ASSESSMENT OF STABILITY OF SLOPES UNDER
DRAWDOWN CONDITIONS
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ABSTRACT: The traditional approach for estimating the stability of slopes under different submergence con-
ditions is the charts of Morgernstern and, more recently, proprietary computer programs, both utilizing limit-
state analyses. The chart approach is limited by geometry and material property considerations and the limit-
state approach by assumptions about analysis method and failure mechanism. The finite-element method offers
a powerful method for analyzing complex geometries and properties of slope stability problems, but may be
unattractive for routine use by supervisory staff. By comparison a chart based approach is useful, particularly
when setting operating conditions on, for example, drawdown rates for dams and reservoirs. This paper seeks
to explore the use of the finite-clement method to produce operating charts for such circumstances that should

be applicable to real structures.

INTRODUCTION

The stability of a slope depends on its geometry, its material
properties, and the forces to which it is subjected. These forces
include the effects of water both internally, in the form of pore-
water pressures and seepage forces, and externally, in terms
of hydrostatic and hydrodynamic effects. The effect of water
on slope stability can be seen by considering the slope under
different degrees of submergence and drawdown. The impli-
cations of this were first quantified by Morgemstern (1963)
and later investigated by, for example, Desai (1977) and Cous-
ins (1978). All used limit-state analyses for the estimation of
the factor of safety (FOS) of the slope under a range of con-
ditions to produce a series of charts for practicing engineers
to utilize.

The finite-element program FE-EMBI developed by Grif-
fiths (1996) has been extended to FE-EMBI1LG by Lane and
Griffiths (1997) to include any combination of submergence
and drawdown conditions and to allow for the automatic gen-
eration of pore-water pressures or the insertion of known val-
ues for both prediction and back-analysis. The program utilizes
the power of the finite-element method to account for poten-
tially complex geometries and material properties, but is used
here to develop a chart based approach for the operation of
dams and reservoirs to minimize the risk of slope failure under
drawdown conditions.

BRIEF DESCRIPTION OF FINITE-ELEMENT MODEL

The finite-element program is for 2D, plane strain, slope
stability analysis by finite elements using eight-node quadri-
lateral elements of elastic-visco-plastic soil with a Mohr-Cou-
lomb failure criterion and a nonassociated flow rule. The pri-
mary development has been the inclusion of free-surface and/
or external reservoir loading. The soil’s self-weight is modeled
by a gravity “turn-on” procedure (Smith and Griffiths 1988)
with nodal loads added in a single increment.

The FOS for the slope is defined by division of the original
shear strength parameters c’, ¢’ to give their values at failure,
¢z, ¢y where
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There are several possible definitions of failure, for exam-
ple, (1) some test of bulging of the slope profile (Snitbhan and
Chen 1976); (2) limiting of the shear stresses on the potential
failure surface (Duncan and Dunlop 1969); or (3) noncon-
vergence of the solution (Zienkiewicz and Taylor 1989). These
are discussed in Abramson et al. (1995) from the original paper
by Wong (1984), but without resolution. In the examples stud-
ied here the nonconvergence option coupled with a sudden
increase in nodal displacements is taken as being a suitable
indicator of failure.

When the algorithm cannot converge within a user-specified
maximum number of iterations, the implication is that no
stress distribution can be found that is simultaneously able to
satisfy both the Mohr-Coulomb failure criterion and global
equilibrium. If the algorithm is unable to satisfy these criteria,
failure is said to have occurred. Slope failure and numerical
nonconvergence occur simultaneously and are accompanied by
a dramatic increase in the nodal displacements within the
mesh. Most of the results shown in this paper used an iteration
ceiling of 500 and are based on a graph of FOS versus £'8,./
YH? (a dimensionless displacement), where 8., is the maxi-
mum nodal displacement at convergence and H is the height
of the slope of unit weight and effective Young’s Modulus E'.
This graph may be used alongside the displaced mesh and
vector plots to indicate both the FOS and the nature of the
failure mechanism. In comparison, the FOS generated by tra-
ditional methods represents the ratio between the driving and
restoring forces, but this is essentially the same definition of
FOS as used in the finite-element approach.

The program produces graphical output to illustrate the
mechanism of failure. To emphasize the mechanism of failure
the iterations limit may be increased to 1,000 and the plotted
displacement vectors limited to above a scaled minimum in
order to differentiate the mechanism from the background
mesh. Similarly, the plots of displaced mesh have been pro-
duced by allowing the higher iterations limit in order to em-
phasize the mechanism. In some cases this appears to give a
highly distorted mesh, but this effect is occurring long past
when failure has been established numerically, and is purely a
visual effect, not influencing the identified FOS.

Fig. 1 shows the mesh for a simple, dry 2:1 slope with
properties of &’ = 40°, ¢’ = 1 kN/m? and D = 1.0 (Smith and
Griffiths 1988), where D is the depth to a firm layer. In this
case D = H, the height of the slope. With a unit weight of 20
kN/m’, the FOS for the slope under its own self-weight can
be found using the gravity turn-on procedure. The displace-
ment vector plot in Fig. 2 shows a simple rotational failure,
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FIG. 1. Initial Mesh for 2:1 Homogeneous Slope: &' =40°% ¢'/yH=0.05;D=10

FIG. 2. Displacement Vectors at Failure for 2:1 Homogeneous
Slope: ' =40°% ¢'/yH=0.05,D=10

as expected, with a FOS of 2.5, i.e., the slope fails under its
own self-weight when its effective cohesion ¢ and its internal
angle of friction in the form tan ¢’ have been factored by 2.5.
The program has been validated for a range of slopes with
different dimensions and properties and excellent agreement is
obtained with the charts of Bishop and Morgemnstern (1960).

free-surface

/
1%

“A=hATw

RS

STABILITY UNDER PARTIAL SUBMERGENCE

The strength of a soil, in terms of its ability to resist applied
loading, is a function of its effective stress state. This, in turn,
depends on the pore-water pressure at each point. Pore-water
pressures may be derived from historical conditions (especially
in fine-grained materials) or measured in current conditions
(usually in coarse-grained materials). When the excess pore
pressures generated by changes in loading take a “‘long™ pe-
riod of time to dissipate, the problem is said to be undrained.
When the dissipation is “‘rapid,” it is said to be drained.

The definition of long is not absolute but invariably means
that the rate of dissipation of excess pore pressures is many
times less than the rate of change of the loading condition.
The stability of simple slopes with variable internal pore pres-
sures was extensively studied by Bishop and Morgernstern
(1960) whose charts are commonly used in classical limit-state
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FIG. 4. Slow Drawdown Problem. Homogeneous 2:1 Slope with Horizontal Free Surface (above and below Free Surface): ¢’ = 20°;

c'lyH=10.05;D=1.0
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analyses. More recently Lambe and D’Silva (1995) have re-
ported on the importance of correct modeling of internal pore-
water pressures. The effect of seepage was considered by De-
sai (1977), and this is discussed later in this paper.

The program has been fully validated in modeling pore-
water pressures both directly and indirectly such as through
the pore pressure ratio r, or as hydrostatic values from a free
surface. Fig. 3 illustrates some general definitions of internal
free-surface, reservoir level and hydrostatic pore-water pres-
sures for a partially submerged slope. This paper is primarily
concerned with the analysis of slope stability under either (1)
rapid drawdown, when the internal section of the free surface
is horizontal and at the level immediately prior to drawdown
of the reservoir level; or (2) slow drawdown or partial sub-
mergence, where the internal section of the free surface has
stabilized to the new reservoir level. These two levels are
shown in Fig. 4. For these extreme cases the piezometric and
phreatic surfaces are coincident, with horizontal flowlines ex-
cept on the slope face itself. The intermediate seepage case,
where flowlines are sloping or curved, is considered alongside
results presented by Desai (1977).

The effective-stress condition also depends on the total
stress, which is usually derived from the soil’s total self-weight
plus any applied loading. In the case of a submerged slope,
the water provides a linearly increasing normal hydrostatic
pressure on the embankment face. In this case the pressure on
the face is computed simply as the weight of water vertically
above. Fig. 5 illustrates the arrangements to represent the load-
ing on the slope under partial submergence.

Partial submergence can also be regarded as a case of slow
drawdown in that it is assumed that the pore-water pressures
have time to adjust to the partially submerged water level, i.e.,
that the internal free-water level in the slope equalizes to the
reservoir level at any time. The effects of seepage have been
neglected for the purposes of this paper. The drawdown ratio
L/H is the ratio of the depth by which the water falls L to the
height of the slope H.

Fig. 4 shows a 2:1 slope with a horizontal free surface at a
depth L below the crest. Using the method described above,
the FOS of the slope has been computed for several different
values of the drawdown ratio L/H that has been varied from
—0.2 (slope completely submerged with the water level 0.24
above the crest) to 1.0 (water level at the base of the slope).
A constant total unit weight of 20 kN/m”® has been assigned to
the entire slope, both above and below the water level, al-
though this could be altered to reflect the draining of slope
material about the free surface if required.

Fig. 6 shows the results from the finite-clement program for
partial submergence or slow drawdown of this slope. It gives
a minimum FOS of about 1.3 when the drawdown ratio L/H
is about 0.7 (the reservoir level is at about 30% of the slope
height). For comparison, the case has been analyzed both by
finite elements and by a traditional limit equilibrium computer
package (SLOPE 1985) using Bishop’s method (Bishop 1955).
There is excellent agreement between the results from the two
approaches over the full range. The results of Bishop and Mor-
gernstern (1960) and Morgemnstern (1963), which correspond
to the fully drained and fully submerged cases, are also shown
giving excellent agreement.

A possible explanation of the observed minimum is due to
the cohesive strength of the slope (which is unaffected by
buoyancy) and the trade-off between soil weight and soil shear
strength as the drawdown level is varied. In the initial stages
of drawdown (L/H < 0.7), the increased weight of the slope
has a proportionately greater destabilizing effect than the in-
creased frictional strength and the FOS falls. At higher draw-
down levels (L/H > 0.7), however, the increased frictional
strength starts to have a greater influence than the increased
weight and the FOS rises. Other results of this type have been
reported by Lane and Griffiths (1997) for a slope which was
stable (FOS > 1) when “dry” or fully submerged, but became
unstable (FOS < 1) at a critical value, typically 70%, of the
drawdown ratio L/H,

It should also be noted from the horizontal part of the graph
in Fig. 6, corresponding to L/H = 0, that the FOS for a fully
submerged slope is unaffected by the depth of water above the
crest. It is thus possible for a slope to be stable when fully
submerged and when fully drained, but to be unstable in a
partially submerged condition. Partial submergence was ana-
lyzed by Cousins (1978) to produce a set of charts that are for
homogeneous cases only. The results shown here agree well
with Cousins, but the finite-clement approach may also be ex-
tended to inhomogeneous conditions.

The possible influence of cohesion has been considered for
a range of ¢'/(yH) from 0.01 to 1.0 and for ¢’ from 12 to
40°, and a selection of these are given in Fig. 7. All combi-
nations indicate that the observed minimum FOS occurs at a
drawdown ratio between 0.2 and 0.3.

STABILITY UNDER FULL RAPID DRAWDOWN

The results presented so far illustrate the case of partial sub-
mergence or drawdown at a rate slow enough for the internal
free surface and the reservoir level to equalize effectively at
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any point. The most critical condition for many submerged
slopes is the rapid drawdown case. If the reservoir level is
reduced over a “short” time in a fine-grained material the
internal pore-water pressures continue to reflect the original
water level for some time after drawdown. But the stabilizing
effect of the reservoir water loading is lost.

Morgernstern (1963) presented stability charts based on par-
ametric studies using limit-state analyses where it is assumed
that pore-water pressures were based on the free-water surface
level, neglecting seepage, and that no dissipation occurred dur-
ing drawdown. This means that the piezometric surface, caus-
ing the pore-water pressures within the embankment, remains
unchanged. In the finite-element program rapid drawdown is
modeled when the piezometric surface is specified as per the
original water level, but the face loads are based on the drawn-
down reservoir level, which in this case is below that of the
piezometric values.

Morgernstern’s charts are nondimensional for various values
of effective cohesion c¢’, unit weight v and slope height A
using the parameter

c!

vH
Interpolation can be used between the published values. A sig-
nificant consideration in relation to this paper is that all slopes
analyzed by Morgemnstern (1963) are assumed to be initially
fully submerged (L = 0), and it is pointed out in the 1963
paper that the charts do not automatically give the minimum
FOS for a partial drawdown (L/H < 1.0) case. Morgenstern’s
results are based on a circular failure surface tangential to the
base of the slope. In this instance, the case for a failure circle
passing above the slope base must be checked separately, as
this may give a lower result than for a failure tangential to the
base. The finite-element program does not suffer this disad-
vantage and automatically identifies the most critical failure
mechanism, irrespective of the drawdown ratio. A comparison
of results between Morgernstern and the finite-element pro-

3)

gram is shown in Fig. 8 for a range of cases. Excellent agree-
ment was obtained, with the finite-element results slightly
lower, especially over the higher drawdown ratios.

Desai (1977) also considered the case of stability under
drawdown at differing rates using a numerical approach to
locate the internal free surface followed by a limit-state anal-
ysis for the subsequent FOS estimation. A range of drawdown
rates relative to the slopes’ material permeability were consid-
ered but it was concluded that this was of secondary impor-
tance. This would suggest that seepage is of secondary im-
portance in modeling this form of collapse. His results can be
considered as semirapid drawdown in that they are faster than
for equalization to be complete, but they are slower than for
rapid drawdown. Desai estimated that the difference in the
FOS between his analysis and for rapid drawdown would be
a reduction of the order of 2—8%.

Fig. 9 shows a comparison of the results of Desai (for
semirapid drawdown) and for those of Morgernstern and the
finite-element program (both for rapid drawdown). These sug-
gest that the impact of the rapid condition is greater than Desai
estimated—up to 40% in some cases. There is some incon-
sistency in Desai’s results for &’ = 25° for the particular case
of a 2:1 slope that may be contributing to this difference. The
final graph in Fig. 9 of Desai’s paper, for a 2:1 slope, appears
to be out of line with the pattern of the other results in Figs.
6—9 and suggests a higher result than would be expected. This
may be exaggerating the differential identified here.

DRAWDOWN FROM PARTIAL SUBMERGENCE

Morgernstern (1963) assumes drawdown is from the case of
full submergence. But, as has been shown, a partially sub-
merged slope may have a lower initial FOS and therefore
could be at greater risk of a potential failure with drawdown
from this partially submerged condition. The charts of Mor-
gernstern, Desai, and Cousins provide no direct method of
analyzing this case. For the 2:1 slope the cases of slow draw-
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down (or partial submergence), rapid drawdown from full sub-
mergence, and rapid drawdown from partial submergence are
considered. The results are shown in Fig. 10, for ¢’ = 40°,
using the mesh shown in Fig. 1.

The FOS at full submergence (L/H = 0) is 3.0 (Point A in
Fig. 10). The slow drawdown from full height (or partially
submerged) condition is shown (Curve i). This reaches a min-
imum of about 2.24 at a drawdown ratio of 70% (Point B).

JOURNAL OF GEO

As drawdown continues the FOS rises and, if drawdown were
complete (L/H = 1.0), the FOS of 2.51 is that for a dry slope
(Point C).

When rapid drawdown from full submergence (Curve ii) is
considered then the FOS drops rapidly from the fully sub-
merged value (starting at Point A) to a minimum at complete
rapid drawdown of 1.15 (Point D). For the final curve [Curve
iii] of Fig. 10, the case of rapid drawdown from partial sub-
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mergence is considered. For this case the drawdown is com-
plete in that the reservoir level falls from an initial drawdown
ratio value (L/H) to the base. So, for example, if the reservoir
level were initially at L/H of 0.7 (i.e., at 30% H), the FOS
would be about 2.24 (Point B) in this partially submerged
condition, If the reservoir were then to be drawn down rapidly
from this height, the FOS would fall to about 1.90 (Point E).

If the fully submerged slope (initial FOS of 3.0 at Point A)
were rapidly drawn down to a drawdown ratio of 0.2, this
operation would reduce the FOS to about 2.40 (Point F). Over
time the internal free surface would stabilize at 80% of the
slope height and the FOS would rise to 2.62 (Point G) in the
partially submerged state. However, if from 80% submergence
it were then to be fully drawn down from L/H = 0.2 to L/H =
0, the FOS would fall to about 1.24 (Point H).

Note that in Curve iii, the rapid drawdown from partial sub-
mergence, has the same terminating FOS (at Point D') of 1.15
as the rapid drawdown to partial submergence Curve ii at Point
D. This is because they represent the same case of 100% rapid
drawdown from full submergence.

OPERATING CHARTS AND PROCEDURES

When considering drawdown conditions for a submerged
slope, a lower FOS is temporarily acceptable, which differs

from normal working conditions. The minimum acceptable
FOS may be defined and then the chart for a particular slope
utilized to determine the drawdown procedure to keep above
that minimum. Fig. 11 shows the chart for a 2:1 slope with ¢
= 20°,

Assuming a minimum FOS of 1.2 might be acceptable un-
der rapid drawdown, and starting from a fully submerged con-
dition (Point A) it would be possible to draw the reservoir
level down to 70% of the slope height (a drawdown ratio of
about 0.3) rapidly (using Curve ii) to Point B. This would take
it to the minimum FOS of about 1.2, (Full drawdown would
result in collapse at about 50% drawdown). The slope could
then be left to recover until the internal free surface was at or
about reservoir level (of 70% H), and the FOS would rise to
about 1.44 over time (Point C). Utilizing the slow drawdown
curve, the reservoir level could be lowered to a drawdown
ratio of about 0.76 (a reservoir level of about 24% of the slope
height), giving a FOS of 1.28 at Point D. From this partially
submerged condition the level could then be drawn down rap-
idly to empty with an FOS of about 1.20 (utilizing Curve iii,
Point E). Thus the minimum FOS is never violated but the
drawdown would be faster than under slow conditions
throughout.

This process illustrates the usefulness of potential charts
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based on rapid drawdown from partial submergence. The pro-
cess may be summarized as follows:

1. A minimum acceptable FOS is selected for the draw-
down operation.

Operation of Charts for Drawdown Conditions for 2:1 Slope: ¢’ = 20°% ¢'/yH = 0.05; D = 1.0

2. Starting from full submergence level (Point A) the rapid
drawdown ratio corresponding to the minimum FOS is
identified. If on examining Curve ii full rapid drawdown
is not possible, the drawdown is taken to the level cor-
responding to the acceptable FOS (Point A to Point B)
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along Curve ii and held there until equalization has oc-
curred (Point B to Point C).

3. Utilizing Curve iii for rapid drawdown from partial sub-
mergence, the partial submergence level corresponding
to the minimum FOS is identified (Point E), and the point
corresponding to this drawdown ratio on Curve i is iden-
tified (Point D).

4. Slow drawdown is carried out between the drawdown
level in Step 2 and the level identified in Step 3 (Point
C to Point D) along Curve i.

5. Once slow drawdown from Step 4 is complete, rapid
drawdown can be completed (Point D to Point E).

If the slope is initially partially submerged, the process starts
at some position along the slow drawdown Curve i (i.e., from
Step 3, Point C). This would be a conservative assumption in
terms of the FOS as Curve ii assumes drawdown from full
submergence.

If the drawdown is for <100% drawdown, Curve ii is ex-
amined first to see if this can be done rapidly without violating
the minimum FOS. If this cannot be done, the process follows
Steps 1—4, terminating at Point D, In a real structure, if the
permeability is known or can be estimated from observations
of the rate of change of water levels under drawdown condi-
tions, it is possible to control the rate of the slow section of
the drawdown (Points C—D in the process) to maintain the
minimum FOS required. The results presented here proscribe
limits to the rate of drawdown where the permeabilities may
not be known with sufficient accuracy in a potentially multi-
material structure and will always produce a workable estimate
of permitted drawdown levels and rate.

These steps illustrate the use of the charts that, once pro-
duced, are suitable for use by supervisory staff in normal op-
erations. The examples considered here were for homogeneous
cases, but the finite-element method is not constrained to this
and should therefore be applicable to real structures.

CONCLUDING REMARKS

In analyzing a slope with varying submergence levels, it is
common for the engineer to consider rapid drawdown as a
potentially critical condition. Starting from a condition of full
submergence, different drawdown ratios may be considered
until the lowest acceptable FOS is found. Drawdown of the
reservoir might then be programmed to minimize the risk of
failure by allowing staged drawdown to interim, partially sub-
merged conditions. However, it may be tempting for the en-
gineer then to assume that full drawdown could be completed
from some interim stage. The results shown here show that
this is not necessarily a safe assumption.

Similarly, it is rare in practice for a slope to be fully sub-
merged, e.g., an earth dam reservoir would not be expected to
be at full submergence for all except flood conditions. The
charts of Morgernstern (1963) and Cousins (1978) do not pro-
vide a direct method of estimating the FOS in the case of rapid
drawdown from partial submergence. The finite-element
method can identify critical cases not readily accessible with
the traditional methods of analysis and without a priori as-
sumption of the mode of failure.

The finite-element method has been used to identify critical
cases of partial submergence and rapid drawdown for partially

submerged slopes. Traditional methods of analysis cannot
cover the full range of possible critical conditions or ade-
quately represent inhomogeneous slopes and complex loading
arrangements. Thus, the finite-element method can perform a
wider range of analysis than can be handled by traditional
methods for all but the simplest submerged slope problems.
Utilizing the finite-element method, potentially critical condi-
tions of rapid drawdown from partial submergence have been
identified and a chart based approach developed for operating
safely.
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APPENDIXIl. NOTATION
The following symbols are used in this paper:

¢, = effective soil cohesion at failure (kN/m?);
D = depth factor;
E' = effective Young’s Modulus (kN/m?);
H = slope height (m);
L = reservoir level below slope crest (m);
RL = reservoir level above slope base (m);
r, = pore water pressure ratio;
Bmx = maximum nodal displacement at non-convergence;
v = unit weight of soil (kN/m?); and
y = effective soil angle of friction at failure.
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