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Bearing capacity of spatially random soil: the undrained clay Prandtl
problem revisited

D. V. GRIFFITHS* and G. A. FENTON+

By merging elasto-plastic finite element analysis with ran-
dom field theory, an investigation has been performed into
the bearing capacity of undrained clays with spatially vary-
ing shear strength. The object of the investigation is to
determine the extent to which variance and spatial correla-
tion of the soil’s undrained shear strength impact on the
statistics of the bearing capacity. Throughout this study,
bearing capacity results are expressed in terms of the bear-
ing capacity factor, N, in relation to the mean undrained
strength. For low coefficients of variation of shear strength,
the expected value of the bearing capacity factor tends to
the Prandtl solution of N, = 5-14. For higher values of the
coefficient of variation, however, the expected value of the
bearing capacity factor falls quite steeply. The spatial corre-
lation length is also shown to be an important parameter
that cannot be ignored. The results of Monte Carlo simula-
tions on this non-linear problem are presented in the form
of histograms, which enable the interpretation to be ex-
pressed in a probabilistic context. Results obtained in this
study help to explain the well-known requirement that bear-
ing capacity calculations require relatively high factors of
safety compared with other branches of geotechnical design.

KEYWORDS: bearing capacity; limit state design/analysis; numer-
ical modelling; plasticity; shear strength; statistical analysis

En associant une analyse d’éléments finis élasto-plastiques et
une théorie du champ aléatoire, nous avons enquété sur la
capacité porteuse des argiles non drainées ayant une résis-
tance au cisaillement variant dans ’espace. Cette investiga-
tion a pour but de déterminer les effets sur les statistiques
de capacité porteuse de la variance et de la corrélation
spatiale de la résistance au cisaillement non drainé du sol.
Tout au long de cette étude, nous exprimons les valeurs de
capacité porteuse en termes de facteur de capacité porteuse,
N., par rapport an moyen de résistance non drainée. Pour
les coefficients bas de variation de résistance au cisaillement,
la valeur attendue du facteur de capacité porteuse tend 3 la
solution de Prandtl de N, =5.14. Cependant, pour des
valeurs plus élevées du coefficient de variation, la valeur
attendue du facteur de capacité porteuse baisse de maniére
assez marquée. Nous montrons également que la longueur
de la corrélation spatiale est un paramétre important qui ne
peut étre négligé. Nous présentons les résultats des simula-
tions de Monte-Carlo sur ce probléme non linéaire sous
forme d’histogrammes, ce qui permet d’exprimer ’interpré-
tation dans un contexte probabiliste. Les résultats obtenus
dans cette étude aident a expliquer une nécessité bien
connue : les calculs de capacité porteuse demandent des
facteurs de sécurité relativement élevés par rapport aux
autres branches de conception géophysique.

INTRODUCTION
rhe paper presents results obtained using a program developed
by the authors that merges non-linear clasto-plastic finite ele-
ment analysis (e.g. Smith & Griffiths, 1998) with random field
theory (e.g. Vanmarcke, 1984; Fenton, 1990). The program
computes the bearing capacity of a smooth rigid strip footing
(plane strain) at the surface of an undrained clay soil with a
shear strength c,(¢, = 0) defined by a spatially varying random
field.

Rather than deal with the actual bearing capacity, this study
focuses on the dimensionless bearing capacity factor N,, defined
as

=2
Cu

N, Q)]
where gr is the bearing capacity and ¢, is the undrained shear
strength of the soil beneath the footing. For a homogeneous soil
with a constant undrained shear strength, N, is given by the
Prandt] solution, and equals 2 + 7 or 5-14,

In this study, the variability of the undrained shear strength is
assumed to be characterised by a log-normal distribution with
three parameters as shown in Table 1.

An explanation and justification for the use of the log-normal
distribution is given in the next section. While the mean and
standard deviation are familiar concepts to most engineers, and
can conveniently be expressed in terms of the dimensionless
coefficient of variation defined as
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Table 1. Shear strength properties

Units
Mean He, kN/m?
Standard Deviation T, kN/m?
Spatial Correlation Length Oin -, m
g
Ccov,, =— (2)
He,

the spatial correlation length is perhaps less well known. This
parameter, which has units of length, describes the distance over
which the spatially random values will tend to be correlated in
the underlying Gaussian field. Thus a large value of 8, o, Will
imply a smoothly varying field, while a small value will imply
a ragged field. Since the actual undrained shear field is assumed
to be log-normally distributed, taking its logarithm yields an
‘underlying’ normally distributed (or Gaussian) field. The spatial
correlation length is measured with respect to this underlying
field: that is, with respect to Inc,. In particular, the spatial
correlation length can be estimated from a set of shear strength
data taken over some spatial region simply by performing the
statistical analyses on the log-data. In practice, however, 6y, i 18
not much different in magnitude from the correlation length in
real space, and, for most purposes, 8, and O, are inter-
changeable give their inherent uncertainty in the first place. In
this paper a dimensionless spatial correlation length measure
©,, is used, where

_ 61(1 Cy
B
and B is the width of the strip footing,
In the parametric studies that follow, the mean strength (#e,)

O, 3)
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has been held constant at 100 kN/m?, while the standard
deviation (0,,) and spatial correlation length (@, ) are varied
systematically.

It has been suggested (e.g. Lee et al., 1983; Kulhawy et al,,
1991; Duncan, 2000) that typical COV,, values for the un-
drained shear strength lie in the range 0-1-0-5; however, the
spatial correlation length is less well documented, especially in
the horizontal direction, and may well exhibit anisotropy. While
the analysis tools used in this study are capable of modelling an
anistropic spatial correlation field, all the results presented in
this paper assume that ®,, is isotropic.

For each set of assumed statistical properties given by COV,,
and ©,,, Monte Carlo simulations have been performed invol-
ving ngym repetitions or ‘realisations” of the shear strength
random field and the subsequent finite-element analysis of
bearing capacity. This means that each realisation, while having
the same underlying statistics, leads to a quite different spatial
pattern of shear strength values beneath the footing. Each
realisation therefore leads to a different value of the bearing
capacity and, after normalisation by the mean undrained shear
strength, a different value of the bearing capacity factor,

4gr,
He,

In this study 7gm = 1000, and once the bearing capacity factors
from all the realisations have been accumulated, they in tumn
can be subjected to statistical analysis. Estimated (sample) mean
bearing capacities will have a standard error (& one standard
deviation) equal to the sample standard deviation times
1/4/hsim = 1/4,/1000 = 0-032, or about 3% of the sample stan-
dard deviation. Similarly, the estimated variance will have a
standard error equal to the sample variance times
V(2 (ngm — 1) = /(2/99) = 0-045, or about 4% of the sample
variance. This means that estimated quantities will generally be
within about 5% of the true quantities, statistically speaking.

Of particular interest in the present study is the probability
that the actual bearing capacity factor, N, as defined in equa-
tion (4), will be less than the Prandtl value of 5-14 that would
be obtained assuming a homogeneous soil with undrained shear
strength everywhere equal to the mean value ..

N, =

i

i: 11 21 + vy Hsim (4)

REVIEW OF THE LOG-NORMAL DISTRIBUTION

A log-normal distribution for the undrained shear strength,
¢y, has been adopted in this study, meaning that Inc¢, is
normally distributed. If the mean and standard deviation of the
undrained shear strength are y, and o, respectively, then the
standard deviation and mean of the underlying normal distribu-
tion of Inc¢, are given by

Olne, = \/{111 1+ (UC“)T } %)
Hey

Hine, =, — %O-lzn " (6)

and the probability density function of the lognormal distribu-
tion is given by

1 LfIney — tne )2
= — = ¢X —_ ——— 7
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In terms of the properties of the underlying normal distribution,
the properties of the log-normal distribution can therefore be
summarised as follows:

He, = CXP (ﬂln e T %olzn c.,) ®)

Tey, = He, \/[CX]J(O'lzn cu) - 1] (9}
Median = exp( Ui c,) (10)
Mode = exp(Uina, — Opy ) (1D

Use of the log-normal distribution, as opposed to the more
familiar normal distribution, or even some other more complex
distribution, is based on the following arguments: First, there is
a lack of exhaustive field data that would be necessary to
conclusively support one kind of distribution over another.
However, there is some evidence from the field to support the
log-normal distribution for some soil properties (e.g. Hoeksema
& Kitanidis, 1985; Sudicky, 1986). Use of the log-normal
distribution is also based on the simplicity and familiarity of it
two-parameters description. Second, and perhaps more impor-
tantly from a physical standpoint, the log-normal distribution is
strictly non-negative, unlike the normal distribution, and so
there is no possibility of generating properties with meaningless
negative values, particularly in the extremes of the distribution
(which may be important from a reliabilty standpoint). It might
also be noted that a log-normal distribution looks quite similar
to a normal distribution for low values of the COV.

Lee ef al. (1983) comment that the ‘normal or log-normal
distributions are adequate for the large majority of geotechnical
data’; however, Harr (1987) finds the unbounded nature of the
upper end of the log-normal distribution objectionable. The
potential for the log-normal distribution to generate very high
property values (albeit with a low probability) is not considered
a serious flaw, especially in a study involving the shear strength
of heterogeneous soil that is spatially distributed (what is the
shear strength of a point that happens to fall inside a boulder of
granite?). It is certainly possible that a soil deposit will contain
occasional inclusions of very strongly cemented material.

A typical log-normal distribution based on equation (7) with
mean g, = 100kN/m? and standard deviation o, =
50 kN/m? (COV,, = 0-5) is shown in Fig. 1. From equations
(5) and (6) it is casily shown that the underlying ‘normal’
statistics are given by 0y, = 0-472 and pup . = 4-494. High-
lighted also on the figure are the median and mode of the
distribution, which can be shown from equations (10) and (11)
to equal, respectively, 89-4 kN/m? and 71-6 kN/m? The
skewed nature of the log-normal distribution always results in
the mode, median and mean being in the sequence indicated. In
a log-normal distribution the median is always smaller than the
mean, and this will have implications for the probabilistic
interpretation of the bearing capacity results described later in
the paper.
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Fig. 1. Typical log-normal distribution of undrained shear strength
with a mean of 100 and standard deviation of 50 (COV,, =0-5). All
units are in kN/m?
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BRIEF DESCRIPTION OF THE FE METHOD USED

The bearing capacity analyses use an elastic-perfectly plastic
stress—strain law with a Tresca failure criterion. Plastic stress
redistribution is accomplished using a viscoplastic algorithm.
The program uses 8-node quadrilateral elements and reduced
Gaussian integration in both the stiffness and stress redistribu-
tion parts of the algorithm. The theoretical basis of the method
is described more fully in Chapter 6 of the text by Smith &

riffiths (1998).

The finite element model incorporates three parameters:
Young’s modulus (£), Poisson’s ration (v), and the undrained
shear strength (c,). The methodology allows for random dis-
tributions of all three parameters; however, in the present study
£ and v are held constant while ¢, is randomised.

A mesh is shown in Fig. 2 consisting of 1000 elements, with
50 columns and 20 rows. Each element is square, and the strip
footing has a width of 10 elements.

At the ith realisation of the Monte Carlo process, the footing
is incrementally displaced vertically (d,) into the soil, and the
sum of the nodal reactions () is back-figured from the
converged stress state. When the sum of the nodal reactions
levels out to within a quite strict tolerance, ‘failure’ is said to
have occurred, and the sum of the nodal reactions divided by
the footing area is the ‘bearing capacity’ (gr, = Of,/B) of that
particular realisation.

A BRIEF DESCRIPTION OF THE RANDOM FIELD MODEL
The undrained shear strength is obtained through the trans-
formation

(12)

in which ¢, is the undrained shear strength assigned to the ith
element, g; is the local average of a standard Gaussian random
field, g, over the domain of the ith element, and sy, and
Olne, are the mean and standard deviation of the logarithm of
¢, (obtained from the ‘point’ mean and standard deviation He,
and o, after local averaging).

The LAS technique (Fenton, 1990; Fenton & Vanmarcke,
790) generates realisations of the local averages, g;, that are
derived from the random field g having zero mean, unit vari-
ance, and a spatial correlation length 6),.. As the spatial
correlation length tends to infinity, g; becomes equal to g; for
all elements j and j: that is, the field of shear strengths tends to

cu, = eXp(fim ¢, + Oln o, &)
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become uniform for each realisation. At the other extreme, as
the spatial correlation length tends to zero, g; and g; become
independent for all i +# j: the soil’s undrained shear strength
changes rapidly from point to point. In the present study, a
Markovian spatial correlation function was used, of the form

2 1
611'1 Cy

where p is the correlation coefficient between the logarithm of
the undrained strength values at any two points separated by a
distance v in a random field with spatial correlation length
G]n Cu

In the two-dimensional analysis presented in this paper, the
spatial correlation lengths in the vertical and horizontal direc-
tions arc taken to be equal (isotropic) for simplicity. Fenton
(1999) examined CPT data in relation to random field model-
ing; however, the actual spatial correlation structure of soil
deposits is not usually well known, especially in the horizontal
direction (c.g. Asaoka & Grivas, 1982; de Marsily, 1985;
DeGroot & Baecher, 1993). In this paper therefore, a parametric
approach has been employed to study the influence of @, .

The plane strain model used herein implies that the out-of-
plane spatial correlation length is infinite: thus soil properties
are constant in this direction. This is clearly a deficiency.
However, previous studies by the authors (Griffiths & Fenton,
1997) involving seepage through two- and three-dimensional
random fields have indicated that the difference may not be
very great. The role of the third dimension is an area of
ongoing research by the authors.

A local averaging process has been included in the formula-
tion to take full account of the level of mesh discretisation, and
the size of the finite elements onto which the random field is to
be mapped. Local averaging preserves the mean, but reduces
the standard deviation of the underlying normal field to a
‘target’ value. The amount by which the standard deviation is
reduced depends on the size of the elements and the nature of
the spatial correlation function governing the field. More speci-
fically, there is a function called the ‘variance function’, which
can be derived from the correlation function, and which governs
the rate at which the standard deviation drops as the averaging
domain grows larger. The interested reader is referred to
Vanmarcke (1984) for a detailed description of this formulation.

Although the mean of the underlying Gaussian field is

o(le) = exp (— (13)
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Fig. 2. Mesh used in probabilistic bearing capacity analyses
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unaltered by local averaging, equations (8) and (9) indicate that
since both the mean and standard deviation of the log-normal
field are functions of ¢, they will both be reduced by the
local averaging process. Thus the coarser the mesh, the greater
the reduction in the ‘target’ statistics from their nominal ‘point’
values. This local averaging approach is fully implemented in
this study, and removes any ‘mesh effects’” that might otherwise
be present. It might also be noted that this approach is quite
consistent with the philosophy of the finite element method, in
which finer meshes resolve the finer variations in the stress and
material property fields.

PARAMETRIC STUDIES
Analyses were performed using the mesh of Fig. 2 with the
input parameters in the following ranges:

0125 < ©,, ~<co
0-125 < COV,, <4

(14)

To indicate the nature of the different solutions obtained at each
realisation of the Monte Carlo process, load/deformation results
for ten typical realisations of the footing analysis are shown in
Fig. 3 for the case when @, =1 and COV,, = 1. The average
stress, g, under the footing has been non-dimensionalised by
dividing it by the mean undrained shear strength, pu.. The
reader should bear in mind the Prandt]l solution of 5-14 when
viewing this figure. It is clear that a majority of the curves
flatten out at bearing capacity values below the Prandtl solution.
This trend will be confirmed in all the results shown in this
paper.

Figure 4 shows a typical deformed mesh at failure with a
superimposed greyscale corresponding to ®, =1, in which
lighter regions indicated stronger soil and darker regions in-
dicated weaker soil. In this case the dark zones and the light
zones are roughly the width of the footing itself, and it appears
that the weak (dark) region near the ground surface to the right
of the footing has triggered a quite non-symmetric failure
mechanism. The shape of the non-symmetric mechanism is
emphasised further by the plot of displacement vectors for the
same realisation, shown in Fig. 5.

For each combination of @, and COV,, #gim = 1000 rea-
lisations of the Monte Carlo process were performed, and the
estimated mean (my,) and standard deviation (sy,) of the
resulting 1000 bearing capacity factors from equation (4) were
computed.

Figure 6(a) shows how the estimated mean bearing capacity
factor, my,, varies with @, and COV,,. The plot confirms that,
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Fig. 3. Typical load/deformation curves corresponding to different
realisations in the bearing capacity analysis of an undrained clay
with @, =1 and COV,, =1

for low values of COV,,, my, tends to the deterministic Prandtl
value of 5-14. For higher values of COV,,, however, the mean
bearing capacity factor falls steeply, especially for lower values
of @,,. For example, in a highly variable case where ®, = 0.5
and COV,, =4, the predicted my, value is less than unity—
over five times smaller than the Prandtl value! For the recom-
mended upper limit of COV, = 0-5 suggested by Lee et al
(1983) and others, the my, value is closer to 4, corresponding
to a more modest reduction of 20%. What this implies from -
design standpoint is that the bearing capacity of a heterogeneou

soil will on average be less than the Prandtl solution that would
be predicted assuming the soil is homogeneous with its strength
given by the mean value. The influence of ©, is also
pronounced with the greatest reduction from the Prandtl solu-
tion being observed with values around ®,, ~ 0-5. As the value
of ©,, is reduced further towards zero, there is evidence of a
gradual increase in the value of my,, as shown in Fig. 6(b).
From a theoretical point of view, it could be speculated that, as

EE &

Fig. 4. Typical deformed mesh and greyscale at failure with @, = 1. The darker regions indicate weaker soil
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Fig. 5. Displacement vectors at failure for the same case shown in Fig. 4. The non-symmetric shape of the failure mechanism is clearly visible
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Fig. 6. (a) Estimated mean bearing capacity factor, my,, as a function of undrained shear strength statistics, ®, and COVjy,. (b) More

clearly shows the increase in my, as ®, — 0

®,, becomes vanishingly small, the mean bearing capacity
factor will continue to increase towards the deterministic Prandtl
solution of 5-14. The explanation lies in the fact that as the
spatial correlation length decreases, the weakest path becomes
increasingly tortuous and its length correspondingly longer. As
a result, the weakest path starts to look for shorter routes
cutting through higher-strength material. In the limit, as
®,, — 0, it is expected that the optimum failure path will be
the same as in a uniform material with strength equal to the
mean value, hence returning to the deterministic Prandtl solu-
tion.

Also included in Fig. 6(a) is a horizontal line corresponding
‘o the analytical solution that would be obtained for ®,, = .
[his hypothetical case implies that each realisation of the
Monte Carlo process involves an essentially homogeneous soil,
albeit with strength varying only from one realisation to the

next. In this case, the distribution of ¢f will be statistically
similar to the underlying distribution of ¢, but magnified by
5:14. The mean bearing capacity will therefore be given by

W = 514, (15)

hence my, = 5-14 for all COV,,.

Figure 7 shows the influence of ®, and COV, on the
estimated coefficient of variation of the bearing capacity factor,
COV,, = sy, /my,. The plots indicate that COVy, is positively
correlated with both COV,, and ©,,. This figure also indicates
that the correlation length, @, . has a significant influence on
COVy,. For small correlation lengths COVy, is small and rather
insensitive to COV; however, for higher correlation lengths
COVy, increases quite consistently until it reaches the limiting
maximum value corresponding to ®, = oo, defined by the
straight line where COVy, = COV,,.
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Fig. 7. Estimated coefficient of variation of the bearing capacity
factor COVy, =sy,/mpy, as a function of undrained shear strength
statistics, ©,, and COV,,

PROBABILISTIC INTERPRETATION

Following Monte Carlo simulation for each parametric com-
bination of input parameters (@, and COV,), the suite of
computed bearing capacity factor values from equation (4) was
plotted in the form of a histogram, and a ‘best-fit’ log-normal
distribution superimposed. An example of such a plot is shown
in Fig. 8 for the case where @, = 2 and COV,, = 1.

Since the log-normal fit has been normalised to enclose an
area of unity, areas under the curve can be directly related to
probabilities. From a practical viewpoint it would be of interest
to estimate the probability of ‘design failure’, defined here as
occurring when the computed bearing capacity is less than the
Prandtl value based on the mean strength. That is:

‘Design failure” if gr << 5-14u,, (16)

Let this probability be p(N,-75-14): hence from the properties
of the underlying normal distribution we get

In5-14 — my, Nc)

Sin N,

p(Nc~ZS-14):<IJ< (17
where @ is the cumulative normal function.

0-4

Prandtl, 5-14
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Fig. 8. Histogram and log-normal fit for the computed bearing
capacity factors when ©, =2 and COV, =1. The log-normal
function has the properties my, =3-31 and sy, =2-08

For the particular case shown in Fig. 8, the fitted log-normal
distribution has the properties my =3-31 and sy, = 2-08:
hence from equations (5) and (6) the underlying normal dis-
tribution is defined by my, 5, = 1-03 and sy, 5, = 0-58. Equation
(17) therefore gives p(N.<<5-14) = 0-85, indicating an 85%
probability that the actual bearing capacity will be less than the
Prandtl value.

Figure 9 gives a summary of p(N.<25-14) for a range of
values of @, and COV,,. The figure indicates a wide spread o
probability values with respect to ®,, with the highest prob-
abilities corresponding to the lowest values of ®,, . For exam-
ple, a soil with COV, =05 exhibits a range of
0-59 < p(N; <25-14) <2 0-95, with the low and high values corre-
sponding to @, = oc and @, = 0-5 respectively.

The influence of COV,, on the probability is also significant.
Theoretically, as COV, — 0, the probability p(N, <5-14)
— 0-5, irrespective of the value of ©,,. The results in Fig. 9
indicate that this convergence occurs faster for higher values of
©,, than for lower values. It would appear that low values of
O,, permit such widely scattered weak elements that the prob-
ability of the actual bearing capacity lying below the Prandtl
value remains high, even for low COV,, values. This general
trend is to be expected, however, because for low COV,, values
the distribution of bearing capacity factors becomes ‘bunched
up’ and ‘centred’ on 5-14, giving an almost equal chance of the
computed bearing capacity factor lying on either side of the
Prandtl solution.

As COV,, is increased, the probability p(N,<25-14) also
increases. For example, when ®., =05 and COV, =05,
P(N; =<5-14) = 0-95, indicating a 95% probabilty that the ac-
tual bearing capacity will be lower than the Prandtl solution.

The result corresponding to the limiting cases of ®,, = oc is
also indicated in Fig. 9. As dicussed previously, the distribution
of g¢ in this case is statistically similar to the underlying
distribution of ¢,, and the required probability, p(N.-<5-14),
simply equals the area under the probability density function to
the left of the mean. For a log-normal distribution this prob-
ability is always greater than 0-5, and is given by

P(Ne 25:14) = D(0-5014c,) (18
Thus from equation (5):
PN <5-14) = ®(0-5,/[In(1 + CO‘.’i“)} (19)

Figure 9 indicates that the expected bearing capacity of a strip
footing on an undrained clay with variable shear strength
defined by a log-normal distribution will always be lower than
the Prandtl value based on the mean strength. It could be
argued, however, that this interpretation gives an over-pessimis-
tic impression of the role of soil strength variability by not
taking account of the variance of the bearing capacity. Even an
essentially deterministic analysis with a wvery small shear
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Fig. 9. Graph showing the probability p(N. <25-14) that the bearing
capacity factor will be lower than the Prandtl solution based on the
mean strength
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strength variance would suggest a 50% probability that the
bearing capacity would lie below the Prandtl value.

In order to remove this anomaly, the results have been
reinterpreted in Figs 10 and 1l to compare the computed
bearing capacity factor with the Prandtl solution after it has
been reduced by a factor F. The factor F is equivalent to a
factor of safety applied to the deterministic bearing capacity
based on mean strength. The probability of design failure in the
form of p(N, <15-14/F) is now greatly reduced, giving a more
reassuring result from a design viewpoint. For example, from
Fig. 10 in which F = 2, the probability of design failure for a
soil with @, =1 and COV,, = 0-5 is about 6%. This prob-
ability is essentially reduced to zero for the same soil by
increasing the factor to F = 3, as shown in Fig. 11.

Figure 12 shows more clearly how F affects the probability
of design failure for a range of COV, in a soil where the
correlation length is held constant at ©®, = 1. The results
indicate that quite high factors of safety are required to reduce
the probability of design failure to acceptable levels. Fig. 12
also shows that for a soil with COV, =0-5 and ®, =1, a
factor of safety of at least 3 is needed to essentially eliminate
all probability of design failure. This is consistent with geotech-
nical engineering practice, where a factor of safety of at least 3
(e.g. Lambe & Whitman, 1969) is considered necessary to
protect against general shear failure.

A further interpretation of the probability of design failure is
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Fig. 10. Graph showing the probability p(N.-15-14/2) that the
bearing capacity factor will be lower than the Prandtl solution
based on the mean strength incorporating a factor of safety F =2
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sig. 11. Graph showing the probability p(N.-15-14/3) that the
bearing capacity factor will be lower than the Prandtl solution based
on the mean strength incorporating a factor of safety F=3

1-0

09+
0-8-
O‘?_
06
0‘5'
04
03+

PN, <514/F)

0-24
014

0 e
107

Fig. 12. Graph showing the probability p(N, <5:14/F) that the
bearing capacity factor will be lower than the Prandtl solution
based on the mean strength for three different factors of safety, F,
for a soil with O, =1

shown in Fig. 13, where a direct comparison is given between
the probability of design failure p(N, Z5-14/F) and the factor
of safety, F, for a range of ©, and COV,, values.

If the goal is to virtually eliminate any possibility of design
failure involving a bearing capacity calculation based on the
mean strength, Fig. 13(a) indicates that for a soil with
COV,, = 0:125 (a value at the lower end of the recommended
range of Lee er al, 1983, and others), a factor of safety of
F =15 would be needed. For an intermediate value of
COV,, = 0-25, the required factor of safety becomes F =2
(Fig. 13(b)), and for a soil with COV,, = 0-5 (a value at the
upper end of the recommended range), the required factor of
safety increases further to F' = 3, as shown in Fig. 13(c). In the
case of COV,, =1 (Fig. 13(d))—a value that might be consid-
ered exceptionally high for most soils—the need for even higher
factors of safety is indicated.

An important observation from Fig. 13 is that the correlation
length, ©,,, becomes increasingly relevant to the probabilistic
interpretation of the bearing capacity problem as COV,, gets
larger. This is clear from the way the curves are bunched
together when COV,, = 0-125 (Fig. 13(a)) yet are quite diver-
gent when COV,, =1 (Fig. 13(d)).

In all of Fig. 13, the ‘crossing-over’ of the lines correspond-
ing to different ©,, values implies that high values of ©,, are
beneficial to design at low values of F by giving lower
probabilities of design failure, but may be a liability at higher
values of F. The explanation lies in the fact that smaller
correlation lengths lead to smaller values of COV,., as shown
in Fig. 7. Increasing F will therefore result in a steeper fall in
the probability of design failure as the factored bearing capacity
factor rapidly passes through the ‘bunched up’ distribution.

In addition to the expected trend, which shows p(N,
<5.14/F) decreasing as F increases for all @, the curves
also confirm that a factor of safety of 3 is able to reduce the
probability of design failure to negligible levels for all soils in
the recommended range of 0-1<<COV,, -<0.5. These results
may help explain, in a probabilistic context, why factors of
safety used in bearing capacity calculations are typically much
higher than those used in other limit state calculations in
geotechnical engineering, such as slope stability and earth
pressures,

CONCLUDING REMARKS

The paper has shown that soil strength heterogeneity in the
form of a spatially varying log-normal distribution can signifi-
cantly reduce the mean bearing capacity of a strip footing on
undrained clay.
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The following more specific conclusions can be made:

(@) As the variance of soil strength increases, the mean bearing

(&)

(e)

(d)

(e)

capacity decreases. A minimum mean bearing capacity was

observed for correlation lengths of approximately one half

of the footing width. For still smaller correlation lengths, a
modest increase in the mean bearing capacity was detected.
It could be speculated that, as ®, becomes vanishingly
small, the mean bearing capacity factor will continue to
increase towards the deterministic Prandtl solution of 5-14.
The explanation may lie in the fact that, with no spatial
correlation, there are no preferred paths of weaker material
to attract the mechanism, and the material response is
‘homogeneous’, yielding an essentially deterministic sym-
metric mechanism at failure.

The coefficient of variation of the bearing capacity was
observed to be positively correlated with both the coeffi-
cient of variation of the soil strength and its spatial
correlation length.

Results have been presented in a probabilistic context to
determine the probability of design failure, defined as the
probability that the actual bearing capacity would be lower
than a factored deterministic prediction of bearing capacity
using Prandtl’s formula based on the mean strength of the
soil.

By investigating the role of a factor of safety applied to the
Prandtl solution, it was observed that a value of F =3
would essentially eliminate any possibility of design failure
for soils with a strength variability within the recommended
range.

The influence of correlation length on the probabilistic
interpretations of the bearing capacity problem was shown

to be significant, especially for soils with higher values of

COoV.,,.
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NOTATION
B footing width
COV,, coefficient of variation of undrained shear strength
COVy, estimated coefficient of variation of bearing capacity factor
¢y, undrained shear strength
¢y, undrained shear strength assigned to ith element
E Young’s modulus
F factor of safety
f{.) probability density function
g standard Gaussian field (zero mean, unit variance)
g; local average of Gaussian field over ith element
i, j integers that count realisations or elements
my, estimated mean of bearing capacity factor
my, v, estimated mean of log bearing capacity factor
J.  Prandtl bearing capacity factor
N, Prandtl bearing capacity factor of ith realisation
ngm number of Monte Carlo realisations
p(..) probability
O; footing reaction force of ith realisation
O, footing reaction force at bearing failure of ith realisation
g average footing stress
gr footing bearing capacity
gr, footing bearing capacity of ith realisation
sy, estimated standard deviation of bearing capacity factor
Sin 2, estimated standard deviation of log bearing capacity factor
d, vertical displacement of rigid footing
©®,, dimensionless spatial correlation of log undrained shear
strength
8., spatial correlation of undrained shear strength
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Bhn e, spatial correlation length of log undrained shear strength
He, mean of undrained shear strength
tne, mean of log undrained shear strength
Mg mean bearing capacity
v Poisson’s ratio
p correlation coefficient
standard deviation of undrained shear strength
Ol Standard deviation of log undrained shear strength
T distance between two points in random field
®(..) cumulative normal function
¢, undrained friction angle
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