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Seepage beneath unsymmetric cofferdams

D. V. GRIFFITHS*

Finite element analyses have been performed on
the problem of two-dimensional groundwater flow
beneath cofferdam walls of unequal length. The
results indicate that the problem may be idealized
as two independent flow systems separated by a
vertical line. An optimum location for this line can
be found which enables good approximate solutions
for flow rates and exit gradients to be obtained.
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Des analyses par élements finis ont été développées
pour des problémes d’écoulements souterrains bidi-
mensionnels sous des murs coffrés de différentes
longueurs. Les résultats obtenus montrent que le
probléme peut-étre assimilé 4 deux systémes
d’écoulement indépendants séparés par une ligne
verticale. La localisation de cette ligne peut-étre
optimisée. Elle permet d’obtenir des solutions
approchées des vitesses d’écoulement et des gra-
dients de sortie satisfaisantes.

INTRODUCTION

One type of double-wall cofferdam encountered
in geotechnical engineering is constructed of
driven sheet pile walls. Although actually three-
dimensional, such systems are often modelled as
two-dimensional if they are long relative to their
width. Following dewatering between the walls,
these structures allow construction or remedial
work to be performed on sites that were initially
underwater.

Of particular interest to engineers are the
overall stability of the soil/wall system, the volu-
metric flow rate passing through the foundation
soils and the exit gradients that might be experi-
enced inside the cofferdam. This Paper addresses
the prediction of flow rate and exit gradients; the
latter have a significant influence on overall sta-
bility.

The traditional method of analysis available to
engineers for the prediction of such quantities as
flow rates and exit gradients has involved the use
of flow nets. This trial and error approach
(Casagrande, 1940; Cedergren, 1967) can lead to
accurate predictions if the flow net is drawn care-
fully; however, its use requires much practice and
experience.

Analytical methods are available for coffer-
dams with walls of equal length (e.g. Harr, 1962;
Verruijt, 1970; Banerjee & Muleshkov 1992), but
this Paper is concerned with the problem of
steady seepage through cofferdam walls of
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unequal length. It is shown that this non-
symmetric problem can be solved to a reasonable
degree of accuracy by use of existing approximate
methods without resort to analytical or numerical
analysis. However, finite element solutions have
been used to validate the method.

Figure 1 shows the boundary value problem,
where L is the distance between the walls, T is the
depth of the soil layer, W is the distance to the
side boundary, s’ is the length of the left wall and
5" is the length of the right wall, which is conve-
niently expressed in dimensionless form as the
wall spacing ratio L/T, the left wall length ratio
s'/T and the right wall length ratio s"/T.

At the root of the investigation is the location
of the streamline which divides the flow coming
from the left and right of the cofferdam, e.g. the
thick line in the flow net of Fig. 2.

Under examination in this work is the extent to
which the dividing streamline can be idealized as

-
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Fig. 1. General layout of unsymmetric cofferdam
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Dividing streamline

Fig. 2. Location of dividing streamline: s'(T = 08, L/T = 05, s|T = 0-2

a vertical line. This idealization would enable
flow beneath the left and right walls to be treated
as two separate problems with simple boundary
conditions. If this approximation is shown to be
acceptable, then other powerful approximate
techniques, such as the method of fragments
(Pavlovsky, 1933; Harr, 1962; Griffiths, 1984) can
be employed to find solutions to the unsymmetri-
cal system.

FINITE ELEMENT FORMULATION

A program has been developed to solve
Laplace’s equation with the boundary conditions
indicated in Fig. 1, together with a post-processor
for contouring of equipotentials and streamlines.
Typical meshes are composed of square four-node
quadrilateral elements, all of the same size. To
give an indication of the mesh refinement used in
this study, the depth dimension T was always dis-
cretized using 40 elements. The program enables
the dimensions of the problem and the lengths of
walls to be altered through the data. Qutput from
the program gives the flow rate beneath the left
and right walls Q; and Qy together with the two
exit gradients i; and ig.

The assembly of element conductivity matrices
into a global conductivity matrix K follows stan-
dard finite element methodology (e.g. Smith &
Griffiths, 1988); however, as all the elements are
square and the same size, the symmetric element
conductivity matrices in this study are constant
and given by

4 =1 =¥ =i

k 4 -1 =2
k=g . )
4

where k is the (isotropic) soil permeability.

BOUNDARY CONDITIONS

In order to plot the flow net for this problem,
both the potential and the streamline problems
were solved. The potential problem was solved
first, the boundary values being fixed at unity on
the upstream surfaces (H = 1) and at zero on the
downstream surface as shown in Fig. 3.

In all cases, fixed values on the boundaries
were prescribed using the stiff-spring technique.
In the potential problem, for example, this
involves adding a large number to the appropri-
ate diagonal terms of K and placing the aug-
mented diagonal term multiplied by the fixed
value into the corresponding location in the
right-hand-side flow vector ¢. This modified set of
equations given by

Kp=4 @

is then solved for ¢ by use of conventional
Gaussian elimination.

The nodal flow rates are then retrieved by
forming the product of the nodal potential vector
¢ with the original (undoctored) global conduc-
tivity matrix K, thus

Ko=g¢g &)
e
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Fig. 3. Boundary conditions for potential problem
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The resulting vector g contains zeros at all loca-
tions except those corresponding to the fixed free-
doms. These non-zero values were simply
summed to give the flow rate under the left and
right walls @, and Q, respectively. Once these
values were found, the streamline problem could
be solved by use of the boundary conditions
shown in Fig. 4.

Following solution of the potential and stream
problems, a post-processor reads the nodal values
and contours these two scalar fields. Convention-
al flow nets try to ensure that the resulting zones
between adjacent equipotentials and streamlines
are approximately square. This convention affects
the size of the contour interval selected for the
potentials and streamlines by the plotting
program. The square convention is virtually
impossible to achieve, however, without an exces-
sive number of flow channels in the unsymmetri-
cal cofferdam. This is because different flow
quantities are passing through each side of the
system.

The approach used in the present work to
select the contour interval was based on the flow-
net equation

Q = kH(ng/ng) )

where Q is the total flow rate Q; + Qg, k is the
isotropic permeability, H is the total head loss, n;
is the number of flow channels and ny is the
number of equipotential drops. Once Q is com-
puted following the solution of the potential
problem, the ratio ng/n, follows from equation (4),
assuming k and H are known. The number of
flow channels n, is then fixed as a whole number
and the number of equipotential drops n, is com-
puted. In general, ny will not be a whole number,
but is rounded to the nearest integer. This round-
ing process results in a flow net with some rec-
tangular zones, as occurred in Fig 2.
Alternatively, it will always be possible to find
integers n; and n, that closely approximate the
computed ratio ng/ny and therefore result in
square zones throughout the flow net. However,
this will often involve an excessive number of flow
channels for practical purposes.

Figure 4 shows that the maximum and
minimum streamline values occur on the cut-off
walls themselves, and it is this interval that is

Table 1. Effect of boundary distance from walls

Boundary distance W 0 iy in
Lok dT2 0-744 | 0297 | 0-489
L+T 0-755 0-302 0-495
L+2T 0-758 0-304 0-496
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Fig. 4. Boundary conditions for streamline problem

divided into n; flow channels. It would clearly be
merely coincidental if one of the contour values
coincided with the contour value of zero given to
the outer boundary of the flow system. Conse-
quently, the squares are well-defined between the
cut-off walls, but tend to become rectangular in
the regions of the flow net close to the outer
boundary.

An initial check was made on the effect of the
boundary proximity W to the left and right of the
walls on computed flow rates and exit gradients.
These results are summarized in Table 1 for the
case of /T =08, s"/T = 0-2 and L/T = 0-5. The
results indicate that the boundary eflect is insig-
nificant in the present case, with a five-fold
increase in the boundary distance changing the
flow rate and exit gradients by less than 2%. An
alternative means of generating flow nets by the
finite element method is discussed by Fan, Tomp-
kins, Drumm & von Bernuth (1992).

IDEALIZATION

The extent to which the unsymmetric coffer-
dam problem can be idealized as two separate
flow problems separated by a vertical imperme-
able barrier, as shown in Fig. 5, is now examined.
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/ impermeable
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Fig. 5. Idealized flow problem with vertical barrier
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Fig. 9. Optimum barrier position based on flow rates:
LiT=24

Table 2. Optimum values of x/L for L/T = 0-5 (flow rates)

YT | §fT=02 | §/T=04 | &/T=06 | /T =08
08 0-691 0-648 0-586 0-500
06 0-615 0-565 0-500 0-414
0-4 0-560 0-500 0-435 0352
02 0-500 0-450 0385 0-309

Table 3. Optimum values of x/L for L/T = 1-0 (flow
rates)

Table 4. Optimum values of x/L for L{T =240 (flow
rates)

T | $/T=02|s/T=04|¢/T=06|s/T =08 $T | $/T =02 | ¢/T =04 | s/T =06 | &/T =08
08 | 0627 0-602 0-563 0-500 08 | 0575 0-562 0-560 0-500
06 | 0565 0-541 0500 0437 06 | 0537 0-523 0-500 0-460
04 | 0525 0-500 0-459 0-398 04 | 0513 0-500 0-477 0438
02 | 0500 0475 0435 0373 02 | 0500 0-487 0-463 0425
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In order to find the best position of this barrier, a
sequence of calculations was performed in which
it was systematically moved across the region
between the walls. For each location of the divid-
ing line as defined by the dimensionless ratio x/L,
two separate problems were solved, correspond-
ing to the left and right. These analyses yielded
the flow rates Q;' and Qf' and exit gradients i,’
and iy’ to the left and right; the prime dis-
tinguishes these quantities from their counter-
parts in the original problem. A full parametric
study was performed in which the wall lengths
were varied in the range

02<5YT,s"/T <08
and wall spacing was varied in the range

05 < L/T <20

Flow rates

To illustrate the difference between the ideal-
ized and original problems, results are presented
for the case of s'/T =08, s"/T =02, L/T = 0-5.
The plots shown in Fig. 6 give the total flow from
the idealized problem defined as

Q=0+ ©)

and the individual flows from the left and right
Q,' and Qp’' as a function of x/L. Fig. 6 also
shows, as horizontal lines, the total flow Q and
the flow from the left and right Q; and Qg from
the original problem.

From Fig. 6, the optimum value of x/L corre-
sponds to the maximum value of the flow Q'

where it is closest to the total flow rate from the
original problem Q. This is a reminder that, in the
original problem, the dividing streamline posi-
tions itself so as to optimize the flow rate through
the system. In the idealized analyses the
maximum value of Q' was always less than Q,
although the agreement was generally very good.
The case plotted in Fig. 6 gave the worst agree-
ment for all the wall lengths and spacings con-
sidered.

This optimum value of x/L is best observed by
comparison of the intersection of the horizontal
lines representing flow rates from the left and
right in the original problem with the correspond-
ing curves from the idealized problem. Tables 2—4
summarize the optimum locations of x/L, based
on a weighted average of the left and right flow
rates.

The values given in Tables 2-4 are shown in
Figs 7-9 respectively. It is clear from these results
that the optimum value of x/L is more sensitive
to the wall lengths when L/T = 0-5 than when
L/T =2-0. In the former case, for the range of
wall lengths considered, the optimum value of
x/L lies in the range 0-35 < x/L < 0-65; in the
latter case it lies in the range 0-45 < x/L < 0-55.
This means that for a wider wall spacing, the
optimum location of the dividing line is approx-
imately central irrespective of wall lengths. This
interpretation is confirmed by Figs 10 and 11,
which compare the dividing streamline, with the
optimum location. For the narrowest wall
spacing (L/T = 0-5) given in Fig. 10, the dividing
streamline is curved, so the optimum location of
x/L = 0-309 is clearly an approximation. For the
widest wall spacing (L/T = 2:0) shown in Fig, 11,

I
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"
'

Optimum location —_—

Streamline

Fig. 10. Actual and idealized dividing lines: L/T = 05, &'{/T = 08, s"/T = 0-2

Streamline

Fig. 11. Actual and idealized dividing lines L/T = 20, s'/T = 08, s"/T = 0-2
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Fig. 15. Optimum barrier position based on exit gra-

dient: LT = 2.0

Table 5. Optimum values of x/L for L{T =05 (maximum

gradient)
s'/T §/T =02 5T =04 sS/IT=06 | §/T=08
0-8 0-765 0-724 0-635 0-500
06 0-686 0-623 0-500 0-365
04 0-591 0-500 0-377 0-276
02 0-500 0-409 0-314 0-235
Table 6. Optimum values of x/L for L[T =10

(maximum gradient)

Table 7. Optimum values of x/L for L{T=2-0
(maximum gradient)

ST | ¢/T=02 | /T =04 | §/T =06 | s/T = 08 ST | /T =02 | /T =04 | $/T =06 | ¢/T =08
08 | 0644 0-617 0-574 0-500 08 | 0586 0-565 0-542 0-500
06 | 0578 0553 0-500 0-426 06 | 0544 0-527 0-500 0-458
04 | 0532 0-500 0-447 0-383 04 | 0516 0-500 0-473 0-435
02 | 0500 0-468 0-422 0-356 02 | 0500 0-484 0-456 0-414
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however, the dividing streamline is itself almost
vertical, and is indistinguishable from the
optimum location of x/L = 0-425.

Exit gradients

Figure 12 gives the exit gradient next to the
right wall iy’ as a function of x/L for the same
case as that considered in Fig. 6. The right wall is
chosen because it is the shorter, and hence the
wall against which the highest exit gradients
would be observed.

Also indicated in Fig. 12 is the value iy
obtained from the original problem. The point of
intersection of the lines represents the optimum
value of x/L for modelling of the exit gradient.
Tables 5-7 summarize the results for all the cases
considered; Figs 13-15 summarize them for the
range of wall lengths considered. As the values
given in these plots are based on optimization of
the accuracy of the maximum exit gradient, this
could correspond to the left or the right wall,
depending on the values of s'/T and s"/T.

These results indicate that the optimum value
of x/L is more sensitive to wall length variations
in the prediction of exit gradients than in the pre-
diction of flow rates. This is because the exit gra-
dient is a derivative whereas the flow rate is an
integral, the latter being an inherently more
stable process numerically. The difference is most
pronounced for smaller wall spacing. The follow-
ing examples correspond to two different wall
spacings, but with the same wall lengths given by
§/T =08 and §"/T = 0-2.

(a) When L/T = 0-5, the optimum x/L is 0-309
{based on flow rate) and 0-235 (based on
maximum exit gradient).

(b) When L/T = 2.0, the optimum x/L is 0-425
(based on flow rate) and 0-414 (based on
maximum exit gradient).

Figures 7 and 13 differ significantly, and for
lesser wall spacings it may be justified to solve the

flow and exit gradient problems using two differ-
ent x/L values such as those given in (a).
However, the optimum value of x/L based on
flow rates will tend to give an overestimate
(conservative) of the maximum exit gradient; the
optimum value of x/L based on the maximum
exit gradient will tend to give a further underesti-
mate (unconservative) of the total flow rate. Figs
8 and 14 are similar, and Figs 9 and 15 are sub-
stantially the same, indicating that for larger wall
spacing a single idealization for both flow and
exit gradients will certainly be sufficient, as con-
firmed by (b).

Although the different values of x/L indicated
for the lesser wall spacings are unlikely to affect
the final calculation of flow rate and exit gra-
dients significantly, the optimum values from flow
rate considerations are recommended if a single
idealization is to be used.

EXAMPLE

To demonstrate the method described, a simple
example is now presented. With reference to the
problem definitions given in Fig. 1, a cofferdam
with L/T = 1,5'/T =08,5"/T = 0-2 and 5" = § is
considered. The flow net and results generated by
the finite element analysis are shown in Fig. 16.

From Table 3, the optimal location of a verti-
cal barrier based on flow rates is given by
x/L = 0:373. From the method of fragments and
Figs 17 and 18 given by Griffiths (1984), the nor-
malized flow rate is

5-2 _ L
0= 10" %o ©)

(from equation (4), 2@ = ny/n,). From Fig. 17, the
flow through the left side of the problem is

> ® =162+ 275 (7)
Hence
0L =023 (8)

Fig. 16. Computed flow net for example problem
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and, through the right side of the problem

Z @ =073+ 061 (&)
Hence
Qr =075 (10)

Thus, by the method of fragments, the total nor-
~ malized flow is given approximately by

0 =098 (11)

which is comparable with 0-94 from the finite
element analysis.

The exit gradient against the shortest wall can
also be estimated from Fig. 18 in the form

i,s/h = 0-65 (12)
where

s=28

h = 0-73/(0-73 + 0-61) = 0-54
Hence

i, = 0-044 (13)

which is comparable with 0-043 from the finite
element analysis.

CONCLUSIONS

The Paper addresses the problem of steady
seepage in two dimensions beneath unsymmetric
cofferdams. The main items of interest are the
total flow rate through the system and the
maximum exit gradient. Parametric studies were
performed in which the wall lengths and spacing
were Systematically varied. For the range of
parameters considered, it is shown that the
system can be idealized to a reasonable degree of
accuracy as two independent flow problems
separated by a vertical impermeable barrier.
Optimum locations for the barrier are presented
as a function of the wall lengths and spacing. The
simplified approach based on the superposition of
two flow systems with simple geometry makes the
problem amenable to powerful approximate solu-
tion methods such as the method of fragments.

The idealization is least accurate for small wall
spacings (when the true dividing streamline is
most curved), and most accurate for large wall
spacings (when the true dividing streamline is
almost vertical).

The location of the barrier in the idealized
problem differed when the flow rate and the exit

gradient were being optimized: the former was
always more centrally located between the walls.
The difference was more apparent for small wall
spacings and negligible for large wall spacings.
The optimum value based on the flow rate would
be the most conservative choice if a single ideal-
ization were to be performed.

NOTATION

h  head lost in fragment

H  head difference across dam

i, exit gradient (Griffiths, 1984)

iy, iy exit gradients from full analysis

exit gradients from idealized analysis
permeability (isotropic)
k  element conductivity matrix
K  global conductivity matrix
K modified global conductivity matrix
L distance between walls

ny,n, number of equipotential drops and
flow channels
g nodal flow vector
g  modified nodal flow vector
@, 0Q1,0r flow rates from full analysis
Q. 0., 0y  flow rates from idealized analysis
¢  normalized flow rate
5, 5, 5" wall lengths
T  soil depth
W distance to side boundary
x  position of vertical barrier
¢  potential function
@  form factor
¥ stream function
REFERENCES

Banerjee, S. & Muleshkov, A. (1992). Analytical solution
of steady seepage into double-walled coffer-dams. J.
Engng Mech. Div. Am. Soc. Civ. Engrs 118, No. 3, 59.

Casagrande, A. (1940). Seepage through dams. Boston
Society of Civil Engineers.

Cedergren, H. R. (1967). Seepage, drainage and flow nets.
Chichester: Wiley.

Fan, Y, Tompkins, F. D., Drumm, E. C. & von
Bernuth, R. D, (1992). Generation of flow nets using
FEM nodal potentials and bilinear shape of func-
tions. Int. J. Numer. Anal. Methods Geomech. 16,
No. 6, 425-437.

Griffiths, D. V. (1984). Rationalized charts for the
method of fragments applied to confined seepage.
Géotechnique 34, No. 2, 229-238,

Harr, M. E. (1962). Groundwater and seepage. London:
McGraw-Hill.

Pavlovsky, N. N. (1933) Motion of water under dams.
Proc. 1st Congr. Large Dams, Stockholm, 179-192.
Smith, I. M. & Griffiths, D. V. (1988). Programming the
finite element method, 2nd edn. Chichester: Wiley.
Verruijt, A. (1970). Theory of groundwater flow. London:

Macmillan.






