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A Monte.Carlo approach is employed to estimate the distribution of an equivalent conductivity
measure, the block conductivity, which characterizes the total flow rate through a two-dimensional
bounded domain and which is itself a random variable. Chi-square goodness-of-fit tests indicate that
the lognormal distribution is an appropriate choice for the block conductivity distribution. For square
domains, the mean and variance of the block conductivity are seen to be closely approximated using

the statistics of local averages of log conductivity.

1. INTRODUCTION

In this study seepage through a two-dimensional soil
model with spatially random conductivity is considered via
simulation. The quantities of interest are the total steady
state flow rate through the medium and a block conductivity
measure which characterizes this flow rate. For a two-
dimensional isotropic heterogeneous medium the equation of
steady groundwater flow followed is Laplace’s equation,

V. [KVé]=0 (1

where X is the hydraulic conductivity and ¢ is the hydraulic
head. No internal sources or sinks are considered. The site
model considered, as illustrated in Figure 1, has impervious
upper and lower boundaries and constant head applied to the
right edge so that the mean flow is unidirectional. At this
time the scope of the study is restricted to the two-
dimensional case with these simple boundary conditions.

In that the interest is to predict flow rates through a
bounded site having spatially random conductivity, block
conductivity will be defined here on the basis of total flow
rates. Specifically, for a particular realization of the spatially
random conductivity, K(x), on a given boundary value
problem, the block conductivity, K, is defined as

K= (Qi) @
103

where u;, = E[K] is the expected value of K(x), Q is the
total flow rate through the spatially random conductivity
field, and Q,,, is the deterministic total flow rate through the
mean conductivity field (having constant conductivity pu;
throughout the domain). For the simple boundary value
problem under consideration, (2) reduces to
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where H is the (deterministic) head difference between
upstream and downstream faces. Since Q is dependent on
K(x), both @ and K are random variables, and it is the
distribution of K that is of interest in this study. The
definition of block conductivity used here essentially follows
that of Rubin and Gémez-Herndndez [1990] for a single
block. Once the distribution of X is known, (3) is easily
inverted to solve for the distribution of Q.

In the case of unbounded domains, considerable work has
been done in the past few years to quantify a deterministic
effective conductivity measure K .4 as a function of the mean
and variance of In K at a point. In one dimension, the
effective conductivity is the harmonic mean (fow through a
“‘series” of “‘resistors’") while in two dimensions the effec-
tive conductivity is the geometric mean [Matheron, 1967).
For three dimensions Gutjahr et al. [1978] and Gelhar and
Axness [1983] used a small-perturbation method valid for
small variances in an unbounded domain. Specifically, for n
dimensions,

0‘12:1;(
Keg=[exp (mnx)](l —= ) n=1 (4a)
Keg=exp (b k) n=2 (4b)
2
Tk
Keg=[exp (Mnx)](l + 5 ) n=3 (40

where pppx and ofx are the mean and variance of In X
respectively. Concerning higher-order moments, Dagan
[1979] used a self-consistent model to estimate head and
specific discharge variance for ome-, two-, and three-
dimensional flow in an infinite domain. Smith and Freeze
[1979] investigated head variability in a finite two-
dimensional domain using Monte Carlo simulation.

Dykaar and Kitanidis [1992a, b] present a method for
finding K . in a bounded domain using a spectral decompo-
sition approach. The variance of block conductivity is con-
sidered only briefly, through the use of simulations produced
using fast Fourier transforms (FFT), to establish estimates of
the averaging volume needed to reduce the variance to a
negligible amount. No attempt was made to quantify the
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Fig. 1.

Two-dimensional finite element model of soil mass having spatially random conductivity. Top and bottom

surfaces are assumed impervious, and a constant head is applied to the right face.

variance of block conductivity. In perhaps the most perti-
nent work to this study, Rubin and Gémez-Herndndez [1990]
obtained analytical expressions for the mean and variance of
block conductivity using perturbative expansions valid for
small conductivity variance and based on some infinite-
domain results. A first-order expansion was used to deter-
mine the block conductivity covariance function.

In agreement with previous studies by Journel [1980],
Freeze [1975), Smith and Freeze [1979], Rubin and Gémez-
Herndndez [1990], Dagan {1979, 1981, 1986], it is assumed
here that ¥ = In K is an isotropic stationary Gaussian
random field fully characterized by its mean uy, 4, variance
ofx and correlation function py(r). This assumption is
basically predicated on the observation that field measure-
ments of conductivity are approximately lognormally distrib-
uted as shown by Hoeksema and Kitanidis [1985] and
Sudicky [1986].

To solve (1) for the boundary value problem of Figure 1,
the domain is discretized into elements of dimension A; X A,
(where A; = A, = A, herein) and analyzed using the finite
element method [Smith and Griffiths, 1988]. A realization of
the random field ¥(3) is then generated using the local
average subdivision method [Fenton, 1990; Fenton and
Vanmarcke, 1990] and conductivities are assigned to indi-
vidual elements using X = e ¥ (the conductivity within each
element is assumed constant). The total flow rate computed
for this field can be used in (3) to yield a realization of the
block conductivity. Histograms of the block conductivities
are constructed by carrying out a large number of realiza-
tions for each case considered.

2. PARAMETERS AND FmniTE ELEMENT MODEL
To investigate the effect of the form of the correlation

function on the statistics of K, three correlation functions
were employed, all having exponential forms:

2
pHT) = exp {—5 (‘!'|2 + T%) ”2} (Sa)

o
pHT) = exp {"’a“f (r}+ 'r%J} (5b)

2

py(T) = exp {—; () + |-rz|)} (5¢)
The first form is based on the findings of Hoeksema and
Kitanidis [1985] but without the nugget effect which Dagan
{1986] judges to have only a minor contribution when local
averaging is involved. Notice that the second and third forms
are separable and that the third form is not strictly isotropic.
Each is characterized by a scale of fluctuation 6 defined by
Vanmarcke [1984] for an isotropic process to be

6 = fm p(r) dr = 2f°°p(r) dr (6)

0

where 7 = |1| in (5a) and (5b). In (5¢), @ is taken asa
directional scale of fluctuation so that, making use of sepa-

rability, .
o 2
0= 2f exp {—-— |fr!} dr. M
0 6

The scale of fluctnation is generally interpreted as the
separation distance beyond which points in the field become
effectively uncorrelated.

As an alternative to the correlation function, the variance
function, A, A;), is defined by Vanmarcke [1984] to be

(AL, Ay = 4 Ay [As
v(4A,, ZM(A;AZFL J; (Ay = 71)(4,

= 1)p 71, T2) dry dry (8)

The variance function reflecis the reduction in variance
which occurs when a random field is averaged over somé
rectangular domain, A, X A,. The variance functions corre-
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sponding to pf, pf, and p§ are given by ¥°, y?, and 5°,
respectively, in the appendix.

It is well known that the block conductivity ranges from
the harmonic mean in the limit as the aspect ratio X, /¥, of
the site tends to infinity to the arithmetic mean as the aspect
ratio reduces to zero. To investigate how the statistics of £
change with practical aspect ratios, the study was conducted
for ratios Xy /Yy € {1/9, 1, 9}. For an effective site dimen-
sion D = (X Y1), the ratio 6/D was varied over the
interval [0.008, 4]. Four different coefficients of variation
were considered; o/ € {0.5, 1.0, 2.0, 4.0} corresponding
to ohx € {0.22, 0.69, 1.61, 2.83}. It was felt that this
represented enough of a range to establish trends without
greatly compromising the accuracy of statistical estimates
(as ofs increases, more realizations would be required to
attain a constant level of accuracy).

As mentioned, individual realizations were analyzed using
the finite element method (with four-node quadrilateral ele-
ments) to obtain the total flow rate through the domain. For
each set of parameters mentioned above, 2000 realizations
were generated and analyzed. No explicit attempt was made
to track matrix condition numbers, but all critical calcula-
tions were performed in double precision and round-off
errors were considered to be negligible.

3. DiscussioN oF RESuLTS

The first task undertaken was to establish the form of the
distribution of block conductivity K. Histograms were plot-
ted for each combination of parameters discussed in the
previous section, and some typical examples are shown in
Figure 2. To form the histograms, the conductivity axis was
divided into 50 equal intervals or ‘‘buckets.” Computed
block conductivity values (equation (3)) were normalized
with respect to u;, and the frequency of occurrence within
each bucket was counted and then normalized with respect
to the total number of realizations (2000) so that the area
under the histogram becomes unity. A straight line was then
drawn between the normalized frequency values centered on
each bucket. Also shown on the plots are lognormal distri-
butions fitted by estimating their parameters directly from
the simulated data. A chi-square goodness-of-fit test indi-
cates that the lognormal distribution was acceptable 93% of
the time at the 5% significance level and 98% of the cases
were acceptable at the 1% significance level (the significance
level is the probability of mistakenly rejecting the lognormal
hypothesis). Of those few cases rejected at the 1% signifi-
cance level, no particular bias was observed, indicating that
these were merely a result of the random nature of the
analysis. The lowermost plot in Figure 2 illustrates one of the
poorest fits which would be rejected at a significance level of
0.001%. Nevertheless, at least visually, the fit appears to be
acceptable, demonstrating that the chi-square test can be
quite sensitive.

Upon accepting the lognormal model, the two parameters
my g and si g, representing the estimated mean and vari-
ance of In (X)), can be plotted as a function of the statistics of
In K and the geometry of the domain. Figures 3 and 4
illustrate the results obtained for the three correlation func-
tions considered in (5a), (5b), and (5¢). One can see that for
square domains, where X; /¥, = 1/1, the statistics of K are
closely approximated by

g = Kk &)
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Fig. 2. Typical histograms of block conductivity for various
block geometries and conductivity statistics. The estimated distri-
bution is lognormal with parameters derived from the simulated
data. Note that the scales change considerably from plot to plot.

TR = amx@ (10)

where wox = In py — 3omg and yp = y(D, D) (see the
appendix). Note that these are just the statistics one would
obtain by averaging ¥(x) = In K(x) over the block. Assuming
the equality, the corresponding results in conductivity space
are

pR= pi exp {—1of (1 = vp)} an

ok=niexp {~ohg(l ~ yp)iexp (0d gyp) - 1]
(12)

If these expressions are extended beyond the range over
which the simulations were carried out, then in the limit as
D — 0 they yield

R = g (13a)

ok — o} (13b)
since yp — 1. This means that as the block size decreases,
the statistics of the block conductivity approach those of the
point conductivity, as expected. In the limit as D — o, up
approaches the geometric mean and o} approaches 0, which
is to say that the block conductivity approaches the effective
conductivity, again as expected.
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Fig. 3. Estimated mean log block conductivity (Mg — fin k) ok

If both 7y, and the product o xyp are small, then first-
order approximations to (11) and (12) are
(14)

pg = pyexp{—5ok g}

oz =njiexp {~of Hol xvp) (15)

Rubin and Gémez-Herndndez [1990] obtain (14) if only the
first term in their expression for the mean is considered. In
the limit as D — 0, additional terms in their expression yield
the result g — u, in agreement with the result given by
(13a). With respect to the variance, Rubin and Gémez-
Herndndez [1990] generalize (15) using a first-order expan-
sion to give the covariance between two equal-sized square
blocks separated by a distance h as a function of the
covariance between local averages of In X,

Cov [K(x), K(x + h)]

= pf exp {—af gt Cov [Yp(x), Yp(x +h)]  (16)

where Yp(x) is the local average of Y over the block
centered at x. Equation (16) reduces to (15) in the eventh =
0 since Var [¥p(X)] = ofix¥p-

In many practical situations, neither y, nor o gyp are
small, so that the approximations given by (14), (15), and (16)
can be greatly in error. To illustrate this, consider a hypo-
thetical example in which p) = 1 and o = 16 (so that of
= 2.83). It is expected that for a very small block, the
variance of the block conductivity should be close to of,
namely 0'?2 = 16 as predicted by (135). However in this case,

¥ =1, and (15) yields a predicted variance of crfg =0.17,
roughly 100 times smaller than expected. Recall that (15) was
derived on the basis of a first-order expansion and so is
strictly only valid for ofy x << 1.

For aspect ratios other than 1/1, Figures 3 and 4 show
clear trends in the mean and variance of In K. At smal
aspect ratios in which the block conductivity tends toward
the arithmetic mean, my, g is larger than g, reachinga
peak at around 8 = D. At large aspect ratios where the block
conductivity tends toward the harmonic mean, myg is
smaller than p, ¢, again reaching a minimum around 8= D.
Since the arithmetic and harmonic means bound the geomet-
ric mean above and below, respectively, the general form of
the estimated results is as expected. While it appears that in
the limit as §—> 0, both the small and large aspect ratio mean
results tend toward the geometric mean, this is actually due
to the fact that the effective size of the domain D/g1s tending
to infinity so that the unbounded results of (4) apply. For
such a situation, the small variances seen in Figure 4 are as
expected. At the other extreme, as § — oo, there appears
again to be convergence to the geometric mean for all three
aspect ratios considered. In this case, the field becomes
perfectly correlated, so that all points have the same perme-
ability and pup g = pup k and oy, g = o1, ¢ for any aspect ratio.

APPENDIX

The variance functions corresponding to the correlation

fuanctions (5) may be obtained through the use of (8). They
are



FENTON AND GRIFFTTHS: TECHNICAL NOTE

1829

p"y(r) = XY, =189
» ° XY =10
Gl o XY, =01
Y
Bl
-
©“
s I 1 I
1 I
5 -4 -3 2 -1 0 1 2
In(6/D)
- b
P (™
i
)
—
B
2
w)
_—
1 i [] 1 1 ]
5 4 3 2 .1 0 1 2
In(&/D)
ch(t) s x‘.{.NL' 1%
“ o XY, =11
s o XY, =91
2
R
A
w
& =
I T 1 ]

T
5 -4 -3 -2

In(6/D)

Fig. 4. Estimated standard deviation of log block conducti
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Y481, Ag) =y A DY (AzAD) + ¥o(Az)y*(41]45)]

(17a)
y2(Ay, Ag) = yP(A)7E(A,) (17b)
v(Ay, Ag) = v (ADY(AY) (17¢)

where,

el (1-5) o )

F— —expi—=r— 1|,
e 9? 8; . ;‘JTA; P ""Ar'z
0} [2/a] 2|A
W)= — |[—+exp——t—1
A, 2A,—2[ 9, P17y,

in which 8; is the directional scale of fluctuation (in this
study, 6, = 8, = ). Note that since no closed form solution
to the integral (8) exists for p%, (17a) is an approximation
developed on the basis of numerical results due to Van-
marcke [1984].

o
——
(X1

Vr..rizﬁ:s’ S glown k- Solid line corresponds to sy, ploy, x =

NOTATION

element side dimension.

variance function.

scale of fluctuation.

mean of hydraulic conductivity.

mean of block conductivity,

mean of log conductivity.

mean of log block conductivity.
correlation function.

variance of hydraulic conductivity.
variance of block conductivity.

variance of log conductivity.

variance of log block conductivity.
physical lag vector,

hydraulic head.

effective block dimension.

frequency distribution function.

head difference between upstream and
downstream domain boundaries.
interelement or interblock distance vector.
hydraulic conductivity field.

block conductivity.

effective conductivity.

estimated mean log block conductivity.
total flow rate through domain.

total flow rate through domain having constant
conductivity u.

estimated variance of log block conductivity.
dimension of domain in the x direction.
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Y; dimension of domain in the y direction.
Y log conductivity field, equal to In X.
Yp local average of log conductivity field over a
block.
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