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ABSTRACT: This paper brings together random field
seepage through a three-dimensional (3D) soil dom

generation and finite-element techniques to model steady
ain in which the permeability is randomly distributed in

space. The analyses focus on the classical problem of steady seepage beneath a single sheet pile wall embedded
in a finite layer of soil. The analyses treat the soil permeability as a spatially random property with specified
mean, variance, and spatial correlation length. The influence of the spatial correlation or ‘‘scale of fluctuation’’
is given special consideration, since this aspect is not always included in probabilistic geotechnical analysis.
The value of permeability assigned to each element comes from a lognormally distributed random field derived
from local averages of a normally distributed random field. The local averaging allows the element dimensions
to be rationally accounted for on a statistical basis. The influence of three-dimensionality is given particular
emphasis and contrasted with results that are obtained using an idealized two-dimensional model. For the com-
putationally intensive 3D finite-element analyses, strategies are described for optimizing the efficiency of the
code in relation to memory and central processing unit requirements. Monte Carlo simulations are performed to
establish statistics relating to quantities of interest to designers such as the flow rate. The potential value of this
approach is emphasized by presenting the results in the context of reliability-based design.

INTRODUCTION

The work presented in this paper brings together finite-
element analysis and random field theory in the study of a
three-dimensional (3D) boundary-value problem of steady
seepage. The aim of the investigation is to observe the influ-
ence of soil variability on the expected value of ‘output’ quan-
tities such as the flow rate. Smith and Freeze (1979a,b) were
among the first to study the problem of confined flow through
a stochastic medium using finite differences, in which two-
dimensional (2D) examples of flow between parallel plates and
beneath a single sheet-pile were presented. Recent develop-
ments in random field and finite-element methodology have
led to further studies by the writers and others of steady seep-
age problems for a range of other 2D boundary-value problems
(see, e.g., Fenton and Griffiths 1993; Griffiths and Fenton
1993; Benson 1993). See also Dagan (1989), Freeze et al.
(1990), and Gelhar (1993) for a thorough review of related
work in the area of flow through heterogeneous materials.

A conference on probabilistic methods in geotechnical en-
gineering (Li and Lo 1993) highlighted some of the recent
advances in this field. For example Mostyn and Li (1993) em-
phasized the importance of taking account of the spatial cor-
relation of soil properties in probabilistic analyses. It was
pointed out that the *‘vast majority of existing models do not
do this,” and although their particular application was the
analysis of slope stability in which the random soil properties
in question were the shear strength parameters, the same ar-
guments could be applied to soil permeability in a seepage
problem. White (1993) also described how early probabilistic
analyses typically represented soil property uncertainty by the
use of a single random variable that was varied from one cal-
culation to the next,

The use of random fields (see, e.g., Vanmarcke 1984; Fen-
ton and Vanmarcke 1990) was considered to be an important
refinement, in that the soil property at each location within the
soil mass was itself considered to be a random variable. A
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feature of the random field approach is that it appropriately
takes into account the positive correlation that is observed be-
tween soil properties measured at locations that are *‘close’
together. .

The work presented herein extends the previous work of the
writers to encompass 3D analysis. The earlier 2D model rested
on the assumption of perfect correlation in the out-of-plane
direction, an assumption no longer necessary with a 3D model.

BRIEF DESCRIPTION OF FINITE-ELEMENT MODEL

In this paper a random field generator known as the Local
Average Subdivision Method (LAS) devised by Fenton (1990)
is combined with the power of the finite-element method for
modeling spatially varying soil properties. The problem cho-
sen for study is a simple boundary-value problem of steady
seepage beneath a single sheet-pile wall penetrating a layer of
soil. The variable soil property in this case is the soil perme-
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FIIG. 1. Isometric View of: (a) 3D Seepage Problem; (b) Eleva-
tion
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ability K that is defined in the classical geotechnical sense as
having units of (L/T).

The overall dimensions of the problem to be solved are
shown in Fig. 1(a,b). Fig. 1(a) shows an isometric view of the
3D flow regime, and Fig. 1(b) shows an elevation that corre-
sponds to the 2D domain analyzed for comparison. In all re-
sults presented in this paper, the dimensions L, and L, and the
depth of wall embedment (L,/2) were held constant while the
third dimension L, was gradually increased to monitor the ef-
fects of three-dimensionality.

The finite-element program used for the solutions of La-
place’s equation presented in this paper was obtained by com-
bining Programs 5.9 and 7.0 from the modular code published
in the text by Smith and Griffiths (1988). In all analyses pre-
sented here, a uniform mesh of cubic eight-node brick ele-
ments with a side length of 0.2 was used with 32 elements in
the x-direction (L, = 6.4), 16 elements in the y-direction (L, =
3.2), and up to 16 elements in the z-direction (L, = 0.8, 1.6,
and 3.2). A time-saving feature of ‘‘brick’’ elements (i.e., all
sides meet at 90° to each other) such as those used in the
present study, is that their conductivity matrices are easily
computed explicitly without the need for numerical integra-
tion. It should be noted that a general eight-node hexahedral
element requires evaluation of the function being integrated at
eight internal Gauss points. The brick element, on the other
hand, allows the variables to be separated and an analytical
integration to be performed.

Using the local freedom numbering indicated in Fig. 2, the
symmetric conductivity matrix k; of the ith element of side
length a and isotropic permeability X, is given by (upper tri-
angle only shown for clarity)

[4 0 -1 0 0 -1 -1 -1T
4 0 -1 -1 0 -1 -1

4 0 -1 -1 0 -1
Ka 4 -1 -1 -1 o0
k=77 4 0 -1 0 M
4 0 -1
4 0

L 4 |

Within each mesh, the freedoms were numbered to mini-
mize bandwidths of the global conductivity matrix together
with a “‘skyline’” storage strategy and Cholesky factorization
to solve the simultaneous equations (see, e.g., page 78 of
Smith and Griffiths 1988). The skyline approach was found to
run faster than conventional (constant band-width) methods as

z

FIG. 2. Local Node Numbering for Eight-Node “Brick” Lapla-
cian Element

well as giving substantial savings on memory requirement:; a
particularly important consideration in 3D analysis,

The code now has the additional option of using an iterative
Algebraic Multigrid Method (see, €.g., Van&k et al. 1994) for
solving simultaneous equations. This method shows consid-
erable promise for speeding up the solution process, and the
time saving over direct solution strategies improves further
still as the number of equations incréases. It is anticipated that
iterative approaches of this type will become the standard so-
lution method for large 3D flow systems in future studies.

BRIEF DESCRIPTION OF RANDOM FIELD MODEL

Field measurements of permeability have indicated an ap-
proximately lognormal distribution (see, e.g., Hoeksema and
Kitanidis 1985; Sudicky 1986). The same distribution has
therefore been adopted for the simulations generated in this
paper.

Essentially, the permeability field is obtained through the
transformation

K = exp{p-m + e Gx} 2)

in which K, = permeability assigned to the ith element; G, =
local average of a standard Gaussian random field, G, over the
domain of the ith element; and Mine @and oy, = mean and stan-
dard deviation of the logarithm of K, obtained from the pre-
scribed mean and standard deviation My and o, via the trans-
formations

2

The LAS technique (Fenton 1990: Fenton and Vanmarcke
1990) generates realizations of the local averages G, that are
derived from the isotropic random field G having zero mean,
unit variance, and a Gauss-Markov spatial correlation function

1
P‘k = cxP {“‘Ink + by Ulznk}; U: = (;Lk)z(exp{gik} - 1) (3: 4)

)
p(7) = exp {—e—k IT!} ©)

where | 7| = distance between points in the field; and 6, = scale
of fluctuation. The term *‘realization’” in this context refers to
a single generation of the random field and the subsequent
finite-element analysis of that field. A Monte Carlo process
involves a large number of realizations that eventually enable
statistical statements to be made about the output quantities of
interest.

Loosely speaking, the scale of fluctuation is the distance
over which points in the field are significantly correlated. For
example, from (5), for T < 6, the correlation coefficient p >
0.13. As the scale of fluctuation goes to infinity, G; becomes
equal to G, for all elements i and j—that is, the field of per-
meabilities tends to become uniform on each realization (but
each realization can still be quite different). At the other ex-
treme, as the scale of fluctuation goes 1o zero, G; and G, be-
come independent for all i # j—the soil permeability changes
rapidly from point to point.

In the 3D analyses presented in this paper, the scales of
fluctuation in all directions are taken to be equal (isotropic)
for simplicity. Although beyond the scope of this paper, it
should be noted that for a layered soil mass the horizontal
scales of fluctuation are generally larger than the vertical scale
due to the natural stratification of many soil deposits. A lim-
itation of the 2D models considered previously was that the
out-of-plane scale of fluctuation was assumed infinite —soil
properties constant in this direction—which is equivalent to
specifying that the streamlines must remain in the plane of the
analysis. This was clearly a deficiency and motivated the pres-
ent work, in which no such assumptions are made.

A comparison between different methods of random field
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generation, including the LAS method, has been presented by
Fenton (1994).

SUMMARY OF RESULTS FROM SEEPAGE ANALYSES

A Monte Carlo approach to the seepage problem was
adopted in which, for each set of input statistics (g, O 0,)
.or equivalently, Pk Timp B1i) and mesh geometry (L,), 1,000
realizations were performed.

The main output quantities of interest from each realization
in this problem are the total flow rate through the system Q
and the exit gradient i. The rather more complicated issues
relating to analysis of the exit gradient are beyond the scope
of the present work and will be analyzed in a future publica-
tion.

In this paper, therefore, the writers focus on the flow rate.
Following Monte Carlo simulations, the mean and standard
deviation of O were computed and presented in nondimen-
sional form by representing Q in terms of a normalized flow
rate  thus

Q = O/(Hw.L.) (6)
where H = total head loss across the wall. In all the calcula-
tions performed in this study, H was set to unity since it has

simple linear influence on the flow rate Q. Division by L,
has the effect of expressing the average flow rate over one unit
of thickness in the z-direction enabling a direct comparison to
be made with the 2D results,

The following parametric variations were implemented for
fixed =1 X 107, L, = 6.4, and L, = 3.2:

o/ = 0.125, 0.25, 0.5, 1, 2, 4 and 8 (7a)
8, =1, 2, 4, 8 and « (analytical) (78)
L,=08, 1.6 and 3.2 (7e)

\s the coefficient of variation of the input permeability (COV,
= o,/|.) was increased, the mean estimated normalized flow
rate, mp, was observed to fall consistently from its determin-
istic value (assuming constant permeability = p, throughout)
of Qg =~ 0.47 as shown in Fig. 3(a) for the case where L./L,
= 1. The fall in myz was steepest for small values of the scale
of fluctuation 8,; however, as 8, was increased, my tended
toward the deterministic result that would be expected for a
strongly correlated permeability field (6, — ).

The reduction in the expected flow rate with increased per-

.eability variance but fixed mean has been described as
*‘counter-intuitive’’ by some observers. The explanation lies
in the fact that in a continuous flow regime such as the one
modeled here, flow must be occurring in every region of the
domain, so the greater the permeability variance, the greater
the volume of low permeability material that must be negoti-
ated along any flow path. In an extreme case of ‘*series’’ flow
down a 1D pipe of varying permeability cells, the effective
permeability is given by the harmonic mean of the permea-
bility values, which is heavily dependent on the lowest per-
meability encountered. The other extreme of ‘‘parallel’’ flow
leads to the arithmetic mean. The 3D example considered here
is a complex combination of parallel and series flow that leads
to an effective permeability more closely approximated by the
geometric mean (see, e.g., Griffiths et al. 1994) that is always
smaller than the arithmetic mean (but not as small as the har-
monic mean).

Fig. 3(b) shows the estimated standard deviation of the nor-
malized flow rate, s, for the same geometry. For small 8, very
‘ttle variation in Q was observed, even for high coefficients
of variation. This is understandable if one thinks of the total
flow through the domain as effectively an averaging process
—high flow rates in some regions are offset by lower flow
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FIG. 3. Influence of 8, on Statistics of Normalized Flow Rate
({L./L,= 1): (a) Mean; (b) Standard Deviation

rates in other regions. It is well known in statistics that the
variance of an average decreases linearly with the number of
independent samples used in the average. In the random field
context, the ‘‘effective’” number of independent samples in-
creases as the scale of fluctuation decreases, thus the decrease
in variance in flow rate is to be expected. Conversely, when
the scale of fluctuation is large, the variance in the flow rate
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is also expected to be larger—there is less “‘averaging’’ var-
iance reduction within each realization. The maximum flow
rate variance is obtained when the field becomes completely
correlated (6; = ), in which case the permeability is uniform
at each realization. Since the flow rate is proportional to the
(uniform) permeability in this case, the flow rate variance ex-
actly follows that of the permeability, thus

Ty -
00 =— Oy (8
o

It is instructive at this stage to give further consideration to
the estimated statistics of flow rate. Mg is estimated by my, s
and gy, by sing, Where my, and s, are obtained from the log-
flow rates following n realizations of the Monte Carlo process,
Assuming that the flow rates are lognormally distributed, the
log estimators can then be transformed into direct estimates
using the equations

1
mg = exp {m..,a + 3 sﬁ.a}; 53 = (mg)*(exp{shg} — 1)
9, 10)

In general, estimates based on log data and then transformed
will be different from estimates based on the raw data unless
the data exactly fit the lognormal distribution. As will be seen,
however, the computed flow rates in this study appear to
closely follow the lognormal distribution.

To assess the accuracy of these estimators in terms of their
reproducibility, the standard deviation of the estimators can be
related to the number of simulations of the Monte Carlo pro-
cess, assuming In 0 is normally distributed, as follows (in this
study n = 1,000):

1
Uml,,g' = \/i Smg = 0.0326‘15@ (1 1)

F B
U-le,.g' = _1- slzné . 00455‘;@ (12)
n—

Due to the variance reduction arising from averaging, the
variance of the estimator, 5, will increase towards the result
given by (12) as the scale of fluctuation increases, that is, (12)
is an upper bound on the estimator variance. This can be seen
in both Fig. 3(a,b) where the curves for larger COV), and 8,
show increasingly erratic behavior. In these cases, more than
1,000 realizations may be required to obtain accuracy similar
to that obtained for smaller 6,.

Fig. 4(a,b) shows the influence of three-dimensionality on
the estimated mean and standard deviation of Q by comparing
results with gradually increasing numbers of elements in the
z-direction. Also included in Fig. 4(a,b) is the 2D result that
implies an infinite scale of fluctuation in the z-direction and
allows no flow out of the plane of the analysis. The particular
cases shown correspond to a fixed scale of fluctuation 8, =1.

Compared with 2D analysis, three dimensions allows the
flow greater freedom to “*avoid’ the low permeability zones.
This results in a less steep reduction in the expected flow rate
with increasing COV, as shown in Fig. 4(a). There is also a
corresponding reduction in the variance of the expected flow
rate as the third dimension is elongated as shown in Fig. 4(b).
In summary, the effect of allowing flow in three dimensions
is to increase the averaging effect analyzed previously within
each realization, The difference between the 2D and 3D results
is not that great, however, and it could be argued that a 2D
analysis is a reasonable first approximation to the “‘true’’ be-
havior in this case. It should be noted however, that the 2D
approximation will tend to underestimate the expected flow
through the system that is an unconservative result from the
point of view of engineering design.
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Interpretation of Results for Reliability-Based Design

One of the main objectives of stochastic analyses such as
those described in this paper is to enable statements to be made
relating to the probability of certain events occurring. Relia-
bility-based design depends on this approach, so consider
again the case of flow rate prediction beneath a water retaining
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structure. Deterministic approaches using fixed values of per-
meability throughout the finite element mesh will lead to a
particular value of the flow rate that can then be factored (i.e.,
scaled up) as deemed appropriate by the designers. Provided
this factored value is less than the maximum acceptable flow
rate, the design is considered to be acceptable and in some
sense ‘‘safe.”” Although the designer would accept that there
is still a small possibility of failure, this is subjective and no
attempt is made to quantify the risk.

The stochastic approach, on the other hand, is more realistic
in recognizing that even in a ‘‘well-designed’’ system, there
will always be a possibility that the maximum acceptable flow
rate could be exceeded if an unfortunate combination of soil
properties should occur. The designers then have to make a
quite different decision relating to how high a *‘probability of
failure’” would be acceptable,

Figs. 5 and 6 show typical histograms of the flow rate fol-
lowing 1,000 realizations for the cases where L,/L, = 1.00,

n,=(16+16x 16 x 16), D = (6.40 x 3.20 x 3.20), w, = 1.60
= 1.00 x10°, 6, = 5.00x 10, 8, = 2,00, n,,,, = 1000

1.5

Frequency Count
Haq= (].3[56.amq= 0.1810

1
1

Normalized Frequency

: T
06 08 1 1.2 14 1.6 1.8 2
Flow Rate

FIG. 5. Histogram of Computed Flow Rates Following 1,000
Realizations (COV, = 0.5, 8, = 2.00); 3D Stochastic Analysis of
Ground-Water Flow—One Wall Case

n, = (16+16 x 16 x 16), D = (6.40 x 3.20 x 3.20), wy= 1.60
M =1.00x 107, 0, = 125x 10™, 8, =2.00,n,,_ = 1000

o -
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s o= 04013, 0y, o = 0.0455
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} | .
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FIG. 6. Histogram of Computed Flow Rates Following 1,000
Realizations (COV, = 0.125, §, = 2.00); 3D Stochastic Analysis
of Ground-Water Flow —One Wall Case

8, = 2.00, and COV, = 0.50 and COV, = 0.125, respectively.
They are both seen to match well with the hatched lines rep-
resenting the fitted lognormal distribution using the estimated
mean and standard deviation values computed from the sim-
ulations. The mean and standard deviation of the underlying
normal distribution of In Q is given in each figure. The his-
tograms have been normalized such that the area beneath the
curves equals unity. This type of normalization enables prob-
abilities to be easily computed.

The total deterministic flow rate through the 3D geometry
that would have occurred if the permeability was constant and
equal to unity is given by

Qoo = 047 X 3.2 = 1.50 13)

where L, = 3.2 is the width of the flow problem in the z-
direction and 0.47 represents the deterministic flow per unit
width based on a 2D analysis in the x-y plane [see Fig. 1(b)].
This value can be compared directly with the histograms in
Figs. 5 and 6 and it can be seen that the deterministic mean
flow rate is shifted to the right of the distribution mean when
COV, = 0.50 (Fig. 5) but is quite close to the distribution mean
when COV, = 0.125 (Fig. 6).

For reliability-based design, a major objective of this type
of analysis would be to estimate the probability that the de-
terministic flow rate underestimates the *‘true’’ flow rate. Such
an underestimation would imply an ‘“‘unsafe’’ design and
should have an appropriately ‘‘low’”” probability. The actual
value of an acceptable design ‘‘probability of failure’’ is be-
yond the scope of this paper, however, since this depends on
a number of factors, not least the importance of the water
retaining structure in relation to safety and infrastructure
downstream,

Referring to the particular case shown in Fig. 5, the esti-
mated probability that the deterministic flow rate underesti-
mates the “‘true’” flow rate is given by the following calcu-

lations, which assume a normal distribution of In @:

In 1.50 — 0.3156

PO>0u)=1-@ ( 0.1310 ) =0.298 (14)
where w,s = 0.3156 and 0,5 = 0.1810 are the parameters of
the fitted distribution shown in Fig. 5 and &(+) is the standard
normal cumulative distribution function. A similar calculation
applied to the data in Fig. 6 leads to

PO > () = 0.405 (15)

and for a range of different COV, values with a constant scale
of fluctuation given by 6, = 2.00, the probability of an *‘un-
safe’’ design has been plotted as a function of log,, COV, in
Fig. 7.

Fig. 7 shows that a deterministic calculation based on the
mean permeability will always lead to a conservative estimate
of the flow rate [i.e., P(Q > Q) < 50%]. As the coefficient
of variation of the permeability increases, however, the prob-
ability that the true flow rate will exceed the deterministic
value decreases. For the range of COV, values considered, the
probability varied from less than 2% for COV, = 8 to a prob-
ability of 40% for COV; = 0.125. In the latter case, however,
the standard deviation of the computed flow also becomes
small, so the range of flow-values more resembles a normal
distribution than lognormal. In the limit as COV, —» 0, the
solution tends to the deterministic value, but in probabilistic
terms this implies an equal likelihood of the true flow rate
falling on either side of the predicted value. Hence the curve
in Fig. 7 tends to a probability of 50% for small values of
COV,.

These results are reassuring from a design viewpoint, be-
cause they indicate that the traditional approach leads to a
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conservative estimate of the flow rate— the more variable the
soil, the more conservative the prediction. This observation is
made with the knowledge that permeability is considered one
of the most variable of soil properties with coefficient of var-
iation values ranging as high as three (see, e.g., Lee et al.
1983, Kulhawy et al. 1991).

The sensitivity of the probability P(Q > ) to variations
in the scale of fluctuation 6, is shown in Fig. 8. The coefficient
of variation of the soil permeability is maintained at a constant
value given by COV; = 0.50 and the scale of fluctuation is
varied in the range 0.5 < 6, < 8. This result shows that as the
scale of fluctuation increases the probability of the true flow
rate being greater than the deterministic value also increases,
although its value is always less than 50%. In the limit, as
8, — °, each realization of the Monte Carlo process assumes
a perfectly correlated field of permeability values. In this case,
the flow rate distribution is identical to the permeability dis-
tribution with a mean equal to the flow rate that would have
been computed using the mean permeability. The probability
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FIG. 9. Histogram of Computed Flow Rates Following 1,000
Reallzations (COV, = 0.50, 8, = 0.50); 3D Stochastic Analysis of
Ground-Water Flow—One Wall Case

in this case therefore tends to be 50%. As 8, is reduced how-
ever, the probability of the true flow rate being greater than
the deterministic value reduces quite steeply and approaches
zero for 6 = 0.5, The actual value of 9 in the field will not
usually be well established (except perhaps in the vertical di-
rection where sampling is continuous), so sensitivity studies
help to give a feel for the importance of this parameter. For
further information on soil property correlation, the interested
reader is referred to Lumb (1966), Asaoka and Grivas (1982),
DeGroot and Baecher (1993), and de Marsily (1985).

The results in Fig. 8 corresponding to very low probabilities
[e.g., P(Q > Oy, < 0.01)] must be interpreted cautiously how-
ever, as more than the 1,000 realizations of the Monte Carlo
process used in this paper would be needed for accuracy in
this range. In addition, low probabilities can be significantly
in error when estimated parameters are used to describe the
distribution. Qualitatively, the fall in probability with decreas-
ing 8, is shown well in the histogram of Fig. 9, where for the
case of 6; = 0.5, the deterministic flow rate lies well within
the right hand tail of the distribution leading to P(Q > 0,.) ~
0.002,

Comment on Computer Timings

The results presented in this paper were run on a DEC 3000
Model 400 workstation. A summary of the total CPU time
consumed by the various analyses is presented in Table 1. The
““Timing™’ column is expressed in nondimensional form with
respect to an equivalent 2D analysis with the same mesh den-
sity in the xy-plane.

As mentioned previously, these timings were obtained using
direct solution methods for the simultaneous equations that
result from each realization. It is anticipated that the use of
iterative solvers (e.g., VanZk et al. 1994) will considerably

TABLE 1. Comparison of Timings from 2D and 3D Analyses

Dimension Timing
(1) (2
2D i
L/L, =025 49
L./L, = 0.50 239
L/L, = 1.00 (direct) 1,463
L,/L, = 1.00 (iterative) 408
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improve these timings, especially for large 3D modeling. Ini-
tial indications are that even without any code optimization,
improvements of up to a factor of four can be achieved for
the full 3D case (L,/L, = 1) with approximately 10,000 degrees
of freedom. Greater improvements are anticipated in the future
helping to bring serious 3D analyses of this type within the
domain of a desktop workstation environment.

CONCLUDING REMARKS

In this paper, 3D random field and finite-element methods
have been combined in the study of steady seepage beneath a
single sheet-pile wall embedded in a layer of random soil. An
extensive parametric study has been performed in which the
coefficient of variation and the spatial correlation of soil per-
meability have been systematically varied to observe their in-
fluence on the mean and standard deviation of the flow rate
through the system. In addition, the influence of three-dimen-
sionality has been investigated by gradually increasing the
width of the model in the direction of the wall. In all cases,
results were compared with those that would have been ob-
tained using a 2D analysis.

For low to moderate values of the scale of fluctuation (8 <
8), the expected value of the flow rate was found to fall con-
[stently as the coefficient of variation of the input permeabil-
ity was increased. The explanation lies in the fact that in a
continuous flow regime such as the one modeled here, the low
permeability zones cannot be “‘avoided,”’ so the greater the
permeability variance, the greater the volume of low permea-
bility material that must be negotiated and the lower the flow
rate. For higher values of the scale of fluctuation (0 > 8), the
normalized flow rate mean tended to the deterministic value.
The standard deviation of the flow rate was shown to consis-
tently increase with the scale of fluctuation and the standard
deviation of the input permeability, but within the bounds de-
fined analytically for the limiting case of perfect correlation.

The influence of ﬂiree-dimensionality was to reduce the
overall ‘‘randomness’’ of the results observed from one real-
ization to the next. This had the effect of increasing the ex-
pected flow rate and reducing the variance of the flow rate
over those values observed from a 2D analysis with the same
input statistics. Although unconservative in the estimation of
flow rates, there was not a great difference between the 2D
and 3D results, suggesting that the simpler and less expensive
2D approach may give acceptable accuracy for the cases con-
sidered.

Some of the results were reinterpreted from a reliability
viewpoint and indicated that if the flow rate was computed
deterministically using the mean permeability, the probability
of the true flow being greater would always be less than 50%.
This probability fell to even smaller values as the variance of
the input permeability was increased or the scale of fluctuation
was reduced, implying that a deterministic prediction of flow
rate based on the mean permeability would always be conser-
vative on average.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

a = finite-element side length;
COV, = coefficient of variation (op/1Ls);
G, G, = local average over ith element of standard Gaus-
sian field;
H = head difference;
I, = exit gradient;
k; = conductivity matrix of the ith element;
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soil permeability of the ith element;

mesh dimensions;

estimated mean of normalized flow rate;
probability that ‘“‘true’’ flow rate exceeds deter-
ministic value;

flow rate;

normalized flow rate;

normalized deterministic flow rate;

estimated standard deviation of normalized flow
rate;

scale of fluctuation of permeability;

L1 1 T T

I

target mean of permeability;

mean of logarithm of permeability;

mean of normalized flow rate;

mean of logarithm of normalized flow rate;
standard deviation of permeability;

standard deviation of logarithm of permeability;
standard deviation of normalized flow rate;
standard deviation of logarithm of normalized
flow rate;

correlation function; and

distance between two points in field.
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