FiniTE ELEMENT MODELING OF SETTLEMENTS
ON SPATIALLY RANDOM SOIL
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ABSTRACT: The effect of a random and spatially correlated soil stiffness on the total settlement under the
center of a uniformly loaded flexible-strip footing has been studied. Random field theory has been combined
with the finite-element method to perform *‘Monte Carlo’" simulations of the settlement problem with a variable
Young’s modulus and a constant Poisson’s ratio. The soil Young’s modulus field has been simulated with a
fixed mean, standard deviation, and spatial correlation structure using the local average subdivision (LAS)
method. The results of parametric studies have been compared with the deterministic quantities to gauge the
effect of the standard deviation, correlation structure, and geometry on the settlement behavior. The results
indicate a modest increase in expected settlement for presumptive ranges of soil stiffness variability.

INTRODUCTION

In conventional geotechnical analyses, the soil properties are
assumed to be characterized by some fixed value that is de-
termined from laboratory testing of soil samples or in-situ
measurements. Analyses then proceed with this value in a de-
terministic manner yielding a solution that is dependent on the
quality of the characteristic value that has been used. Natural
soil is often extremely nonhomogeneous in properties due to
its composition and deposition. These properties vary from
point to point and the variations may be great even if the soil
is ‘*homogeneous’’ under a soil classification system.

The incorporation of random fields (Vanmarcke 1984) into
engineering analyses allows the modeling of the spatially ran-
dom soil, taking into account the correlation structures of the
properties. The settlement and stress responses of shallow
foundations on a random soil medium have previously been
investigated by Baecher and Ingra (1981), Righetti and Har-
rop-Williams' (1988), Zeitoun and Baker (1992), and Paice et
al. (1994).

FINITE ELEMENT MODEL

The model that has been used for the present study assumes
plane strain conditions. The soil medium is underlain by a
rigid stratum and is loaded at the center of the soil surface, as
shown in Fig. 1 (the regions of lower Young's modulus are
represented by darker grays; higher Young's modulus regions
are represented by lighter grays). The finite element program
used is similar to that published by Smith and Griffiths (1988)
and uses meshes of square four-node elements. The global
stiffness matrix of the problem has been formed using alge-
braic closed-form element stiffnesses (Griffiths and Mustoe
1995) based on the *‘K-G’" selective reduced integration (SRI)
formulation that splits the element stiffness matrix into bulk
modulus, K, and shear modulus, G, partitions. The use of the
closed-form element stiffnesses greatly reduces the time re-
quired for the forming of the global stiffness matrix, and the
“K-G'* SRI allows the study of incompressible problems (e.g.,
undrained clay) in which Poisson’s ratio approaches the value
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of 0.5 without the numerical locking observed when using
exact integration.

SIMULATION OF YOUNG’S MODULUS FIELD

For the current study, the soil has been treated as a linear
elastic body with a spatially random Young’s modulus and a
constant Poisson’s ratio. The latter assumption has been taken
due to little being currently known about the variability of the
Poisson’s ratio, which is difficult to measure (Baecher and
Ingra 1981; Zeitoun and Baker 1992; Paice et al. 1994). The
coefficient of variation (og/jLz) of the Young's modulus has
been quoted as having a range from 2% (0.02) to 42% (0.42)
with a recommended value of 30% (Lee et al. 1983).

The lognormal distribution has been adopted for the gen-
eration of the Young's modulus fields; the use of this distri-
bution being consistent with the knowledge that the Young's
modulus may not have a negative value. Accepting the use of
this distribution, then, the Young’s modulus field is obtained
through the transformation

E; = exp(funz + Ousgi) (n

where E; = Young’'s modulus assigned to ith element; g; =
local average of standard Gaussian random field, g, over do-
main of ith element; and W,z and 0,z = mean and standard
deviation of logarithm of E (obtained from ‘‘target’’ mean and
standard deviation pg and o).

The local average subdivision (LAS) technique (Fenton
1990; Fenton and Vanmarcke 1990) generates local averages
g:, which are derived from the random field g having zero
mean, unit variance, and a spatial correlation controlled by the
scale of fluctuation, 8. The scale of fluctuation is a measure
of the distance, beyond which the points of the random field
are effectively uncorrelated. As the scale of fluctuation goes
to infinity, g; becomes equal to g, for all elements i and j—
the field of Young’'s moduli tends to become highly correlated
and uniform on each realization. At the other extreme, as the
scale of fluctuation goes to zero, g; and g, become independent
for all i # j—the field of Young’s moduli tends to become
highly uncorrelated and varies rapidly from point to point. For
all of the analyses an exponential correlation structure has

FIG. 1. Typical Displaced Finite Element Mesh Overlain by
Young's Modulus Field (8/h=0.5, v = 0.2, og/je = 0.42, 8, = 4.0
m; Displacement Magnification = 2.5 x 10°)
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been used, i.e., the positive correlation between points in the
field decays exponentially with increasing distance.

For the present study, the soil was represented by a two-
dimensional (2D) isotropic random field and, thus, the out-of-
plane variation of the soil Young’s modulus has not been taken
into account. This limitation on the analysis implies that the
scale of fluctuation in this direction is infinite (the soil's
Young’s modulus is constant in this direction). This is clearly
a deficiency of the current model, but it is believed that the
general trends of the behavior of the soil medium are still
valid. Earlier studies (Paice et al. 1994) made the assumption
of a random field that was symmetrical about the footing cen-
terline. In the current study this assumption was not used and
the whole domain has been analyzed, although it was found
that the statistics of the symmetric and nonsymmetric analyses
were in close agreement.

PARAMETRIC STUDIES

For the analyses, parametric studies were performed for a
range of problem geometries and soil parameter values. To
obtain a sufficiently large number of results for the calculation
of the output statistics, it was decided that each *‘Monte
Carlo’’ analysis would consist of 2,000 realizations of the
Young's modulus field. The output statistics are then obtained
from the ensemble of solutions calculated by the finite element
method program. In all analyses the soil is assumed to be
isgtropic with a mean Young’s modulus of pg= 1.0 X 10°kN/
m-.
The values of Poisson’s ratio used were

v € {0.0, 0.2, 0.4} @)

but results are only presented for v = 0.2.
The coefficient of variation (og/pg) was varied over the
following range:

0.0 < op/pe = 1.0 3)

where a value of oz/p; equal to zero indicates a deterministic
analysis based on a constant Young's modulus of p.g assigned
to all elements in the finite element mesh. The scale of fluc-
tuations (8z) considered was as follows:

6: € {0.25 m, 1.0 m, 4.0 m, 16.0 m} (4)

Parametric studies of the flexible-strip footing carrying a
unit uniformly distributed load were performed to determine
the effect of the coefficient of variation (oz/pg) and the scale
of fluctuation (8;) on the total vertical settlement under the
center of the footing,

For each case in the parametric studies, statistics were ob-
tained relating to the vertical settlement under the center. The
statistics are presented in the form of an influence coefficient
(I) that is obtained in the same manner as Poulos and Davis
(1974)

PO i s)

ph

where the Young's modulus, E, is taken as pg. The principle
of superposition has been used to calculate the values of the
influence coefficient at the center of the loaded width; ie., B
is equal to half the width and p is equal to half the central
settlement. A value of A = 15.0 m has been used for all of the
analyses that are presented here.

RESULTS
Influence Coefficient

Fig. 2 shows the variation of the mean of the influence
coefficient, i, with the coefficient of variation, og/pLg where
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e = 1.0 X 10°kN/m?, for a Poisson’s ratio of 0.2 and scale
of fluctuation 6; € {0.25 m, 1.0 m, 4.0 m, 16.0 m}. For all
scales of fluctuation, as the coefficient of variation approaches
zero the value of p, tends to the deterministic value of 1.25,
which agrees with the chart of Poulos and Davis (1974). As
the coefficient of variation increases from zero, the value of
M, increases for all ;.

At a coefficient of variation of 0.42, the recommended upper
value by Lee et al. (1983), the increase in the value of ., is
modest for 6z up to 16.0 m, between 1.08 and 1.15 times the
deterministic value. For a higher coefficient of variation of 1.0,
the value of ., shows a significant increase equal to 1.43 —
1.71 times the deterministic value for 6; = 0.25 — 16.0 m.

Fig. 3 shows the variation of the standard deviation of the
influence coefficient, o, for the same analyses that are shown
in Fig. 2. Again, as og/pe approaches zero the analyses be-
come deterministic for all scales of fluctuation (a standard de-
viation of zero implies no variability and, therefore, a deter-
ministic analysis). As the coefficient of variation increases, the
standard deviation of the influence coefficient rapidly increases
for all scales of fluctuation. This rapid increase shows the de-
gree of uncertainty in the influence coefficient and indicates
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the observed scatter of the central settlements and could be
interpreted in the context of reliability-based design.

Influence of Width-to-Depth Ratio

Figs. 4 and 5 show the variation of p, with B/h and og/je
for v =10.2 and 8; € {0.25 m, 16.0 m} in the form of Poulos
and Davis (1974). In both figures, oz/pug = 0.0 represents the
deterministic value of the influence coefficient. Figs. 4 and 5
again show that as the coefficient of variation increases the
value of the mean influence coefficient also increases for all
geometries within the range of the study. The lines correspond-
ing to oz/pg = 0.42 indicate the possible settlement response
that could occur at the recommended upper value stated by
Lee et al. (1983). The lines corresponding to og/pg = 0.75 and
1.0 demonstrate the marked increase in the possible settle-
ments if the coefficient of variation of the soil Young's mod-
ulus is higher than the recommended upper value.

CONCLUDING REMARKS

In the present paper, random field theory has been combined
with the finite element method to study the settlement response
of a flexible-strip footing founded on a spatially random soil.
Parametric studies have been carried out for a number of co-

efficients of variation and scale of fluctuation to investigate
the effect of the variability of the soil Young’s modulus and
the spatial correlation on the observed settlements.

For Young's modulus variances up to the recommended up-
per limit of g /e = 0.42, the spatial correlation structure had
little effect on the expected settlement that was observed to be
around 12% higher than the deterministic value based on the
mean Young’s modulus value. In the unlikely event of higher
Young’s modulus variances well above the recommended
range, the influence of spatial correlation becomes much more
pronounced and the expected settlement can considerably ex-
ceed the deterministic value. In practice, predicted settlements
on such highly variable materials would require a correspond-
ing high factor of safety.
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APPENDIX |l. NOTATION
The following symbols are used in this paper:

B = width of flexible strip footing;

E = Young’s modulus (elastic modulus);

E, = Young’'s modulus assigned to ith element;

G = shear modulus;

g = standard Gaussian random field;

& = local average of g over ith element;

h = depth of soil layer to rigid underlying stratum;

I = edge settlement influence coefficient;

K = bulk modulus;

p = load/unit area applied to flexible strip footing;

p = settlement under edge of flexible strip footing;

v = Poisson’s ratio;
Ke. 0 = Young's modulus mean and standard deviation;
og/le = coefficient of variation of Young's modulus;
Ky o; = influence coefficient mean and standard deviation; and

8 = scale of fluctuation of Young's modulus.
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