lines moving further apart and the equipotential
moving closer together. Conversely, flow in the
(light) high permeability zones is characterized by
the equipotentials moving further apart and the
streamlines moving closer together.

Figure 5(b) shows exactly the same result as
Fig. 5(a), but more streamlines have been
included and the equipotentials have been
removed in order to highlight the contrast
between stochastic flow and flow through a deter-
ministic field such as that shown in Fig 3.
Although local variations in the permeability
have an obvious effect on the local paths taken by
the water as it flows downstream, globally the sto-
chastic and deterministic flow nets show many
similarities. The flow is predominantly in a down-
stream direction, with the fluid flowing down,
under and around the cut-off walls. For this
reason the statistics of the output quantities
might be expected to be insensitive to the
geometry of the problem (e.g. the length of walls),
and qualitatively similar to the properties of a
one-dimensional flow problem.

Statistics of the potential field

Figures 6 and 7 give contours of the mean
and standard deviation of the potential field fol-
lowing 1000 realizations for two cases: §, = 1-0 m
and 8-0 m respectively. These values were chosen
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(b)

Fig. 5. (a) Stochastic flow net for a single realization (jt, = 107° m/s, o, = 1075 m/s, 8, = 10 m, n, = 4, n, = 21);
(b) as (a), with more channels

to represent a weakly correlated soil deposit and to exaggerate the difference between the stochas-
a strongly correlated soil deposit respectively. In tic approach and a deterministic approach in
both cases the standard deviation of the per- which o, is effectively zero.

meability field is set equal to o, = 16 x 107 m/s. The contours of potential shown in Figs 6 and
This high value of standard deviation was chosen 7 follow the approach used by Smith & Freeze

(a)

98-

(b)

Fig. 6. (a) Contours of mean potential values (o,/u, = 16:0, 6, = 190 m, contour
interval = 0-56 m); (b) contours of potential standard deviation values (o, /p, = 169,
8, = 10 m, contour interval = 0-37 m)
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(a)

(b)

Fig. 7. (a) Contours of mean potential values (o, /1, = 160, 8, = 80 m, contour
interval = 0-56 m); (b) contours of potential standard deviation values (o,/u, = 160,

0, = 8-0 m, contour interval = 0-51 m)

(1979a, 1979b), who presented the results of a
series of numerical experiments on both one-
dimensional and two-dimensional confined flow
problems.

The mean potential values given in Figs 6(a)
and 7(a) are very similar to those obtained in the
deterministic analysis summarized in the flow net
of Fig. 3. The standard deviation of the potentials
given in Figs 6(b) and 7(b) indicates the zones of
greatest uncertainty regarding the potential
values. The upstream and downstream
(boundary) potentials are deterministic, so the
standard deviation of the potentials on these
boundaries equals zero. The greatest values of
standard deviation occur in the middle of the flow
regime, which in the case considered here rep-
resents the zone beneath the dam and between
the cut-off walls. The standard deviation is vir-
tually constant in this zone, but is clearly affected
by the value of 8,. The higher the value of §,, the
greater are the standard deviation values.
However, for values of 0, much larger than the
physical size of the flow domain, the variance of
the potential field is expected to drop towards
zero because the soil permeability becomes
uniform throughout the domain.

Parametric studies

The parametric studies based on the mesh of
Fig. 2 were designed to show the effect of the per-
meability’s standard deviation o, and scale of
fluctuation @, on the output quantities §, U and
i,. In all cases the mean permeability p, was
maintained constant at 10~ m/s.

Instead of plotting o, directly, the dimension-
less coefficient of variation of permeability was
used, and the values o,/y, = 0-125, 0-25, 0-50, 1-0,
20, 4-0, 80 and 16-0 were considered, together
with scale of fluctuation values given by 6, = 0-0,
1-0, 2:0, 4-0 and 80 m. The case of 6, =00 is
obtained simply by taking the cell permeabilities
to be mutually independent and governed by the
point distribution. It is believed that the ranges
given cover most practical situations. All permu-
tations of these values were analysed. The results
are summarized in Figs 8-10 in the form of the
logarithm (base 10) of o,/u, plotted against the
means and standard deviations of @, U and i,
denoted (pg, 6p), (4g. op) and (g, ;) respec-
tively.

Flow rate. Figure 8(a) shows a significant fall
in pg as o,/u, increases for 8, < 8 m. As the scale
of fluctuation approaches infinity, the expected
value of @ approaches the constant 0-226. This
curve is also shown in Fig. 8(a), having been
obtained through theory rather than simulation.
In agreement with this result, the curve 0, =8 m
shows a less marked reduction in p; with increas-
ing coefficient of variation a,/u,. However, over
typical scales of fluctuation, the effect on average
flow rate is slight. The decrease in flow rate as a
function of the variability of the soil mass is
important from the point of view of design. Tra-
ditional design practice may be relying on this
variability to reduce flow rates on average. It also
implies that ensuring higher uniformity in the
foundation soils may be unwarranted unless the
mean permeability is known to be substantially
reduced and/or the permeability throughout the
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Fig. 8. Coefficient of variation of permeability plotted
against: (a) mean flow rate; (b) standard deviation of

flow rate

site is carefully measured. The deterministic result
@ = 0-226 is included in Fig. 8(a): as expected, the
stochastic results converge on this value as a./u,

approaches 0.

Figure 8(b) shows the behaviour of o5 as a
function of e,/w,. Note that oz reaches a
maximum corresponding to ,/u, in the range
1-0-2-0 for 8, < 8 m. Again, the theoretical result
corresponding to @, = co has been plotted on the
figure, showing a continuous increase with o,/u;.

uplift force

Fig. 9. Coefficient of variation of permeability plotted
against: (a) mean uplift force; (b) standard deviation of

The reason for the maximum in the simulation
results is not clear, but the trend showing a
general increase in oy with increasing 8, is

expected. In general, it appears that the greatest

de Marsily 1985).

variability in @ occurs under typical conditions:
scales of fluctuation of 1-4 m and coefficient of
variation of permeability of about 1 or 2 (see, e.g.,

Uplift force. Figure 9 shows the relationship
between uplift force parameters p; and oy and
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Fig. 10. Coefficient of variation of permeability plotted
against: (a) mean exit hydraulic gradient; (b) standard
deviation of exit hydraulic gradient

input permeability parameters o,/y, and 6,. From
Fig. 9a), ug is relatively insensitive to the para-
metric changes. There is a gradual fall in uy as
both o,/u, and 0, increase, the greatest reduction
being 10% of the deterministic value 0-671 when
o /i, = 16-0 and 8, = 8-0 m. The insensitivity of
the uplift force to the permeability input statistics
might have been predicted from Fig. 3, 6(a) and
7(a), in which the contours of (mean) piezometric
head are virtually the same in the deterministic
and stochastic analyses.

Figure 9(b) shows that o rises consistently as
both a,/u, and 0, increase. It is known that in the
limit as 6, — oo, a5 — 0, since under those condi-
tions the permeability field becomes completely
uniform, Some hint of this increase followed by a
decrease is seen in Fig. 9(b), in that the largest
increases are for 6, = 0-1 m, the increase from
0, = 48 m being much smaller.

The actual value of oy; for a given set of a,/u,
and 0, could easily be deduced from the standard
deviation of the potential values. Figs 6(b) and
7(b) give contours of the standard deviation of the
potential values throughout the flow domain for
the particular values o,/p, = 16-0 and 8, = 10
and 8-0 m respectively. In Fig. 6(b) the potential
standard deviation beneath the dam is approx-
imately constant and equal to 1-86 m; in Fig. 7(b)
this value is 2-54 m. After non-dimensionalization
by division by H =10 m, these values agree
closely with the corresponding values in Fig. 9(b).

The magnitude of the standard deviation of the
uplift force given in Fig. 9(b) across the range of
parameters considered was not great, implying
that this quantity can be estimated with a reason-
able degree of confidence. The explanation is that
the uplift force is calculated using potential values
over a large number of nodes beneath the dam.
This ‘averaging’ process tends to damp out fluc-
tuations in the potential values that would be
observed on a local scale, resulting in a variance
reduction.

Exit gradient. This quantity is based on the
first derivative of piezometric head or potential
with respect to distance at the exit point closest
to the downstream end of the dam. It is well
known that in a deterministic approach, the
largest and hence the most critical value of i, lies
at the exit point of the uppermost (and shortest)
streamline. While for a single realization of a sto-
chastic analysis this may not be the case, on
average the location of the critical exit gradient is
expected to occur at the ‘deterministic’ location.

As i, is based on a first derivative at a particu-
lar location within the mesh (see Fig. 4), it is
expected to be the most susceptible to local varia-
tions generated by the stochastic approach. In
order to average the calculation of i, over a few
nodes, it was decided to use a four-point
(backward) finite difference scheme as given in
equation (6). This is equivalent to fitting a cubic
polynomial over the potential values calculated at
the four nodes closest to the exit point adjacent
to the downstream cut-off wall. The cubic is then
differentiated at the required point to estimate i..
The gradient is estimated by study of the fluctua-
tions over a length of 0-6 m vertically (the ele-
ments are 0-2 m x 0-2 m in size). This length is
referred to as the ‘differentiation length’ below.

The variation of g, and o, over the range of
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parameters considered is shown in Fig. 10. The
sensitivity of i, to o,/u, is clearly demonstrated. In
Fig. 10(a), p;, agrees quite closely with the deter-
ministic value of 0-688 for values of ¢,/p, in the
range 0-0—1-0, but larger values start to show sig-
nificant instability and divergence. For 8, < 1, the
tendency is for y; to fall below the deterministic
value of i, as o,/u is increased; for larger values
of 0, it tends to increase above the deterministic
value. The scales O and 1 m are, respectively, less
than and of the same magnitude as the differen-
tiation length of 0-6 m used to estimate the exit
gradient; the scales 2 m, 4 m and 8 m are sub-
stantially greater. If this has some bearing on the
divergence phenomena seen in Fig, 10(a), it calls
into question the use of a differentiation length to
estimate the derivative at a point. Regarding the
exit gradient, there may be some conflict between
the numerical estimation method and random
field theory that needs further investigation.

Figure 10(b) indicates the relatively large values
of g;, which grow rapidly as ¢,/u, is increased.
The influence of 6, in this case is not as great, the
results corresponding to @, = 1-0, 2-0, 4-0 and 8-0
m being quite closely grouped. Theoretically, as
0, — o, u;, — 0:688 and o; — 0. There appears to
be some evidence of a reduction in @, as 8,
increases: this agrees with the theoretical result.
For scales of fluctuation negligible relative to the
differentiation length, ie. 8, = 0, the variability in
i, is much higher than that for other scales at all
permeability variances but the highest. This is
perhaps to be expected, since 8, = 0 yields large
fluctuations in permeability within the differentia-
tion length.

CONCLUSIONS

A range of parametric studies have been per-
formed relating to flow beneath a water retaining
structure with two cut-off walls founded on a sto-
chastic soil. Random field concepts were used to
generate permeability fields with predefined
mean, standard deviation and correlation struc-
ture. Mean values of permeability are well docu-
mented, but there is less information on
second-order statistics such as the standard devi-
ation and scale of fluctuation. The parametric
studies presented are believed to span all likely
soil distributions that might be encountered.

These values were mapped on to an FE mesh
consisting of 1400 elements, and for each set of
parameters 1000 realizations of the boundary
value problem were analysed. In all cases the
target mean permeability of each FE was held
constant and parametric studies were performed
over a range of values of coefficient of variation
and scale of fluctuation. The output quantities
under scrutiny were the flow rate, the uplift force

and the exit gradient, the first two of these being
non-dimensionalized for convenience of presen-
tation.

The mean flow rate was found to be relatively
insensitive to typical scales of fluctuation, but fell
consistently as the variance of the permeability
was increased. This may be of some importance
in the design of such water retaining structures.
The standard deviation of the flow rate consis-
tently increased with the scale of fluctuation, but
rose and then fell again as the coefficient of varia-
tion was increased. These maxima are currently
the subject of further investigations by the
Authors.

The mean uplift force was rather insensitive to
the parametric variations, falling by only ~10%
in the worst case (high permeability variance and
0, = 8 m). The relatively small variability of uplift
force was due to a ‘damping out’ of local varia-
tions inherent in the random field by the averag-
ing of potential values over the nodes along the
full length of the base of the dam. Nevertheless,
the standard deviation of the uplift force rose
consistently with increasing scale of fluctuation
and coefficient of variation, as was expected from
the contour plots of the standard deviation of the
potential values across the flow domain.

The mean exit gradient was much more sensi-
tive to the statistics of the input field. Being based
on a first derivative of piezometric head with
respect to length at the exit point, this quantity is
highly sensitive to local variations inherent in the
potential values generated by the random per-
meability field. Some local averaging was intro-
duced by the use of a four-point numerical
differentiation formula; however, the fluctuation
in mean values was still considerable and the
standard deviation values were high.
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NOTATION
b vertical spacing between nodes
g standard Gaussian random field
¢; local average of g over the ith element
H head difference between upstream and
downstream levels
exit hydraulic gradient
global conductivity matrix
permeability
permeability assigned to the ith element
k., k, permeability in the x and y directions

= R

=~
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L width of dam

ny number of equipotential drops

n. number of flow channels

0 global flow vector
0,0 flow rate and non-dimensional flow rate
U,U uplift force and non-dimensional uplift

force
x,y Cartesian co-ordinates
7. unit weight of water
0, scale of fluctuation of permeability
U o, mean and standard deviation of per-
meability
mean and standard deviation of Ink;
mean and standard deviation of exit gra-
dient
mean and standard deviation of dimension-
less flow rate
mean and standard deviation of dimension-
less uplift force
o fjy,  coefficient of variation of permeability
@ global potential vector
potential or piezometric head

Hinks Ok
Hi» O,

¢y, ¢_,, potential values near exit point
2 P35
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