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STATISTICS OF FREE SURFACE FLOW THROUGH STOCHASTIC
EARTH DAM

By Gordon A. Fenton,' and D. V. Griffiths,” Members, ASCE

ABSTRACT: Even though soil is a highly variable material, the analysis of flow through earth dams typically
proceeds deterministically and results can sometimes be quite misleading. In fact it is well known that soil
permeability varies randomly from point to point in space and an improved earth dam model should incorporate

- this variability. In this paper the soil permeability in an earth dam of variable geometry is viewed as a weakly

stationary spatially random field following a lognormal distribution with prescribed mean, variance, and spatial

correlation structure. The mean and variance of the total flow rate through the dam and free surface drawdown
are estimated using Monte Carlo simulations. A simplified empirical approach to the prediction of the mean and
variance of the flow rate is presented to allow these quantities to be approximated easily and without resorting

to simulation,

INTRODUCTION

Many water retaining structures in North America are earth
dams and the prediction of flow through such structures is of
interest to planners and designers. Although it is well known
that soils exhibit highly variable hydraulic properties, the pre-
diction of flow rates through earth dams is generally performed
using deterministic models. This paper introduces a second-
order stationary (or weakly stationary) random model of an
earth dam and investigates the effects of spatially random hy-
draulic properties on two quantities of classical interest: (1)
The total flow rate through the dam; and (2) the amount of
drawdown of the free surface at the downstream face of the
dam. The drawdown is defined as the elevation of the point
on the downstream face of the dam at which the water first
reaches the dam surface. Other issues which relate more to the
structural reliability of an earth dam, such as failure by piping
and flow along eroding fractures, are not addressed in the cur-
rent study. Work in this area by the authors is ongoing. Here
it is assumed that the permeability field is representable by a
mean-square continuous random field and that interest is in the
stable, steady state, flow behavior. This study contributes to
the understanding of the stochastic behavior of flows through
soils, a classical problem in geomechanics.

The computation of flow through an earth dam is compli-
cated by the fact that the location and profile of the free surface
is not known a priori and must be determined iteratively. Nev-
ertheless, the finite element code required to perform such an
analysis is really quite straightforward, involving a simple
Darcy flow model and iteratively adjusting the nodal eleva-
tions along the free surface to match their predicted potential
heads (Smith and Griffiths 1988). Lacy and Prevost (1987),
among others, suggest an alternative approach which employs
a fixed mesh but the approach given by Smith and Griffiths
was selected here due to its simplicity.

When the permeability is viewed as a spatially random field,
the equations governing the flow become stochastic. The ran-
dom field characterizes uncertainty about the permeability at
all points in the dam and from dam to dam. The flow through

the dam will thus also be uncertain and this uncertainty can
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be expressed by considering the probability distribution of the
total flow rate. In turn, this distribution can be used to calculate
probabilities related to flow.

Stochastic problems of this nature can sometimes be solved
using stochastic finite element techniques [for a good discus-
sion of the method, see Vanmarcke et al. (1986) and Van-
marcke (1994)]. These methods are based on first or second
order perturbation approaches in which the random parameters
are decomposed into a mean (deterministic) part and a random
fluctuation, Unfortunately, the resulting relationships are de-
rived on the assumption that the fluctuating part is small com-
pared to the mean part with coefficients of variation less than
about 20%. Since soil permeability often shows much higher
variability, in orders of magnitude, the stochastic finite element
techniques are prone to considerable error and cannot be used
for many flow problems of interest.

Under certain conditions, analytical results are available
which can be used to characterize flow through a random me-
dium. Indelman and Abramovich (1994), Dagan (1993), Gel-
har (1993), and Dykaar and Kitanidis (1992), among others,
all develop techniques of estimating an effective permeability
that can be used to predict the mean flow. These results are
obtained under the assumption that the domain is of infinite
size and the mean flow is unidirectional (through a spectral
decomposition algorithm, Dykaar and Kitanidis relieve both of
these restrictions but still only provide a method of finding the
mean flow). In many cases of interest to practicing geotech-
nical engineers, the domain is not infinite, the flow paths are
not unidirectional on average, and the total flow rate will show
considerable variability from realization to realization. In fact
estimation of the flow variance is an essential ingredient in
any probability estimate and flow variability will arise in most
finite domains when modeled randomly.

It is instructive at this point to review issues relating to the
ergodic hypothesis and discuss its implications on the results
presented here. It is not uncommon that statistics of the per-
meability field (mean, variance, correlation structure) must be
estimated from a single realization, in this case from a single
earth dam, since nature may not provide an ensemble of in-
dependent realizations coming from the same governing dis-
tribution. If this is the case, the ergodic hypothesis must be
assumed, inplying that all possible states of the random pro-
cess occur in the single realization. This allows accurate esti-
mates of the statistics by averaging over space rather than over
an ensemble of realizations. In turn, ergodicity implies that the
permeabilities from point to point become effectively indepen-
dent beyond distances significantly smaller than the size of the
sampling region. Thus the assumption of ergodicity states
something about the scale over which permeabilities are ef-
fectively correlated, namely that this scale is small compared
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to the sampling domain. In the sequel, this scale will be re-
ferred to as the scale of fluctuation and its mathematical def-
inition will appear later.

Under the ergodic hypothesis, statistical inference proceeds
by collecting data at various spatial locations and estimating
the mean, variance, and spatial correlation structure by aver-
aging over the spatial observations. It is generally difficult to
verify the assumption of ergodicity once it is made. Typical
approaches involve estimating the scale of fluctuation and
checking that it is indeed significantly smaller than the sam-
pling domain (Gelhar 1993; Dagan 1989). Problems arise,
though, when the scale of fluctuation governing the process is
of the same order or greater than the sampling domain. Such
processes appear to be non-stationary with trends in the mean
and variance as functions of space. The usual cure is to func-
tionally account for these trends and estimate the statistics of
the residual process, which is now guaranteed to be second-
order stationary (and invariably yields an estimated scale of
fluctuation considerably smaller than the sampling domain).
The only way to clearly establish if these are in fact nonsta-
tionary trends or simply a result of looking at a limited seg-
ment of a process with a large scale of fluctuation is to have
available other realizations of the process. Another danger is
that what appears to be a stationary random process after sam-
pling, for which the ergodic assumption appears to hold, may
in fact be part of a process with many different scales of be-
havior. An example of such a process might be found in the
weather; when observed over only a month, the process might
appear stationary and ergodic. However, it is well known that
correlation scales for such processes span months, years, and
even thousands of years. If one looks at the depositional pro-
cesses leading to soil formation on the surface of the earth, it
is easy to imagine that many different correlation scales can
be also found in soils.

As will be shown later, earth dams for which the ergodic
hypothesis holds show little variability in total flow rate and
can be analyzed using the effective permeabilities discussed
above. This is by virtue of the fact that the scale of fluctuation
is small relative to the flow regime. In this paper, because of
the observations made previously, the ergodic restriction is re-
lieved and simulation results are produced for both ergodic
(small scale of fluctuation) and nonergodic (large scale of fluc-
tuation) earth dams. This allows also the use of statistics es-
timated from a variety (ensemble) of similar earth dams for
the purposes of predicting flow rate probabilities in dams not
yet built or for which field information is absent. If field in-
formation exists for the dam of interest, then a probabilistic
analysis of the dam would typically proceed using a condi-
tioned random field that explicitly accounts for the observed
data. This is beyond the scope of the current paper.

In cases where the soil properties show strong variability
and the domain is not significantly larger than the scale of
fluctuation, the only alternative currently is to perform Monte
Carlo simulations, with a suitable number of realizations, in
order to produce accurate estimates of the flow rate statistics
(assuming accurate input parameters). Although considered by
some to be a brute force approach, Monte Carlo simulations
nevertheless provide a simple means of estimating the full dis-
tribution of response quantities of interest which could not
otherwise be obtained. From these distributions, simple, albeit
empirical, relationships can be derived to aid the designer in
estimating the distribution parameters directly from the para-
meters of the random field model.

Following this reasoning, a Monte Carlo analysis approach
has been adopted herein. A sequence of 1,000 realizations of
spatially varying soil properties with prescribed mean, vari-
ance, and spatial correlation structure are generated and then
analyzed separately to obtain a sequence of flow rates and free
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surface profiles. The mean and variance of the flow rate and
drawdown statistics can then be estimated directly from the
sequence of computed results. The number of realizations was
selected so that the variance estimator of the logarithm of total
flow rate had coefficient of variation less than 5% (computed
analytically under the assumption that log-flow rate is nor-
mally distributed). Note that since these statistics are estimated
from an ensemble (of simulations), there is no reason to re-
strict the analysis to the ergodic case.

Because the analysis is Monte Carlo in nature, the results
are strictly only applicable to the particular earth dam geom-
etries and boundary conditions studied, however the general
trends and observations may be extended to a range of earth
dam boundary value problems. An empirical approach to the
estimation of flow rate statistics and governing distribution is
presented to allow these statistics to be easily approximated,
that is without the necessity of the full Monte Carlo analysis.
This simplified procedure needs only a single finite element
analysis and knowledge of the variance reduction due to local
averaging over the flow regime and will be discussed in detail
in the section of the present paper entitled ‘‘Empirical Esti-
mation of Flow Rate Statistics.’’

Fig. 1 illustrates the earth dam geometries considered in this
study, each shown for a realization of the soil permeability
field. The square and rectangular dams were included since
these are classical representations of the free surface problem
(Dupuit problem). The other two geometries are somewhat
more realistic. The steep sloped dam labeled Dam 1 in Fig. 1
can be thought of as a clay core held to its shape by highly
permeable back fill having negligible influence on the flow
rate (and thus the fill is not explicitly represented).

Fig. 2 shows two possible realizations of Dam 1. It can be
seen that the free surface typically lies some distance below
the top of the dam. Because the position of the surface is not
known a priori, the flow analysis necessarily proceeds itera-
tively. Under the free surface, flow is assumed to be governed
by Darcy’s law characterized by an isotropic permeability,
K(x), where x = spatial location

Vig=0; ¢=—-KxVd n

where g = specific discharge vector; and ¢ = hydraulic head.

RANDOM FIELD PERMEABILITY MODEL

The permeability, K(x), is assumed to follow a lognormal
distribution, consistent with the findings of Freeze (1975),
Hoeksema and Kitanidis (1985), and Sudicky (1986) and with
the work of Griffiths and Fenton (1993), with mean ., and
variance o;. Thus InK is normally distributed (Gaussian) with
mean ., , and variance o, where

2
o=l (1 + (-:L—;) (a)
t
1,
Rune = In () — 5 Tink (26)

Since K(x) is a spatially varying random field, there will also
be a degree of correlation between K(x) and K(x'), where x
and x' = any two points in field. Intuitively it makes sense
that the permeability at x and x' will be quite similar if x and
x" are close together. Alternatively, if the two points are widely
separated less correlation may be expected. Mathematically
this concept is captured through the use of a spatial correlation
function, which, in the present study, is an exponentially de-
caying function of separation distance 7 = x — x' (Sudicky
1986)

p(x) = 7 ©)
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FIG. 1. Earth Dam Geometries Considered in Study

FIG. 2. FEM Discretization of Dam 1 Shown In Fig. 1; Two Pos-
sible Realizations

where 6, = scale of fluctuation [also referred to as integral
scale; 6, is twice the integral scale defined by Dagan (1989)]
defined in terms of the correlation function as

=

0, = f p(7) dr 4)

where in the isotropic case T = |1]. Loosely speaking, the scale
of fluctuation can be thought of as the distance over which
points on the random field show substantial correlation. Eg,
(3) is a Gauss-Markov model for which short scales of fluc-
tuation yield “‘rougher’’ or less correlated fields, while longer
scales yield smoother or more correlated fields. When 6, —
*, the random field becomes completely correlated; all points
on the field have the same permeability, assuming stationary
mean, and variation only occurs from realization to realization
(the permeability is still random, just not within a specific
realization). When 8, = O the permeability at all points become

independent, a physically unrealizable situation. In fact scales
of fluctuation less than the size of laboratory samples used to
estimate permeability have little meaning since Darcy’s law is
a continuum representation where the permeability is mea-
sured at the laboratory scale. In this light, the use of the phrase
‘‘permeability at a point’’ herein really means permeability in
a representative volume (of the laboratory scale) centered at
the point,

As discussed previously, when the scale of fluctuation is of
the same size or greater than the dimensions of the dam, re-
alizations of the random field may exhibit what appears to be
nonstationary behavior over the observed domain (evidenced
by trends in the mean and covariance structure); the random
field itself is still second-order stationary, but it is essentially
being viewed over a segment too small to illustrate this sta-
tionarity. If similar trends exist in earth dams which have been
field sampled, there are two ways of accommodating them: (1)
Account for the trends functionally and randomly model only
the stationary residual (which ensures estimated scales of fluc-
tuation significantly smaller than the domain size); or (2) as-
sume that the earth dam is just a segment of a much larger
mass of soil and attempt to estimate its scale of fluctuation
directly. Typically the latter approach depends on more infor-
mation than available from a single earth dam, but it has the
advantage of not prescribing a functional form for the trends
in the permeability field (if these are not known for the earth
dam being studied).

Another possibility which has been receiving considerable
attention in the last few years and which holds much promise
is to use multiscale or infinite-scale random field models such
as statistically self-similar or fractal processes, characterized
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by a fractal dimension, to represent the random permeability
field. These processes exhibit apparently nonstationary behav-
ior at all finite observation scales and have the advantage of
not depending on a single scale of fluctuation which may be
difficult to estimate from a single realization especially in the
presence of apparently nonstationary trends. While there is ev-
-idence that statistically self-similar processes are representative
of a large range of physical phenomena [see, for example,
Mandelbrot (1982)], most geostatistical effort has gone into
developing exponentially decaying correlation models char-
acterized by a single scale of fluctuation (possibly in each
coordinate direction). For this reason statistically self-similar
models are not pursued further in the current study.,

Simulations of the soil permeability field proceeds in two
steps; first an underlying Gaussian random field, G(x), is gen-
erated with mean zero, unit variance, and spatial correlation
function (3) using the Local Average Subdivision (LAS)
method introduced by Fenton and Vanmarcke (1990). The
LAS algorithm produces a regular grid of elements, each el-
ement having a value assigned to it equal to the local average
of the enclosed random field. This approach is well suited to
use with finite-element analyses since local average values can
be easily mapped to the finite elements and element statistics
are properly related to the element size [as the element size
increases, the local average variance decreases due to the av-
eraging effect; see Vanmarcke (1984)].

Next, since the permeability is assumed to be lognormally
distributed, values of K;, where i denotes the ith element, are
obtained through the transformation

K; = explpan T 0:G(x)] &)

where x; is the centroid of the ith element and G(x,) is the local
average value generated by the LAS algorithm of the cell
within which x; falls. As will be discussed later, the finite-
element mesh is deformed while iterating to find the free sur-
face so that local average elements only approximately match
the finite elements in area. Thus for a given realization, the
spatially ‘‘fixed’’ permeability field values are assigned to in-
dividual elements according to where the element is located
on each free-surface iteration.

Both permeability and scale of fluctuation are assumed to
be isotropic in the present study. Although layered construc-
tion of an earth dam may lead to some anisotropy relating to
the scale of fluctuation and permeability, this is not thought to
be a major feature of the reconstituted soils typically used in
earth dams (unfortunately, to the writers’ knowledge, there is
no evidence to formally support or refute such a statement).
In contrast, however, natural soil deposits can exhibit quite
distinct layering and stratification in which anisotropy can not
be ignored. Note that random fields with ellipsoidally aniso-
tropic correlation functions, for example of the form

¥ 2 282
T, 3) o (H_% s T) ©
9 03

1

p(T) = exp (—2

where 6, and 8, = directional scales of fluctuation, can always
be transformed into isotropic forms by suitably scaling the
coordinate axes. In this example by using x; = x,(8,/8,), where
x; = space coordinate measured in same direction as T,, (6)
becomes isotropic with scale 8, and lag T = V/7} + (13)% with
7, measured with respect to x;. Thus, if anisotropy is signifi-
cant, such a transformation can be performed to allow the use
of the results presented here, bearing in mind that it is the
transformed geometry which must be used in the sequel.
The medel itself is two-dimensional, which is equivalent to
assumning that the stream-lines remain in the plane of analysis.
This will occur if the dam ends are impervious and if the scale
of fluctuation in the out-of-plane direction is infinite (implying
that soil properties are constant in the out-of-plane direction).
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Clearly the latter condition will be false; however a full three-
dimensional analysis is beyond the scope of the present study.
It is believed that the two-dimensional analysis will still yield
valuable insights.

FINITE-ELEMENT MODEL

For a given permeability field realization, the free surface
location and flow through the earth dam is computed using a
two-dimensional iterative finite element model derived from
Smith and Griffiths (1988), Program 7.1. The elements are 4-
node quadrilaterals and the mesh is deformed on each jteration
until the total head along the free surface approaches its ele-
vation head above a pre-defined horizontal datum. Conver-
gence is obtained when the maximum relative change in the
free surface elevation at the surface nodes becomes less than
0.005. Fig. 2 illustrates two possible free surface profiles cor-
responding to different permeability field realizations with the
same input statistics.

When the downstream face of the dam is inclined, the free
surface tends to become tangent to the face resulting in finite
elements that can be severely skewed, leading in tumn to in-
accurate numerical results. This difficulty is overcome by pro-
portionately shifting the mesh as the free surface descends to
get a finer mesh near the top of the downstream face. Because
of the mesh deformation taking place in each iteration along
with the need to maintain the permeability realization as spa-
tially fixed, the permeabilities assigned to each element are
obtained by mapping the element centroids to the permeability
field using (5). Thus the local average properties of the random
field are only approximately reflected in the final mesh; some
of the smaller elements may share the same permeability if
adjacent elements fit inside a cell of the random field. This is
believed to be an acceptable approximation, leading to only
minor errors in the overall stochastic response of the system,
as discussed next.

Preliminary tests performed for the present study indicated
that the response statistics only began to show significant de-
viations when fewer than 5 elements were used in each of the
two coordinate directions. In the current model 16 elements
were used in each direction (256 elements in total). This en-
sures reasonable accuracy even in the event that some ele-
ments are mapped to the same random field element. Because
the elements are changing size during the iterative process,
implying that the local average properties of the random field
generator are only approximately preserved in the final mesh,
there is little advantage to selecting a local average random
field generator over a point process generator such as the fast
Fourier transform (FFT) or Turning Bands (TBM) methods.
The LAS algorithm was selected for use here primarily be-
cause it avoids the possible presence of artifacts (in the form
of streaks) in individual realizations arising in TBM realiza-
tions and the symmetric covariance structure inherent in the
FFT algorithm (Fenton 1994). The LAS method is also much
easier to use than the FFT approach.

Flow rate and drawdown statistics for the earth dam are
evaluated over a range of the statistical parameters of K. Spe-
cifically the mean and standard deviation of the total flow rate,
mg and sg, and the drawdown, my and sy, are estimated for
o/ = {0.1, 0.5, 1.0, 2.0, 4.0, 8.0} and 6, = {0.1, 0.5, 1.0,
2.0, 4.0, 8.0} by averaging over 1,000 realizations for each
(resulting in 6 X 6 X 1,000 = 36,000 realizations in total for
each dam considered). An additional run using 8, = 16 was
performed for Dam 1 to verify trends at large scales of fuc-
tuation. The mean permeability, ., is held fixed at 1.0. The
drawdown elevations Y are normalized by expressing them as
a fraction of the overall (original) dam height.
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SIMULATION RESULTS

On the basis of 1,000 realizations, a normalized frequency
histogram of flow rates and drawdowns can be produced for
each set of parameters of K(x). Typical histograms are shown
in Fig. 3, with fitted lognormal and Beta distributions su-
perimposed on the flow rate and normalized drawdown re-
spectively. The parameters of the fitted distributions are esti-
mated by the method of moments from the ensemble of real-
izations, which constitute a set of independent samples, using
unbiased sample moments. For the lognormal distribution the
estimators are

Mag=2 > g, (7a)

=]

1
2 e
Sl"g_n—l

> (nQ, — mug)

i=1

(76)

where @, = total flow rate coming from the ith realization. For
n = 1,000 realizations, the coefficient of variation of the esti-
mators (assuming InQ follows a normal distribution) my,, and
Sing are 0.0320,,/ Wi, and 0.045, respectively.

It can be seen that the lognormal distribution fits the flow
rate histogram reasonably well, as is typical; 60% of the cases
considered (based on 1,000 realizations each) satisfied the Chi-
Square goodness-of-fit test at the 5% significance level. A re-
view of the histograms corresponding to those cases not sat-
isfying the test indicates that the lognormal distribution is still
a reasonable approximation, but that the Chi-Square test is
quite sensitive. For example, the histogram shown in Fig. 3(a)
fails the Chi-Square test at all significance levels down to
0.15%. From the point of view of probability estimates asso-
ciated with flow rates, it is deemed appropriate therefore to
assume that flow rates are well approximated by the lognormal
distribution and all subsequent statistics of flow rates are de-
termined from the fitted lognormal distribution.

Since the normalized drawdown is bound between 0 and 1
it was felt that perhaps a Beta distribution might be an appro-
priate fit. Unfortunately the fit, obtained by method of mo-
Ments using unbiased sample moments of the raw data, was
typically poor; the histogram shown in Fig. 3(b) has sample
Mmean and standard deviation 0.533 and 0.125, respectively,
8iving Beta distribution parameters & = 7.91 and B = 6.93.
The fitted distribution fails to capture the skewness and upper
tail behavior. Nevertheless, the drawdown mean and variance
can be estimated reasonably accurately even though its actual
distribution is unknown. For 1,000 realizations, the estimators
of the mean and variance of normalized drawdown have co-

efficients of variation approximately 0.032s,/m, and 0.045, us-
ing a normal distribution approximation.

The estimated mean and variance of the total log-flow rate,
denoted here as m,p and sk respectively, are shown in Fig.
4 as a function of the variance of log-permeability, o, = In(1
+ oi/ui), and the scale of fluctuation, 8,. These results are
for Dam 1 and are obtained from (7). Clearly the mean log-
flow rate tends to decrease from the deterministic value of
In(Q,,) = In(1.51) = 0.41 (obtained by assuming K = pe=1.0
everywhere) as the permeability variance increases.

In terms of the actual flow rates which are assumed to be
lognormally distributed, the transformations

mg = exp(ig + Snp/2) (8a)

(8b)

can be used to produce the mean flow rate plot shown in Fig.
5. The apparent increase in variability of the estimators (see,
for example, the 6, = 16 case) is due in part to the reduced
vertical range, but is also partly due to errors in the fit of the
histogram to the lognormal distribution and the resulting dif-
ferences between the raw data estimators and the log-data es-
timators. :

It can be seen that the mean flow rate also reduces from the
deterministic value, Q,, = 1.51, with increasing o%,. The re-
duction is more pronounced for small scales of fluctuation but
virtually disappears for scales of fluctuation considerably
larger than the dam itself. It is known that as the scale of
fluctuation becomes negligible compared to the size of the
dam, the effective permeability approaches the geometric
mean K = p, exp {—1/205:} (Dagan 1989), which for fixed
i illustrates the reduction in flow rate. Intuitively, one can
think of this reduction in mean flow rate by first considering
one-dimensional flow down a pipe; the total flow rate down
the pipe is heavily dependent on the minimum permeability
encountered along the way. As the variance of the permeability
increases, and in the case of small scales of fluctuation, the
chances of getting a small permeability or blocked pipe also
increases, resulting in a decreased mean flow rate. Similar,
albeit less extreme, arguments can be made in the two-dimen-
sional case, leading to the observed and predicted reduction in
mean total flow rate as o2, increases. As the scale of fluctu-
ation increases to infinity, the mean flow rate, m,, becomes
equal to Q,,, independent of o}, as illustrated by the 6, = 16
case in Fig. 5. In this case, the random field is relatively uni-
form, and although individual realizations show considerable
variability in total flow rate, the mean approaches the value
predicted by K = p,.

sp = malexp(sig) — 1]
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For short scales of fluctuation, the variance of log-flow rate
is small, as evidenced by s, in Fig. 4, increasing as the scale
of fluctuation and o2, increase. In the limit as 6, — =, it can
be shown that oy = 0k and Py = In(Q,.,) — Thi/2, trends
which are seen in Fig. 4 for 8, = 16. Similar results were found
for the other dam geometries.

Fig. 6 shows the estimated mean and standard deviation of
the normalized drawdown, m, and s, respectively, again for
the earth Dam 1 shown in Fig. 1. It can be seen that although
some clear patterns exist for the mean drawdown with respect
to the scale of fluctuation and o'},,, the magnitude of the mean
drawdown is little affected by these parameters and remains
close to ¥ = 0.58 of the total dam height obtained in the de-
terministic case with K = p, = 1.0. Note that for 6, = 4, o5,
= 2.83, the standard deviation of Y is estimated to be about
0.21, giving the standard deviation of the estimator my to be
about 0.0066. The 90% confidence interval on .y is thus ap-
proximately [0.51, 0.53] for m,= 0.52. This observation easily
explains the rather erratic behavior of my observed in Fig. 6.
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The variability of the drawdown, estimated by sy, is signif-
icantly affected by 6, and o'%;. For small scales of fluctuation
relative to the dam size, the drawdown shows little variability
even for high permeability variance. This suggests that, under
these conditions, using a fixed free surface to model the dam
may be acceptable. For larger scales of fluctuation, the draw-
down shows more variability and the stochastic nature of the
free surface location should be included in an accurate anal-
ysis. Although it may seem that the drawdown variability con-
tinues to increase with increasing scale of fluctuation, it is
known that this is not the case. There will be a worst-case
scale at which the drawdown variability is maximized; at even
larger scales, the drawdown variability will decrease since in
the limit as 8, — o, the drawdown becomes equal to the de-
terministic result ¥ = 0.58, independent of the actual perme-
ability. In other words, the drawdown becomes different from
the deterministic result only in the presence of intermediate
scale fluctuations in the permeability field. To investigate this
phenomena, Dam 1 was analyzed for the additional scale 8, =
16 m, much greater than the earth dam dimension of around
3 to 4 m. It appears from Fig. 6 that the drawdown variance
is maximized for 6, = 4 m, that is for 8, of the order of the
earth dam size.

EMPIRICAL ESTIMATION OF FLOW RATE STATISTICS

In that many designers and planners have neither the time
nor the resources to perform full scale Monte Carlo simula-
tions of flow through earth dams with spatially random prop-
erties, it is worthwhile investigating approximate or empirical
methods of estimating the mean and variance of flow through
an earth dam. In the following, a semiempirical approach is
adopted, with the understanding that its accuracy in estimating
flow statistics for problems other than those considered here
is currently unknown. In practice the following results should
be viewed as providing ball-park estimates, and more accurate
estimates must currently be obtained via simulation.

The approach starts by noting that the mean, p,,,, and var-
iance, oi,g, of log-flow through a square two-dimensional do-
main with impervious top and bottom faces and constant head
along both faces is accurately predicted by [on the basis of
simulation studies, see Fenton and Griffiths (1993)]

1
Bne = In(Q.,) — 3 Ok (9a)
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Cho = ohy(D, D) ) (9b)

with equivalent results in real space (assuming that Q follows
a lognormal distribution) given by

He = Oy, exp {—‘;‘ &ﬁu[l - v(D, D)]} (10a)

— ¥(D, D)]Hexplohy(D, D)] — 1}
(100)

where Q,, = flow rate obtained in deterministic analysis of
flow through domain having permeability K(x) = p, every-
where; D = square root of domain area (i.e., side length); and
oiy(D, D) = variance of local average of random field
In(K) over domain D X D. In the event that D >> 6,, so that
v(D, D) = 0, 9(a) and 9(b) become equal to that predicted
using the geometric mean of permeability, that is to the effec-
tive permeability defined by Dagan (1989) and Gelhar (1993),
In the more general case, Rubin and Gémez-Herndndez (1990)
obtained similar results derived using a perturbation approach
valid only when both v(D, D) and of,,y(D, D) are small, For
values of y(D, D) and o2, typical of the present study, Rubin
and Gdémez-Herndndez’s results are considerably in error.

The function (-, *) is referred to as the variance function
and is shown in Appendix I for the random field considered
in this paper, among others. It is an alternative way of char-
acterizing the second-order information of a random field and
can be obtained directly by integrating the covariance function
(Vanmarcke 1984). In that most engineering properties are ob-
tained as local averages of a spatially random field (i.e., per-
meability is measured using a finite volume sample, concrete
strength is measured using a finite volume cylinder, etc.), the
variance function is pertinent as it defines how the variability
of a sample reduces as the averaging domain increases, thus
demonstrating scale effects succinctly. The reduction in vari-
ance as averaging increases is a well known principle in sta-
tistics; intuitively, though, it may be understood more com-
pletely by considering the simple example of a row-boat near
a supertanker on the surface of the (rough) ocean. Because the
supertanker averages a much larger area of the ocean’s surface,
the variability in its motion is typically far less than that of
the row-boat. They have the same mean displacement, but the
Supertanker has much smaller displacement variance (dynamic
effects serve to enforce the averaging).

op =0 exp{—ok,[l

03

Ink
FIG. 6. Estimated Mean and Standard Deviation of Normalized Free Surface Drawdown for Dam 1

The variance function equals 1 when no averagmg is per-
formed and reduces monotorucally to 0 as the averaging region
increases. Specifically, if X, is the random variable obtained
by averaging the stationary random field X, with variance
O, over the domain D X D (in two-dimensions), then the
variance of X, is given by

0% = 0xY(D, D) an

The parameter D = size of averaging region. In the case of
(9), D refers to the side length of a two-dimensional square
flow reglme studied in Fenton and Griffiths (1993) thus the
flow is affected by the average permeability in a domain of
size D X D. The mean and variance of flow through such a
two-dimensional domain is expected to depend in some way
on the reduction in variance due to averaging over the domain,
leading to the results given by (9) and (10).

The shapes of the functions given by (9) are similar to thosc
seen in Fig. 4, suggesting that these functions can be used to
predict the mean and variance of log-flow through an earth
dam if an effective value of D can be found to characterize
the flow through the dam. Thus the task is to find the dimen-
sion Dy of an equivalent two-dimensional square domain
whose log-flow rate statistics (at least the mean and variance)
are approximately the same as observed in the earth dam. One
possible estimate of this effective dimension is

D il (12)
“"Ngo

where A,. = earth dam area (in-plane) under free surface
through which flow takes place, i.e., excluding unsaturated soil
above free surface; and Q = nondimensionalized flow rate
through the earth dam obtained with K(x) = p, everywhere,
that is

gu (13)
W Hoz

where H.x = effective fluid head; and z = out-of-plane thick-
ness of dam, which, for a two-dimensional analysis, is 1.0.
Although it would appear reasonable to take H. as the average
hydraulic head over the upstream face of the dam, it turns out
to be better to take H.z = y,/3, the elevation of the centroid
of the pressure distribution, where y, = upstream water head

JOURNAL OF GEOTECHNICAL ENGINEERING / JUNE 1996 / 433



S (a) F
o -
e
S -
o
EFRE
g
A o 6=01
] o 6=05
¢ 68=10
ot p m 0=20
.4 e 08=40
B AT ¢ 0=80
v + 08=16.
B &
I | 1 T I I T
A .35 2 45 4 05 0 058 1

M q

Sln Q

24

—
/,/
T (b) .4"/-{- "",.‘
rd /
og _| "/ ~
— &
/ #
vy | .0_)/
b ,/"’.-
L3 i >
5 o 6=0.1
S 7 o 6=05
¢ 0=10
S m 6=20
® 06=40
g - ¢ 06=80
+ 0=16.
o
1 i I I

I I I
06 09 12 15 18 21 24
O q

0 03

FIG. 7. Comparison of Following: (a) Mean; (b) Standard Deviation Statistics Derived via Simulation and as Predicted by (9)

(and overall height of dam). Substitution of (13) into (12),
along with this choice of He.y gives

A ek YuZ
Dy = o [abaet (14)
! 30,

This equation can then be used in (10) to estimate the desired
flow rate statistics.

Fig. 7 illustrates the agreement between the mean and stan-
dard deviations derived via simulation and predicted using
(14) in (9) for all four earth dam geometries shown in Fig. 1.
The dashed lines in Fig. 7 denote the =10% relative error
bounds. It can be seen that most of the predicted statistics
match those obtained from simulation quite well, in terms of
absolute errors. A study of relative errors shows that 90% of
the cases studied had relative errors less than 20% for both
the prediction of the mean and standard deviation. There is no
particular bias in the errors with respect to over- versus under-
estimation. _

Admittedly, the effective dimension approach cannot prop-
erly reflect the correlation structure of the actual dam through
a square domain approximation; if the dam width is signifi-
cantly greater than the dam height (as in Dam 4), then the
correlation between permeabilities at the top and bottom will
generally be higher than from left edge to right edge. An
equivalent square domain will not capture this. Thus, the ef-
fective dimension approach adopted here is expected to per-
form less well for long narrow flow regimes combined with
scales of fluctuation approaching and exceeding the size of the
dam. In fact, for the prediction of the mean, the simulation
results belie this statement in that Dam 4 performed much
better than Dams 1, 2, or 3. For the prediction of the standard
deviation, Dam 4 performed the least well, perhaps as ex-
pected. Nevertheless, overall the results are encouraging.

Thus, the effective dimension approach can be seen to give
reasonable estimates of the mean and variance of log-flow
rates through the dam in most cases. To compute these esti-
mates, the following steps must be performed:

1. Perform a single finite element analysis using K(x) = p,
throughout the earth dam to determine Q,, and the area
of the dam below the free surface, A,

2. Estimate the effective dam dimension using (14)
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3. Compute the local average variance reduction factor,
Y(D.q, D.g), corresponding to the random field used to
model the log-permeability field (see Appendix I)

4, Estimate the mean and variance of log-flow through the
dam using (9) (these values can be used directly in the

lognormal distribution to compute probability estimates)-

CONCLUSIONS

Although only a limited set of earth dam geometries are
considered in the present paper, it should be noted that the
stochastic response of a dam is dependent only on the ratio of
the scale of fluctuation to the dam dimensions, for given dam
shape and type of random field. For example, consider two
earth dams with the same overall shapes and permeability sta-
tistics, 1 and oi. If the second of the two dams is of twice
the size and has twice the scale of fluctuation as the first, then
the second will have twice the flow rate mean and standard
deviation as the first and they will have identical normalized
drawdown statistics. Similarly, the results shown here are eas-
ily scaled for different values of p,; the important parameter
as far as the stochastic response is concerned is the coefficient
of variation, o/, [or equivalently of, = In(l + oi/pi)].
These properties can be used to confidently employ the results
of this paper on earth dams of arbitrary dimension and mean
permeability.

For scales of fluctuation that are small relative to the size
of the dam, the simulation results indicate the following:

1. The flow through the dam is well represented using only
the estimated mean flow rate my, that is, the flow rate
variance is small

The mean flow rate falls rapidly as o' increases

The free surface profile will be relatively static and can
be estimated confidently from a deterministic analysis
[the simulation results imply that for both small and large
scales of fluctuation (relative to the dam size), the draw-
down variability is small and the Monte Carlo analysis
could proceed using a fixed free surface found from the
deterministic analysis, avoiding the need to iterate on
each realization]

S

As the scale of fluctuation becomes larger, the mean flow
rate does not fall as rapidly with increasing o'f, while the
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variability of the flow rate from one realization to the next
increases significantly. The variability in the free surface lo-
cation reaches a maximum for intermediate scales of fluctua-
tion, apparently for scales of the order of the earth dam size.

The computation of estimates of the mean and variance of
flow rates through an earth dam using (9) allow designers and
planners to avoid full scale Monte Carlo simulations and can
be used to approximately address issues regarding earth dam
flow rate probabilities via a lognormal distribution. If more
accurate estimates of these quantities are desired, particularly
for scales of fluctuation approaching or greater than the dam
size, then a full scale Monte Carlo simulation is currently the
only viable choice. In that the mean, variance, and scale of
fluctuation parameters of the permeability field, as estimated
from the field, are themselves quite uncertain, the approximate
estimate of the flow rate statistics may be quite appropriate in
any case.
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APPENDIX . VARIANCE FUNCTIONS

The variance function corresponding to the correlation func-
tion (3) cannot be determined analytically but is approximated
by Vanmarcke (1984) to a reasonable degree of accuracy as

Y(Ar, A7) =% [YAYA]A) + y(A)y(Ai|A2)]  (15a)

where

A 3/24-2/3 A 3/24-2/3
v(4) = [1 + (e—') } i ovAlA) = {1 &+ (E‘l) }
i )

(156,¢)

ol (1-3) e [-(R) ]} oo

and where 8, = directional scale of fluctuation (in the present
study, 6, = 8, = 8,).

The variance function corresponding to the separable Gauss-
ian correlation function

p(7) = exp [—% (1 + Ti)] (16)
is given bSr the product
-'Y(Al A = 'Y(Al)'Y(Az) amn

of the corresponding 1D variance functions

_ & [=al (V) (_frA?) _ ]

Note that this result contained typographical errors in the paper
by Fenton and Griffiths (1993).

Finally, the variance function corresponding to the correla-
tion function (also separable)

p(1) = exp [*% (I + iTzl):| (19)

is the product

YA, Ag) = y(A)y(AL)

of the corresponding 1D variance functions

(20)

=2 1 20y _2Ad) _
YA =24z [ o, T exv( b 1 2y
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APPENDIX 1Il. NOTATION

The following symbols are used in this paper:

A, = area of flow regime under free surface;
D = side dimension of square flow domain;
D,y = effective earth dam dimension;
erf{-} = error function;
G(x) = mean zero, unit variance, Gaussian log-permeability
field;
H,x = effective fluid head acting on dam;
K(x) = permeability field;
myo = mean of log-flow rate estimated via simulation;
mgy = flow rate mean estimated via simulation;
my = normalized drawdown mean estimated via simulation;
@ = total flow rate;
Q = nondimensionalized total flow rate;
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flow rate obtained with K(x) = p, everywhere,
specific discharge vector (at a point),

standard deviation of log-flow rate estimated via sim-
ulation;

flow rate standard deviation estimated via simulation;
normalized drawdown standard deviation estimated via
simulation;

spatial coordinate;

normalized drawdown (elevation of downstream flow
exit point);

height of earth dam;

dam thickness in out-of-plane direction;

parameter of Beta distribution;

parameter of Beta distribution;
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hydraulic head;

variance function (variance reduction due to local av-
eraging);

permeability mean;

mean of log-permeability;

predicted mean of log-flow rate;
predicted flow rate mean;

scale of fluctuation of permeability fields;
correlation function;

variance of log-permeability;

predicted variance of log-flow rate;
predicted flow rate variance;

permeability variance; and

spatial separation or lag vector.



