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Modelling of elastic continua using a grillage of
structural elements based on discrete element concepts

D. V. Griffiths* ™ and G. G. W. Mustoe!

Colorado School of Mines, Golden, Colorado 80401-1887, U.S. A.

SUMMARY

A framework is described for modelling an elastic continuum using a grillage of beam-like structural elements
derived from discrete element concepts. The beam element properties are derived in detail and implemented
in a structural analysis code for validation against classical two-dimensional plane elasticity solutions. The
framework offers the possibility of modelling the onset and propagation of fracture in materials that are
initially continuous, without the need for specialized elements or remeshing in the context of traditional finite
elements. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: finite elements; continum modelling; discrete elements: elasticity; structural analysis; energy
methods; numerical methods

INTRODUCTION

The numerical modelling of materials involving elastic-brittle behaviour is of considerable impor-
tance in several areas of engineering and applied science. The analysis of phenomena involving
large-scale fracture is a complex problem requiring the development and application of sophisti-
cated algorithms that can deal with mechanical contact, large rigid body motion and non-linear
constitutive behaviour.

The idea of modelling an elastic continuum by a grillage of structural elements has been sug-
gested by a number of workers, notably by Hrennikoff [1], and subsequently by researchers based
in engineering and material science (c.g. References [2, 3]). Examples of discrete element method
(DEM)-based algorithms for material failure include the rigid body-spring method developed by
Kawai [4], Kawai et al [5], and the simple deformable two- and three-dimensional polygonal
discrete element procedures by Hocking et al. [6] and Mustoe [7].

More recently, a DEM employing a discretization of rigid circular particles connected together
with linear normal and shear springs has been proposed by Morikawa et al. [8] and applied to
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1760 D. V. GRIFFITHS AND G. G. W. MUSTOE

the dynamic analysis of fracture of reinforced concrete. This publication, together with an earlier
work by Matsuoka et al. [9] contained only a brief description of the theoretical basis of their
work and few validation examples.

The purpose of the current paper is to develop and validate this model for reproducing the static
response of elastic solids using a grillage of structural elements based on discrete element concepts.
The motivation for the work is the need to model materials which are initially solid and continuous,
but eventually fracture and crack when critical stress and/or displacement levels are reached. The
discrete element-based approach described herein offers the possibility of modelling such material
behaviour within a consistent framework without the need for a switch in the analysis at the onset
of fracture. Ultimately, the work is aimed at improving the scientific basis for understanding the
mechanics of cutting technologies in civil and mining engineering as it applies to the excavation
of geomaterials. The focus of the present paper however lies in the validation of the technique for
modelling elastic continua.

STIFFNESS FORMULATION

The paper focuses on the use and validation of discrete elements to model the response of an elastic
continuum subjected to various types of loading. The model is based on the work of Morikawa et
al. [8] which considers a 2-D assembly of discrete cylindrical elements in a close pack hexagonal
arrangement as shown in Figure 1. The discrete elements are touching each other and are attached
at the point of tangency with normal and shear springs of stiffness 4, and ks, respectively, as
shown in Figure 2. It should be noted that for clarity, the figure shows the particles separated.

Consider two cylindrical discrete elements as shown in Figure 3. The local co-ordinate directions,
x" and ', are oriented parallel and perpendicular respectively, to a line joining the centres of the
particles. Each discrete element has three local degrees of freedom, a translation in the x’'-direction,
a translation in the y’-direction and a rotation (counterclockwise positive). The link with a more
traditional finite element analysis is made by assuming that any two neighbouring discrete elements
can be reduced to an equivalent two-node ‘beam’ finite element with three degrees of freedom
per node. Each discrete element has a radius » which defines the length of the equivalent ‘beam’
element as 2r.

Local beam element stiffness relationship

We now consider the symmetric stiffness relationship of the equivalent beam element in local
co-ordinates. The standard stiffness relationship in matrix form can be written as

k' =f' @))]
where
[k Ky ks Kkig kis Kig )
ko ko oy s kg
R ks ki K ks kg
ST K K K K K =
ki ksy ksy ksy kss ks
Lk iz ke kea kes g
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x’

Figure 1. An assemblage of discrete elements sub- Figure 2. A two particle combination indicating
jected to various forces (A, etc), tractions ( p,) and the shear spring %; and the normal spring k,. The
body loads (¥). particles have been shown separated for clarity.

w=9 (3)

and

1
1

4
1 @
1
L7

The u’ vector holds the six element ‘displacements’ (translations and rotations) as shown in
Figure 3, and the f’ vector holds the six corresponding element ‘loads’ (forces and moments).
For example, f{ would be a force applied in the x-direction at node 1, f! a force applied in the
»/'-direction at node 2, f{ a moment applied at node 2, and so on.
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Particle A Particle B
’ Displacements
3’ u’'z =1 Pogitive
| | u’y =u’y =u'y =u'g=ug=0 dirsctions
I 2% | i
u‘s u'g
u ﬁ‘l. 1 u':“%—u'q
node 1 node 2
xr o EpEggEa
Figure 3. A two particle combination and its equiv- Figure 4. Forces required to maintain a unit ro-
alent two-node ‘beam’ element counterpart. The el- tation of particle 4 with all other displacements
ement is aligned in the local x'-direction. (The fixed to zero. These forces give the third column
springs are not drawn). of the equivalent element stiffness matrix as shown

in Equation (5). (The springs are not drawn).

To obtain the stiffness coeflicients, the unit displacement method is used whereby we define k;;

as the the force f! required to maintain the displacement pattern:

= 1 if k=

ET10 i kg
For example, the third column of k' holds the forces required to maintain the displacement field
uy=1 (rotation) and | =u)=uj =us=u;=0 as shown in Figure 4. Each column of k’ can
therefore be completed by a simple equilibrium calculation of the forces required to hold each of
the six unit displacement patterns. The resulting local clement stiffness matrix is as follows:

Tk, 0 0 —k O 0 7
0 k kr 0 —k kr
e 0 ke ki* 0 —kr k#? ®
~ky 0 0 k 0 0
—k, —kg O ks —kgr
L0 kr k* 0 —ky ki?

Global beam element stiffness relationship

In order to use the beam element in a general 2-D analysis, we need to consider the case where the
line joining the centres of the two discrete elements is inclined to the global x-axis at an angle 6
as shown in Figure 5. Each rotated element now has three global degrees of freedom at each node,

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1759-1775
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Equivalent 2-node "beam"” slement

Figure 5. Two discrete elements rotated through an angle 6.

1763

a translation in the x-direction, a translation in the y-direction and a rotation (counterclockwise

positive).

The global stiffness relationship will now be given by
ku=f

where
ki ki
kyy e
ka1 ka
k —
ky ke
ks ks
k1 ke
and
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Derivation of the global element stiffness matrix can be achieved by the use of a transformation
matrix t. Consider the local element stiffness matrix k' partitioned into four quadrants, each in
itself a 3 x 3 matrix as follows:

I '3
kf — 11 12 (10
[kal K, )

Now, consider the transformation matrix

c s 0
t=|—-s ¢ 0 (11)
0 0 1

where
c=cosf and s=sind

The global stifiness matrix is then given by

kit Tkt
= Ty, / Ty,/ (12)
Pkt kit
which after expansion leads to
[ fa? + ks (ko —k)sc  —kps  —(nc® +hs?) —(hka—k)sc  —kgrs ]
ks + ke kgre —(ky — ks)sc —(kos® + k) kere
kr? kgrs —kyre k2
k= N ) B 3 (13)
knc”™ + ks (ky — ks)sc ksrs
kos? + ksc? —kgre
i kor? ]

Note that the k matrix is symmetric so only the upper triangular terms have been included for
clarity. Note also that the transformation has no effect on the rotations or moments, thus u} = us,

ug=us, f3=/1 and f=fs.

RELATIONSHIP WITH SOLID ELASTICITY

In order to develop a relationship between the spring stiffnesses &, and &, and the solid elasticity
parameters £ and v we consider a small region of material as shown in Figure 6. The figure
shows three cylinders in a close-packed hexagonal arrangement. The resulting equilateral triangle
described by the ‘beam’ elements attached to the centre of each element will be considered a basic
unit of material in the formulation.

The derivation makes use of the strain energy density V;, of a deformed elastic body which
has the property (see e.g. Reference [10]) that its derivative with respect to any strain component
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hatched area, v = 2v3r?

Figure 6. Three elements modelling a small region Figure 7. Zone of influence of a typical node or
of elastic material. This arrangement represents a a typical equilateral arrangement. In both cases the
basic unit of material. hatched area is twice the equilateral area.

gives the corresponding stress component, for example:

v,
(38; = Oxx
Y
deyy o
(14)
" _,
Oty 7
o
ey

Strain energy stored

The first step is to derive the strain energy stored in the unit of material shown in Figure 6
when it is subjected to an arbitrary nodal displacements. Initially we consider a single element as
defined by two cylinders oriented along the local x'-axis as shown in Figure 2. The energy stored
is given by

1.6
W=23% fu (15)
24
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which from Equation (1) can be written in matrix form as

W= )t = (u) k'’ (16)
Expansion of Equation (16} leads to
k, ks
W= (s =)’ + 2 (s — iy = 2B’ (17)
where the average rotation
_uy+ug
b=

In terms of nodal displacements, the axial strain and rotation of the local element (0=0) are
given by

/ p—

/!
Uy — U
2r

g =

and

! '
Us — Uy

Vo= 2r

thus Equation (17) can be written in the form
W(0) = 2rkae} + 2%k (Y — B)> (18)

For a general element oriented at 6 to the horizontal as shown in Figure 5, the axial strain and
rotation of the element can be expressed in terms of global strain quantities [10] through the
transformation equations:

€9 = C%6xs + SC(Exy + Eyx) + 576y (19)

Y= 028),x +56{Epy — B — .S'ZSIy (20)

Substitution of Equations (19) and (20) into (18), gives the cnergy stored in a general element
oriented at 0 to the horizontal as

W(0)=2rka(CP e +5¢(ry +81x) + 5780y ¥+ 27 ks(Peye +5¢(Eyy — 8xx) — 5781, — B (21)

For a general equilateral triangular linkage of three elements, such as shown in Figure 6, the total
energy stored is given by

Wit = W(8) + W(0 + /3) + W (0 + 21/3) (22)

leading to the following expression which is invariant with respect to the angle 6:

Wit = 3r(3kn + ks Y(ek, + £3,)/4 + 377 (kn — b )(ExxEyy + EryEye)/2

+ 32 (kn + 3k (&, + &2,)/4 + 617 Bh(exy — £4x) + 617 Bk, (23)
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Strain energy density

In order to compute the strain energy density ¥, a nominal ‘volume’ v must be assigned to each
equilateral arrangement. From Figure 7, and assuming planar conditions, it is shown that any
element connecting two nodes represents one third of the equilateral region to each side. This
implies that the zone of influence of any internal triangular arrangement of elements covers six-
thirds or twice the enclosed area. An alternative interpretation is to consider the zone of influence
of each node (or discrete element) which alse leads to a volume given by

v=2v3r? (24)
Evaluating the strain energy density as
Vo = Wiar/v (25)

and differentiating with respect to each of the strain terms as shown in Equations (14) leads to

av, V3 V3

agxx =0y = T(3kn = ks)sxx + T(kn == ks )Syy
av, 3 3

= B ks g 4 ke, (26)
Ceyy 4 4

L(dh W\ V3
‘2' (acxy = agﬂ) —Txy—q_(kn +ks)’yxy

It will be noted that the conventional shear stress 7y, and ‘engineer’s’ shear strain measures
have been introduced at this point where:

Txy = %(ny + Jyx)
and

Py =Exy + &y

Relationship with plane strain and plane stress

Equations (26) enable a direct comparison to be made between this discrete element formulation
and classical 2-D plane elasticity in terms of Young’s Modulus and Poisson’s Ratio. The equivalent
expressions are given by

Plane strain:
R E(1—v) _ Ev .
T AU =20 T A +v)Q =20

. Ev 5 E(1—v) ,

y = Exx

T+ -20) T 1+ v -2
_E

e T L

(27)
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thus comparison with Equations (26) gives the following equivalences:

E(1-v) _V3
E _\3
2(1 - V) = T(kn + kq) (29)

After some rearrangements, the relationship between the discrete element springs and the elastic
properties of a plane strain continua are given by

E
k= 30
" VA0 - 21 +v) %)
_ E(1—4v) G1)
Y V3 =291 + )
Plane stress:
O = Exx T+ By 3
T A=) (g-v)y?”
E E
Tyy = ) Exx + Eyy (32)
71 =) (1— %)

. __F
7= 20 +v)

After some rearrangements, the relationship between the discrete element springs and the elastic
properties of a plane stress continua are given by

E 3
(1——v_2) = T(Bkn + k) (33)

E _ 3

hence

E

“= - >
_ E(1—3v)

s——\@(l ) (36)

These expressions were first described by Morikawa ef al [8] and developed further by Mustoe
and Griffiths [11].
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It is interesting to note that the equilateral element arrangement used in this formulation limits
the value of Poisson’s ratio v to a maximum of 1/4 in plane strain from Equation (31), and a
maximum of 1/3 in plane stress from Equation (36) corresponding to a shear spring stiffness of
zero. This observation in the case of plane stress was also noted by Hrennikoff [1] for members
‘devoid of any flexural rigidity’.

VALIDATION EXAMPLES

In this section the equivalences described by Equations (30), (31), (35) and (36) are validated
by comparison with solid 2-D elasticity solutions. In each case, the discrete element results are
compared with analytical solutions from classical elasticity and/or finite element solutions using
solid finite elements. The implementation of the discrete element formulation described above is
achieved by substitution of the element stiffness matrix given by Equation (13) into a standard
beam-column structural analysis program such as that described by Smith and Griffiths [12]. An
automatic mesh generation code was created as a pre-processor to the main program to generate
equilateral arrangements of elements oriented in a similar pattern to that shown in Figure 7.

Uniform axial compression (plane strain)

In this example a mesh of width W =17 and height // = 17.32 units was subjected to a uniform
axial compressive stress of gy, =1 unit. As shown in Figure 8, the boundary conditions constrain
the mesh to remain rectangular as it deforms. The forces were applied to the top surface of the
mesh in the ratio:

Laidgata o1 s 1
Ledslnans1sd

For different values of the spring constants &, and k;, axial and lateral deformations, 9, and &y,
respectively, were computed using the finite element program. From elastic theory (Equations
(27)), the properties £ and v that would have resulted in those deformations in plane strain are
given by

Ezay(l—vz)gi (37)
¥

_ —HW
T [0, — HJW (38)

By comparison, the properties £ and v implied by the equivalent discrete element theory in
plane strain are given by rearrangement of Equations (30) and (31) as follows:

V3k ks ks
E—T(SE)(Hk—H) (39)
1 A
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Figure 8. Axial compression of a block of elastic Figure 9. A typical deformed mesh under uniform
material in plane strain. axial loading in plane strain.

Table 1. Results from axial compression analyses (plane strain).

Spring Computed Continuum elastic Equivalent elastic
stiffness displacement Equations (37) and (38) Equations (39) and (40)
ke ks dy Ox E v E v

1 1 —10.01  0.00 1.723 0 1.723 0

1 0.5 —11.67 1.69  1.460 0.13 1.461 0.125

1 0.001 —1501 517 1076 0.26 1.083 0.25

A typical deformed mesh with the displacements magnified for clarity is shown in Figure 9 and
the results summarized in Table L.

The table shows excellent agreement between the computed and theoretical elastic constants.

Self-weight loading (plane strain)

In this example, the same mesh considered in Figure 8 is subjected to self-weight loading. This
implies a vertical (negative) force proportional to the amount of material ‘attached’ to each node.
The different types of nodes are clearly shown in Figure 7. The majority of nodes are internal
(type E), and connect six surrounding elements, each contributing one-third of its area. These
internal nodes identify with an area equal to twice the area of each equilateral triangle as discussed
previously. Other boundary nodes could connect one (type A), two (type B), three (type C) or
four (type D) equilaterals, each contributing one third of its area. Thus type A gets one-third,
type B gets two-thirds, and so on.
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Figure 10. Deformed element due to self-weight Figure 11. Cantilever in plane stress subjected to a
loading in plane strain: (a) discrete elements; unit transverse tip load.

(b) solid elements. Unit weight, y = 1.0.

The deformed mesh assuming a unit weight of unity is shown in Figure 10, together with the
same problem analysed using solid eight-node quadrilateral elements. Both figures are scaled such
that the vertical deformation at point A appears as half the initial height of the element. The actual
deformations computed by both analyses at each corner of the block for different combinations of
ky and ks (and hence £ and v from Equations (39) and (40)) are shown in Tables II and IIL

The tables indicate excellent agreement between the displacements at A, B and C computed by
the two methods. The slight loss of symmetry in the case where k, =k, =1 is thought to be due
to numerical rounding errors in the single precision calculations.

A cantilever supporting a point load at its tip (plane stress)

As a more severe test, this example examines the ability of the discrete element model to reproduce
bending effects. The cantilever shown in Figure 11 is subjected to a unit transverse point load P = 1
at its tip under plane stress conditions.

Copyright © 2001 John Wiley & Sons, Ltd. Ini. J. Numer. Meth. Engng 2001; 50:1759-1775
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Table II. Results from discrete element self-weight analyses (plane strain).

Spring stiffness A4 B ‘2
ka ks 8y Or dy x
1 1 —84 -2 —8&3 2
1 0.5 —100 2 —91 22
1 0.001 —134 9 —108 66

Table II1. Results from solid 8-node element self-weight analyses (plane strain).

Equivalent elastic A B C
E v Oy Ox Oy Oy
1.723 0 —87 0 —87 0
1.461 0.125 —103 3 —-95 23
1.083 0.25 —136 10 —113 67

The properties E and v implied by the equivalent discrete element theory in plane stress are
given by rearrangement of Equations (35) and (36) as follows:

L4 kjk
=23k { ———
= ‘/g‘{wks/kn} G4
1=k,
y= 3T h/k (42)

The ‘slender beam’ solution for the tip deflection of a cantilever is given by

3
e

3ET
where P is the tip load and [ is the (constant) second moment of area of the section. The
cantilever shown in Figure 11 however, has a non-uniform section due to the equilateral triangles
used in its discretization. While a direct comparison with Equation (43) cannot be made, an
approximate comparison is possible using a beam length L = 5+/3, and an average section width of
0.95 (I =0.95%/12). In this case the ‘slender beam’ solution from Equation (43) gives d, ~ 3030/E.
This approximate ‘slender beam’ solution for the tip deflection using E from Equation (41) is
then compared with the computed value of J, using the discrete element approach with different
combinations of &, and k; in Table IV. The agreement is reasonable, with the discrete element
results giving a tip displacement that is between 10 per cent and 15 per cent too stiff.

(43)

Deflection under a flexible strip footing (plane strain)

The final example shown in Figure 12 considers the settlement of a strip footing subjected to a
unit distributed load and supported by an elastic layer of finite thickness. In order to facilitate
comparison with published solutions to this problem by Poulos and Davis [13], a footing of total

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1759-1775
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Table IV. Results from cantilever analyses (plane stress).

Spring Computed Equivalent elastic Slender beam
stiffness displacement Equations (41) and (42) theory Equation (43)
kn ks Ox E v Ox
1 1 1518 1.732 0.0 1750
1 0.5 1779 1.485 0.143 2041
1 0.001 2381 1.155 0.333 2624

§

F B E=1 } kn=0.802 plane

v=0.2 kgy=0.160 strain

AT
5!. AVAVAVAVAVAVAVAVAVAVAV LY

A\ A

f A AT AT AT ATAT AT ATV
VAVAVAVAYAVAY.;._@@%_‘ :
. S

LELT ST

fixed

Figure 12. Flexible footing on a finite elastic layer under plane strain conditions.

width B =2 was selected together with elastic properties E=1 and v=0.2. By taking account of
symmetry with rollers down the left side of the mesh, only one half of the footing is modeled.
In order to reproduce the required elastic properties in plane strain, the discrete element spring
stiffness values were computed from Equations (30) and (31) to be k, =0.802 and A, = 0.160.
The computed settlement beneath the edge of the footing was &, =0.45 which compares well
with the Poulos and Davis result (p. 103, Figure 5.2) of §, = 0.43.

CONCLUDING REMARKS

The theory and validations described in the paper have confirmed that a 2-D elastic continuum
can be modelled using a grillage of beam-like finite elements based on discrete element concepts.
Both plane strain and plane stress examples were presented and good agreement obtained between
displacements obtained from the discrete element formulation and analytical and/or solid finite
element solutions.

An interesting observation was that there was an upper limit on the magnitude of Poisson’s ratio
that could be reproduced by the method with 0.25 being the maximum for plane strain and 0.33 the
maximum for plane stress. It is possible that other arrangements of discrete elements might lead to
less restrictive values; an obvious choice being a loose-packed discrete element assembly leading to
a square arrangement of ‘beam’ elements. The equivalent beam element stiffness matrix described
in this paper opens up the possibility of many different arrangements, including random assemblies
of different sized ‘particles’. All the different arrangements will presumably lead to a different

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:1759-1775



1774 D. V. GRIFFITHS AND G. G. W. MUSTOE

relationship with solid elasticity. A natural extension of the current methodology currently under
investigation by the authors is to develop the three-dimensional relationships between discrete and
continuum elasticity. Although stresses can be calculated in the current method via the derivative of
the strain energy density function, the paper has concentrated on the calculation of displacements.
The subject of stress analysis requires further investigation, however in extending the method to
the analysis of fracture, some form of failure criterion will need to be introduced. Whether this
will be based on a limiting stress value (e.g. von Mises) or in limiting the magnitude of the
normal and shear spring forces is currently a topic of investigation. Once this is resolved, it is
envisaged that the introduction of fracture or failure of the discrete element assembly would follow
an iterative algorithm, not unlike the non-linear procedures described in Smith and Griffiths [12]
for modelling plastic hinge development and, ultimately, collapse of framed structures.

APPENDIX: NOTATION

B width of footing
¢ cosf
D depth of cantilever
E  Young’s modulus
f/f" term in global/local element ‘force” vector
H height of block
I second moment of area
ki/k!  term in global/local element stiffness matrix
k, mnormal spring
ks shear spring
L length of cantilever
P load applied to cantilever tip
r discrete element radius
s sinf
term in global/local clement ‘displacement’ vector
v ‘volume® of equilateral zone
V, strain energy density
W width of block
W strain energy stored in a single element
W, strain energy stored in an equilateral zone
x,y global Cartesian co-ordinates
x’,y" local Cartesian co-ordinates
B average element nodal rotation
7y engineer’s shear strain
d, displacement in the x-direction
6, displacement in the y-direction
gy local element axial strain

strain tensor terms
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f element angle to horizontal
Oxx
Tyy
? stress tensor terms
Oxyp
Oy

g, stress applied in the y-direction
Ty, shear stress
yp local element rotation

f/t’ element global/local ‘force’ vector
k/k’ element global/local stiffness matrix
kjj partition matrix of k’
element global/local ‘displacement’ vector
t transformation matrix
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