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Rationalized charts for the method of fragments
applied to confined seepage

D. V. GRIFFITHS*

The Paper presents dimensionless charts for estimating
seepage quantity and exit gradients in problems of
confined flow. Based on the ‘method of fragments’
(Pavlovsky, 1935; Harr, 1962), the charts represent a
simplified approach for obtaining the form factor @,
which also allows for anisotropic soil permeability.
The accuracy of the assumptions inherent in the
method is assessed using finite elements. It is con-
cluded that the four charts presented enable reliable
estimates of flow rate and exit gradients to be made
for a wide range of confined flow problems of practical
interest.

Cet article présente des graphiques sans dimensions
pour I’évaluation de la quantité de percolation et des
gradients de sortie pour les problémes d’écoulement
confiné. Basées sur la méthode des fragments (Pav-
lovsky, 1935; Harr, 1962), ces graphiques
représentent une méthode simplifiée pour obtenir le
facteur de forms <, qui tient compte de la
perméabilité isotrope du terrain. L'exactitude des as-
somptions inheréntes dans la méthode est évaluée par
I’emploi d’éléments finis. On tire la conclusion que les
quatre  graphiques présentés permettent des
évaluations justes du taux d’écoulement et des gra-
dients de sortie pour une grande variété de problémes
d’écoulement confiné d’intérét pratique.

NOTATION

b width of apron

h head loss across a fragment
H  total head loss

i exit gradient

ky  horizontal permeability

ky  vertical permeability

k equivalent isotropic permeability
L width of fragment

n number of fragments

n;  number of flow channels

ng  number of equipotential drops

total flow rate
anisotropy factor

L Ve

} length of cut-off walls

p_,]:ﬂ

depth of permeable layer
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x, y Cartesian co-ordinates

@ form factor

h vector of nodal total head

q vector of net nodal inflow/outflow
K  system ‘stiffness’ matrix
INTRODUCTION

The amount of seepage through the foundation
soils of dams and water-retaining structures has
always been an important design consideration
for geotechnical engineers. Furthermore, when
hydraulic gradients in the ground are significant,
a knowledge of their magnitude is essential to
guard against heave or piping, especially at the
exit points where the flow direction opposes
gravity.

For steady state conditions, the head within a
soil mass with known boundary conditions is
governed by Laplace’s equation

’h o*h
ky—+kv—5=0
¥ ax? kg ay2 1)

and a wide variety of methods exist for its
solution. The methods include analytical solu-
tions using conformal mapping and complex var-
iables (Pavlovsky, 1933; Harr & Deen, 1961;
Polubarinova-Kochina, 1962; Harr, 1962; Ver-
ruijt, 1970), analogue methods (Aravin &
Numerov, 1965) and stochastic analyses (Harr,
1977; Smith & Freeze, 1979). The best known
method in soil mechanics, however, is flow net
sketching. Flow nets are a powerful and versatile
method in experienced hands, but they can be
time consuming, and their accuracy is sometimes
difficult to assess.

An alternative, simple, although approximate
approach for solving problems of confined flow
is called the method of fragments (Pavlovsky,
1935). This Paper shows how the method can be
condensed into a series of charts, enabling rapid
estimates of flow rates and exit gradients to be
made for a variety of confined flow problems.
The accuracy of the method is also assessed
using finite element analyses, and it is shown
that for the examples considered the results can
be at least as accurate as a well-drawn flow net,
and more easily obtained.
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Fig. 1. Sub-division of flow regime into fragments

THE METHOD OF FRAGMENTS

The method of fragments forms the basis of
the charts produced in this Paper. The method
was first proposed by Pavlovsky in 1935 for the
computation of seepage under hydraulic struc-
tures incorporating multiple piles. The method
was publicized by Harr (1962), and more re-
cently described in a standard soil mechanics
text by Holtz & Kovacs (1981). The method is a
powerful though approximate means of obtain-
ing seepage quantities in confined flow prob-
lems. Although the method also has applications
in free surface problems (Harr, 1977), the pres-
ent discussion is confined to configurations in
which the boundaries of the flow regime are
known a priori.

The method is approximate because it relies
on the assumption that the equipotentials at
certain points within the soil mass are vertical.
The zones between these ‘vertical’ equipoten-
tials are called fragments, and because the frag-
ments are often rectangular, with simple bound-
ary conditions, solutions for the individual frag-
ments can be found, and superposed to give the
overall solution. Solutions for three different
fragment types are presented later in the Paper
in the form of dimensionless charts.

Figure 1(a) shows how the region beneath a
concrete dam with two cut-off walls could be
fragmented. By assuming vertical equipotentials

wherever significant changes in boundary
geometry occur, the problem is reduced to the
superposition of three fragments. Fig. 1(b)
shows a cross-section of parallel sheet pile walls.
By assuming a vertical equipotential beneath
each wall, and accounting for symmetry, the
problem is reduced to the superposition of two
fragments.

As with the flow net approach, the seepage
quantity is calculated using

Q=FkH- @)
g

where Q is the volume flow rate, k is the soil
permeability, H is the total head loss, n; is the
number of flow channels and n, is the number of
equipotential drops. Equation (2) can account
for anisotropic soil permeability in the horizon-
tal and vertical directions where

ku # kv 3

by considering a modified co-ordinate system in
which all lengths in the horizontal direction are
scaled by a factor V(ky/ky). The modified per-
meability is then given by

k = V{kuky) 4

When dealing with anisotropic soil using flow
nets, the physical boundaries of the problem
must first be redrawn in the new co-ordinate
system. After sketching a flow net according to
the usual rules, the ‘shape factor’ n¢n, is ob-
tained and the seepage quantity found from
equations (2) and (4).

It may be noted that to avoid complication,
the majority of flow nets include only a few flow
channels (n;=3 or 4). Correspondingly, the
number of equipotential drops (n4) is usually
assumed to be a whole number although the
exact solution would rarely involve such a sim-
ple ratio of ni/n..

In the Method of fragments, it is noted that n;
is constant in each fragment, but n4 varies from
fragment to fragment in accordance with the
proportion of total head lost in each. Thus for
each fragment, a form factor @ is obtained
where for the ith fragment

&, =2 5)
g
‘When the form factor for all the fragments has
been obtained, the total seepage quantity is
again given by equation (4) but in the form
kH
i1 D
where n is the number of fragments.

0=

(6)
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The form factor is a function of the fragment
type and its dimensions. For details of how it is
obtained, the interested reader is referred to
Harr (1962) who describes the transformation
techniques which can lead to solution of Lap-
lace’s equation for certain boundary conditions.

The present Author’s preference is for numer-
ical techniques, and all subsequent work in this
Paper has been developed and tested using finite
element methods.

NUMERICAIL SOLUTIONS PROCEDURE

The majority of work was performed using
four-noded quadrilateral elements with a typical
mesh shown in Fig. 2. Boundary conditions were
particularly easy to implement; impermeable
surfaces, which represent boundary streamlines,
required no special treatment whereas bound-
aries on which the head was constant received
prescribed values. For simplicity, these were
made to vary from unity at the upstream face to
zero downstream.

For details of the formulation, and listings of
the programs used, the reader is referred to
Smith (1982), but in all cases, the problem was
reduced to the solution of simultaneous equa-
tions, thus

q =Kh @)

where h is the vector of nodal head values, q is
the vector of nodal net inflow/outflow and K is
the system ‘stiffness’ matrix.

Prescribed values of nodal head were
achieved by a ‘stiff spring’ technique, and the
values of the head at all other points obtained
by solving equation (7) using Gaussian elimina-
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Fig. 2. Typical mesh for type C fragment

tion. When the vector h for all nodal points
obtained, the vector q was obtained by multiply-
ing h by the symmetric stiffness matrix K As
the problem was one of steady state, the vector
q was zero for all nodes except those at the up
and downstream faces. By summing the nodal
flow values for either of these faces, the total
flow rate through the system was obtained.
Assuming that the soil was isotropic, with a
permeability and a total head loss of unity, the
form factor for a particular configuration was
given by the reciprocal of the total flow rate
through the system, thus from equation (6)

®=1/Q (8)

where Q is the total flow rate through the
system. By varying the dimensions of a frag-
ment, charts were developed which related the
form factor to dimensionless groupings.

Exit gradients, which are also of great interest
to the designer from a standpoint of heave and
piping are also obtained in a straightforward
way from the numerical output. Once the head
has been calculated for all nodal points, the
maximum exit gradient is found by dividing the
head loss across the most critical finite element
at the downstream end of the mesh by its verti-
cal height (Fig. 3).

TREATMENT OF ANISOTROPY

If the permeability of the soil differs in the
horizontal and vertical directions, this is dealt
with directly in the charts by introducing the
factor R where

R= ‘/(k\/l’k}[) )]

As will be seen, any horizontal dimension which
appears in the dimensionless groupings, such as
b in fragment A or L in fragments B and C, is

(o] (o] o

£= hE/y

Fig. 3. Calculation of the exit gradient
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first multiplied by the anisotropy factor R be-
fore entering the chart. Having obtained the
form factor for all fragments, the method pro-
ceeds as before from equations (4) and (6).

DESCRIPTION OF FRAGMENT TYPES
Fragment A

This fragment (Fig. 4(a)) represents a semi-
infinite domain of height T, with impermeable
boundaries at its base and in the top corner as
shown. The chart given in Fig. 5 enables the
form factor to be obtained as a function of s/T
and bR/T. This chart is based on the results of
Pavlovsky, and is a rearrangement of a figure
quoted by Polubarinova-Kochina (1962). The
difference in the present work lies in the intro-
duction of anisotropy and the ability to obtain the
form factor directly.
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Fig. 4. Main fragment types: (a) fragment A; (b)
fragment B; (c) fragment C

Finite element results were also obtained for
this fragment in order to assess the accuracy of
the program and the influence of element size.
The values of & obtained numerically were al-
ways within a few percent of those in Fig. 5,
although the solutions tended to diverge slightly
for s/T>0-9.

It should be mentioned that when modelling
semi-infinite domains wusing finite element
methods, consideration must be given to the
effects of boundary proximity on the major vari-
ables under consideration. One possibility is to
incorporate a row of infinite finite elements
(Chow & Smith, 1981), but the criterion used in
the present work (Lo, 1983) was that if LR/T=
2, the solution essentially corresponded to the
semi-infinite case.

Fragment B

Fragment B (Fig. 4(b)) represents an enclosed,
rectangular domain of width L and height T
with impermeable boundaries above and below,
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Fig. 6. Form factor for fragment B (condensed from Harr, 1962)

and cut-off walls at the sides of height s’ and s”. L
This fragment has applications for flow under @ =In 1""; (11b)
dams such as that in Fig. 1(a). The chart given in

Fig. 6 enables the form factor to be obtained as - ( & ) L-s
a function of dimensionless numbers C; and C, Sha T {Hie)
where o s i
&= (-9)-) o2 (12 10
T T (10) 2a
LR —(s"+s") L—2
Co=—— @=21n(1+£)+ = > (11e)
a

The results quoted are a condensed form of L4(s'—s" [ —(s'— g
work originally performed by Pavlovsky on the ¢ =1p [(1+ +(s'—s ))(1+ —(s'=s ))] (11f)
seven variations shown in Fig. 7. 2a’ 2a"

o = SN125Y] Lo +s)
T [ = S




234 GRIFFITHS

—r—f
.
7
T
(a)
o L
T Passive
TS | zone T_rk-—!.—-—
TL",{F‘LSS 1'_3_ L5
l : s i ) IS
& - (c)
(b)
oLl i
1 f ¥ -
I 5 ] T«? j_
T
T * j‘ a Lt >2s
a L <2s _L,i
l ! G
(d)
e L -{
r ¥ ‘ [ —1 .__.ﬁ
(R T
T Ty 4
ljf a” li > s+
KRS LL—'S+S" (9}

(
Fig. 7. Special cases of fragment B

The derivations obtained were quoted by Harr
(1962), and are listed here as equations 11(a)-
(g). With the exception of equation (11a), all the
expressions are approximate due to Pavlovsky’s
assumption, based on analogue experiments,
that negligible flow occurs above a line inclined
at 45° and passing through the base of the
cut-off walls (Fig. 7(b)). Subsequent finite ele-
ment checks (Lo, 1983), without involving any
such assumption, have agreed closely with Pav-
lovsky’s expressions.
By making the substitutions of equation (10),
it can be shown that all of equation (11) can be
reduced to

(D=CZ_]]J(C1) CZEO
(2+C,)° 2
+C, ]
O=In|——| GC<0
n[ 4c, 2

enabling the seven variations to be condensed in
the single chart of Fig. 6.

Fragment C

Fragment C (Fig. 4(c)) represents an enclosed,
rectangular domain of height T and width L,
with impermeable boundaries at the bottom and
on one side, with a cut-off wall of height s on
the other. The fragment has applications in the

study of flow beneath a double-wall sheet-pile
cofferdam (Fig. 1(b)), in which the depth of each
wall is equal. Symmetry in this case dictates that
the centre-line of the cofferdam acts as an im-
permeable boundary. The flow under such struc-
tures can thus be found by superposition of type
A and C fragments (Fig. 1(b)). The chart in Fig.
8 was computed using a similar mesh to that in
Fig. 2 and gives the form factor as a function of
s/T and LRJ/T. In all cases the mesh was made
sufficiently fine to eliminate significant mesh-
effects.

Although fragments A and C are different in
character, it may be noted that when bR/T is
put equal to zero in fragment A, the problem is
identical to that when LR/T = in fragment C.

EXIT GRADIENTS

No study of confined seepage would be com-
plete without a knowledge of the exit gradient
(ig) that is likely to occur. The most critical
point is usually where the uppermost streamline
emerges, because it is here that the equipoten-
tials in a flow net would be at their closest
packing. Analytical solutions for a single sheet
pile (Harr, 1962) and for a double-wall system
in an infinitely deep stratum (Harr & Deen,
1961) are available, and the former is shown in
Fig. 9 for the double-wall system with LR/T =
o, Solutions for the exit gradient in type C
fragments for other values of LR/T have also
been computed and are included in this figure.
In order to render the figure dimensionless, the
vertical axis corresponds to values of igs/h
where h is the head lost across the fragment in
which the exit gradient is required. The head
loss across any individual fragment can be found
by simple proportioning of the form factors. For
example if the head loss in the jth fragment is
required, and H is the total head lost over n
fragments, then

h; D,

H YL@ 4
A large safety factor against piping is usually
required in the design of water-retaining struc-
tures, and Harr (1962) suggests that it should be
no less than 4. Although the exit gradient will
generally provide the most significant design
criterion, Terzaghi (1943) has also suggested a
procedure for checking against the possibility of
heave at depth.

UPLIFT PRESSURES

In flow-net solutions, the excess head at any
point can be estimated from the positions at
which the equipotentials intersect the imperme-
able boundaries of the structure. This usually
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Fig. 10. Finite element meshes for full analyses: (a)
dam with upstream and downstream cut-off walls; (b)
double-wall sheet pile cofferdam
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indicates a gradual and fairly uniform loss of
head as water moves downstream along the
uppermost streamline. In the method of frag-
ments, a linear loss of head is assumed within
each fragment. The rate of head loss equals the
head loss in the fragment from equation (13),
divided by the length of the uppermost im-
permeable surface.

ASSESSMENT OF ACCURACY

The accuracy of the method depends almost
exclusively on the validity of the assumption that
equipotentials can be considered vertical at cer-
tain locations. A study of published flow nets
such as those of Cedergren (1977) or Lambe &
Whitman (1969) would indicate that the as-
sumption is a reasonable one. A potential user
of the method of fragments might also consider
how accurately a flow net could be drawn in the
time available for the problem under considera-
tion. A well-drawn flow net will approach the
exact solution, whereas the method of fragments
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Fig. 11. Comparison of full solution with fragments for seepage

quantity under a dam
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will always be approximate unless the problem
exhibits considerable symmetry.

In order to check the accuracy of the charts
provided, full numerical solutions were obtained
for the two configurations shown in Fig. 10. The
object of this exercise was to compute the total
rate Q and the exit gradient ip for the full
problem without making any assumptions re-
garding the equipotentials. These results could
then be compared with the fragments solutions
using charts in which the assumption is built in.

The programs were set up in such a way that
the depth of embedment and positioning of the
cut-off walls could be altered by a simple change
of data.

The comparisons are given in Figs 11-14 and
show a generally good agreement between the
fragments solution and the full solution.

In the case of flow undef a dam with cut-off
walls, two widths of dam were considered (Fig.
11). The worst case occurred with the narrow

Fragments

H=1
i Full 1T L= 0375
01 T=20125
r Fragmenls 0-9 LR/T =3
1 1 1 1 1 1 1 1 i ]
02 0-4 06 0-8 1:0
YT

dam, when both cut-off walls were short relative
to the depth of the permeable layer. In this
instance, the method of fragments tended to
overestimate the seepage quantity obtained by
the full solution, but the error was always less
than 10 %. As the depth of cut-off walls was
increased, however, the solutions from both
approaches converged to give almost identical
values. For the wider dam, the method of frag-
ments appeared to give good predictions of flow
rate for all combination of cut-off wall lengths.

When considering the exit gradients under the
dam a similar picture emerged. The method of
fragments tended to give conservative estimates
of the exit gradient for the narrow dam with
short cut-off walls, but almost exact correspon-
dance for greater depths of embedment. As
before, the predictions for the wider dam were
generally good.

For the case of the double-wall cofferdam, the
assumption of a vertical equipotential beneath
the pile appeared to be very reasonable. Analys-
ing only half the problem due to symmetry,
three different pile spacings were considered
together with a variety of cut-off depths. In all
cases (Figs 13, 14), the results from the full finite
element analyses and the charts were almost
indistinguishable.
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Fig. 12. Comparison of full solution with fragments Fig. 13. Comparison of full solution with fragments

for exit gradients downstream of a dam (not to scale)

for seepage quantity under a double-wall cofferdam
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CONCLUSIONS

Design charts for estimating seepage quan-
tities and exit gradients using the method of
fragments for confined flow problems have been
presented. The results are based on a combina-
tion of published analytical solutions and nu-
merical analyses performed by the Author. The
presentation enables many different fragment
types to be considered with the aid of
rationalized dimensionless charts in which
anisotropic soil properties can be accounted for
directly.

The fundamental assumption in the method,
that the equipotentials are vertical at certain lo-
cations, has been assessed by performing some

analyses of full seepage problems using finite
elements. At worst, the comparison between the
method of fragments and the full solution was
adequate and conservative. For the majority of
cases considered, however, the agreement was
good and the vertical equipotential assumption
appeared jsutified.
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