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Abstract: A probabilistic study on the bearing capacity of a rough rigid strip footing on a weishtless cohesive soil is carried out to agse:
the influence of randomly distributed undrained shear strength. Nonlinear finite element analysis is merged with random field theory in
conjunction with a Monte Curlo method. In a parametric study, the mean shear strength is held constant while the coetlicient of variation
and spatial correlation length of cohesion are varied systematically. The influence of the spatial variation of cohesion on the mean bearing
capacity is discussed. The resulls are also presented in a probabilistic context to determine the probability of failure. A comparison

between rough and smooth footing conditions is also made.
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Introduction

Most geotechnical analyses in general practice are treated as de-
terministic. These involve analyses using representative values of
design parameters, usually an average or the lowest value ob-
tained from ficld andsor laboralory test results, and application of
1 suitable factor of safety to arrive at an allowable loading con-
dition. However, in nature, soil parameters such as physical
strength aud hydraulic properties gencrally vary spatially in both
the horizontal and vertical directions. The distribution of these
soil properties at a site depends on the heterozeneity of constitu-
ent materials forming the soil matrix, the geological history of
oil formation, and its continuous modification by nature. A uni-
form soil condition is seldom, if ever, encountered in practical
problems. In most site conditions, soil properties show a signifi-
cant variation over space.

Geotechnical analyses are generally carried out by treating the
soil as a single homogencous layer with uniform soil properties or
as 2 multilaycred medium with layerwise uniform properties. Nu-
merical techniques such as finite difference or finite element
methods  have facilitated modeling the layerwise uniform
material-—variztion of soil properties in the horizontal direction is
generally ignored. This may be due to the fact that the variation in
the horizontal direction is not so significant in many situations,
and a greater number of boreholes is required to establish this
horizontal variation, which is impractical due to economical con-
siderations.
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The results of such deterministic analyses are a first order ap-
proximation to the mean response, but may easily miss the true
failure mechanies, particularly where failure surfaces follow the
weakest path through the soil. Thus, the results of deterministic
analyses are only approximations which may vary widely from
reality. Common causes of discrepancy between the estimated and
actual performance of any geotechnical system may be summa-
rized as (Cambou 1975; Lee et al. 1983; Mostyn and Li 1993;
Phoon and Kulhawy 1999)

Variability of the soil properties at o specilic site;

Sampling techniques:

Laboratory test conditions;

Selection of design parameters from limited ficld and labo-

ratory test results;

5. Assumptions used to simplify the problem for analytical or
numerical study;

6.  Model error; and

7. Construction methods and materials used.

Among the above, only the randomness of the soil strength is
considered in this work but such consideration may have impli-
cations for several of the other sources of error. In particular, a
potentially significant source of error in the traditional model i:
just that spatial variability is traditionally ignored. So the consid-
eration of spatial variability may very well reduce model error.

The deterministic approach with « suitable factor ol safety has
been found to be adequate to essentially eliminate the possibility
of failure of geotechnical systems due to these sources of vari-
ability. However, for major projects, reporting the probability of
geotechnical fiilure and'or risk involved in any such failure is
becoming popular among engineers (Mostyn and Li 1993; Phoon
et al. 2000). Such probabilistic studies may be carried out by
treating some of the key soil properties as random ficlds. The soil
parameters that do not eause any significant variation in the
analyses may be treated deterministically to reduce the complex-
ity of the problem. Based on purametric studics, engineers could
further refine their design and construction requirements to mini-
mize the project cost,

Probabilistic studies on a wide range ol geotechnical applica-
tions have been reported in the literature (sec, e.o., Li and Lo
1993; Lemaire ct al. 19935; Shackelford et al. 1996: Pande ot al.
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Table 1. Undrained Shear Strength Properties

Slatistical property Symbol Units
Mean P, Stress
Standard deviation o, Stress
Spatial correlation length B¢ Lenath

2000). Probabilistic studies on the bearing capacity of smooth
footings have been reported previously by Fenton and Griffiths
(2000, 2001) for ¢'-d' soils and by Griffiths and Fenton (2001)
for &, =0 soils. In all these studies, a lognormal distribution was
assumed for cohesion and a bounded distribution for the friction
angle. In the ¢'-¢' bearing capacity analyses, the influence of
cross correlation between the cohesion and {riction angle was also
investigated.

The smooth footing condition assumed in the previous works
is an ideal case. In reality, footings are usually constructed by
pouring concrete directly on a firm surface of soil or lean con-
crete, and the fooling-soil interface is rough enough to restrain the
tendency for slip. In the present study, the influence of a randomly
distributed shear strength on the bearing capacity of a rough rigid
strip footing at the surface of a weightless cohesive soil is as-
sessed. The study combines a conventional nonlinear elastoplastic
finite element analysis with random field theory in conjunction
with & Monte Carlo method. The results from the probabilistic
study for a rough footing are interpreted statistically, and then
compared with similar results from a smooth footing.

Random Field Model

The behavior of a footing on a weightless cohesive soil is influ-
cnced by the following three soil parameters:

I. Young's modulus £;

2. Poisson’s ratio v; and

3. Undrained shear strength ¢,,.

While the parameters £ and v influence the computed settle-
ment, the bearing capacity of a footing depends primarily on the
undrained shear strength ¢, . Hence in the present study, to sim-
plify the analyses, the Young’s modulus and Poisson’s ratio of the
soil are held constant while the undrained shear strength is mod-
cled as a random ficld.

The variability of the undrained shear strength is assumed to
be characterized by a lognormal distribution with the three param-
eters given in Table 1.

The spatial correlation length, also known as the scalc of flue-
tuation, describes the distance over which the spatially random
values will tend to be correlated in the underlying Gaussian field.
Thus, a large value will imply a smoothly varying field, while a
small value will imply a ragged field. For more discussion of the
spatial correlation length, the reader is referred to Vanmarcke
(1977). In order to nondimensionalize the input, the shear strength
variability is expressed in terms ol the coefficient of variation
C‘OVC": trl.:{"p(.”, and @ normalized spatial correlation length
Oy, =0y, /B, where B is the width of the footing.

Use of the lognormal distribution to characterize the variabil-
ity of the undrained shear strength is preferred over the normal
distribution because it avotds the generation of negative values of
soil parameters that a normal distribution allows. Moreover, avail-
able fleld data indicate a lognormal distribution for some soil
properties (Hoeksema and Kitanidis 1985; Sudicky 1986; Cheru-
bini 2000). The lognormal distribution of the undrained shear

strength ¢, means that In ¢, is normally distributed and the stan-
dard deviation and mean of the underlying normal distribution of
In¢, are given by

e .
O, = /In{1+COV,_ } ()
vy @

Other properties of the lognormal distribution are

Pe, = eXp(py, + 107, ) 3)
o= R "chp{u{“")— 1 4
Median=exp(jh,, ) (5)

Mode=: exp( Ly, ‘fcr,zn ) (6)

[n this study, the random field is generated using the local
average subdivision method (Fenton and Vanmarcke 1990; Fen-
ton 1994). A lognormally distributed random field is obtained by
first simulating a normally distributed random field (/(x), having
zero mean, unit variance, and spatial correlation length 6, .
Then this underlying normally distributed random field is trans-
formed to the desired cohesion field using the relationship

Cu{x exp{“‘]n:‘_+U|n.“(}{.xi)} (7)

where x;= vector containing the coordinates of the center of the
ith element; and C“{_:cchesion value assigned to that element.

An isotropic Markovian spatial correlation function, in which
the correlation decays exponentially with distance, is used, and it
can be expressed as

e |
plT)==cxp{ — 0 ] ()
3 e,

where p=:corrclation cocfficient between the underlying random
field values at any two points separated by a distance 7. This
correlation function governs the correlation structure of the un-
derlying generated ficlds G(x). The actual spatial correlation
structure of soil deposits is usually not well known, especially in
the horizontal direction (see, ¢.g., Asaoks and Grivas 1982; de
Marsily 1985; DeGroot and Baecher 1993). Establishing the spa-
tial correlation structure of a ¢ite having erratic variation in its soil
properties would require an cxtensive amount of subsoil explora-
tion, which may not be feasible in many projects due to the high
cost. The various forms of commonly used spatial correlation
functions and the procedure to estimate the corrclation cosfficient
length are discussed in detail by Fenton (1999).

In the present study, for simplicity, the spatial correlation
lengths in the vertical and horizontal directions are assumed to be
equal, and the influence of ©, c, is studied by a parametric ap-
proach. The assumption of isotropy in the correlation structure is
sufficient to establish the basic stochastic behavior of the bearing
capacity problem. Site specific relinements relating to anisotropy
are left for future studies.

Finite Element Method
The bearing capacity analyses are carried out by the {inite element

method using a viscoplastic algorithm and the elastic--perfectly
plastic Tresca yield criterion (Smith and Griffiths 1998). The soil
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Fig. 1. Mesh used in probabilistic bearing capacity analyses

medium is discretized by isoparametric plane strain elements. A
typical finite element mesh used is shown in Fig. I. It consists of
1,000 eight-noded square clements, in 50 columns and 20 rows,
of equal size with side length 0.1 m. The footing occupies ten
elements, giving it a width of B=1 m. The nodes representing the
footing width are incrementally displaced by an equal amount in
the vertical direction, simulating a rigid footing condition with a
uniform vertical settlement but without any rotation. In reality, the
spatial variation of soil properties might cause a rotational move-
ment of the footing (c.g., Nobshar and Popescu 20013, which is
not considered in this study. Rough footing conditions are simu-
lated by restraining horizontal movement of these nodes. The
footing load for each increment is the summation of the nodal
forces back-computed from the converged stress field after each
imcrement. Bearing capacity failure of the footing was taken to
have occurred when the back-computed footing load leveled out
within quite strict tolerances.

The vertical stress distribution beneath a rigid footing is non-
uniform, unlike that of a flexible footing where the load is applied
equally at nodal points. High stress concentration is observed, in
general, at the vicinity of the footing edge where soil undergoes
high plastic strains. Since the footing load is back-computed from
the stress field, a finer mesh is preferred in that vicinity to en-
hance the accuracy of the back-computed footing load. Use of a
coarser mesh generally results in a higher value of back-conputed
footing load than the theoretical.

However, in the present study, a uniform finite element mesh
coneisting of square elements of equal size is used in order to
simplify the random field generation and mapping of the cohesion
value of each element. Although the complexity in the random
field peneration due to a finite element model with varying shapes
and sizes of elements can be incorporated, it is not considered
hercin.

Monte Carlo Simulations
For each set of assumed statistical properties given by COV, and

O, . Monte Carlo simulations are performed. These involve
1,000 realizations of the shear strength random field and the sub-

sequent finite element analysis of bearing capacity. Each realiza-
tion, while having the same underlying statistics, will have a quite
different spatial pattern of shear strength values bencath the foot-
ing and hence a differcnt value of bearing capacity. On comple-
tion of the bearing capacity analysis for 1,000 simulations, the
bearing capacitics are subjected to statistical analysis.

The bearing capacily g, is normalized by the mean undrained
shear strength to give a bearing capacity factor

N ',zq,i,'u( Lo i== 120000, 1,000 (9

In the present study, the mean undrained shear strength w,. is
u

held constant throughout the parametric study at @ value of 100
kPa.

Deterministic Analysis

The results of deterministic analyses carried out with the mean
undrained shear strength and COV, =0 are shown in Fig. 2. The
estimated bearing capacity for a rough looting condition by the
finite element method was 542.3 kPa, implying a bearing capacity
factor of 5.423, which is 5.5% higher than the Prandtl closed form
solution of N.=5.14. This is due to the coarser and uniform finite
element mesh used in the analysis. As discussed carlier, a better
agrecment between the computed result and the closed form so-
lution can be obtained by using @ finer mesh near the footing
edge. Similarly, the estimated bearing capacity of a smooth foot-
ing by finite element analysis was 528.2 kPa. about 2.8%5 higher
than the closed form solution. In the following discussion, and in
order to take account of this discretization error, the mean bearing
capacity from statistical analysis will be normalized by the finite
element deterministic values mentioned above, and the effect of
this marginally higher numerical estimation will be relatively in-
significant. The deterministic bearing capacity will be referred to
as ¢y, 1.c., q_h:;542.3 kPa {or 528.2 kPa for the smooth footing
case). Similarly, the deterministic bearing capacity factor will be
referred to as N,. |, ie., ,'\'l.‘,: 5.423 (or 5.282 for the smooth foot-
ing case).

The displacement vector plot for a rough footing condition in
Fig. 3 shows that the failure field is similar to Prandtl’s failure
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Fig. 2. Deterministic analysis of footings

mechanism, a triangular wedge moving downward as  rigid body
with the displaced footing and zones of radial shear and passive
Rankine triangular wedges symmetrical on cither side.

Parametric Study

Analyses are performed with the mesh of Fig. 1 and with the
input parameters taking the following values:

O, =0.125,0.5,1,2.4,8
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] I 1
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Fig. 3. Displacement vector at failure of rough footing in determin-
istic analysis

COoV, =0.125,0.25,0.5,1,2,8.

Following 1,000 Monte Carlo simulations, the mean and standard
deviation of the resulting 1,000 bearing capacities are computed.

The accuracy of the estimated bearing capacity statistics de-
pends on the number of realizations carried out for each set of
parameter values. An estimate that is based on only a few real-
izations will have a large standard error. In order to achieve stabl
(i.e., accurate) bearing capacity statistics, a quite high number of
Monte Carlo realizations may be required. The influence of the
number of realizations on the mean and standard deviation of
bearing capacity of a rough footing is shown in Figs, 4(a and b)
for two different sets of input values. It can be observed that
1,000 realizations, as used in this study, are generally adequate
within the considered range of parameters. For further discussion
on the optimal number of realizations, the intcrested reader is
referred to Griffiths and Fenton (2001).

Fig. 5 shows two typical cases of gencrated random fields of
the undrained shear strength for a fixed value of C()V[" while
O\, is varied. In this figure, a gray scale is superimposed on the
finite element mesh; the lighter regions indicate stronger soil and
darker regions indicate weaker soil. It can be observed that for a

100
1

50
1

th'nl;COVc.r.Oj
G0 By =1;COV, =2

Standard deviation in bearing capacity (kPa)

< ) T ) T ! T T T T l T T T T
2 4 6 8 2 4 6 8 2 4 6 8
10° 10' 10* 10°
b ) Number of realizations

Fig. 4. Effect of number of realizations on bearing capacity statistics: (a) mean, (b) standard deviation
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Fig. 5. Influence of @, . on random field generation (COV,,
=1): O =(a) 0.125,(b) 8

small value of @, o, the shear strength changes rapidly from ele-
ment o element creating a ragged field, and as @, increases the
random ficld becomes smoother, or more slowly varying.

Figs. 6(a and b) show how the mean bearing capacity, normal-
ized by the deterministic bearing capacity, varies with COVL." and
1, for rough footirg conditions. For low values of COV,. | the
nican bearing capacity | . tends to the deterministic value. But
for higher values of COV,
steeply, especially for spatial cortelation lengths of the order of
©,.,=0.5. For example, in Fig. 6(a). the mean bearing capacity
in a fighly variable condition with @, . =0.5 and COV, =8 is
only about 10% of the deterministic value. For the value of

the mean bearing capacity falls
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COV, =0.5, which Lee et al. (1983) suggest as an upper limit,
with O, - =10, the P, is about 80"y of the deterministic value.
Fig. 6(b) indicates a minimum value of the mean bearing capacity
is observed when @, ==0.5, i.e., the correlation length is half of
the footing width. At the next lower value of @, . ;18 seen in
all cases to increase. It is speculated that in the limit of 0,
-=(), there are no “preferential” weak paths the failure mecha-
nism can follow, and the mean bearing capacity will tend to the
deterministic bearing capacity based on the peometric average of’
the shear strength, namely the median from Egq. (5). Thus, as
B i, g, fdp 1+ C()Vi )17, The explanation lies in the
fact that as the spatial correlation length decreases, the weakest
path becomes increasingly tortuous, and its length correspond-
ingly longer. As a result, the “lowest energy™ path starts to look
for shorter routes cutting through higher strength material. In the
limit, as €, -0, it is expected that the optimum failure path
will be the same as in a uniform material at the median.

In principle, the © ), =0 case is somewhat delicate to inves-
tigate. Strictly speaking, any local average of a (finite variance)
random In ¢, field having O, =0 will have zero variance (since
the local average will involve an infinite number of independant
points). Thus, in the @, =0 case the “‘local average” represen-
tation, i.e., the finite element method (as interpreted here), will
necessarily return to a deterministic solution based on the median.
The detailed investigation of this trend is also complicated by the
fact that soil properties are never determincd at the “point”
level-—they are based on a local average over the soil sample
volume. While recognizing the apparent trend with small O, in
this study, the theorctical explanation for the limiting trend is left
for further research,

It is also hypothesized that ©,,. =B (or Oy, 1.0) leads to
the greatest reduction in Ry
for a fhilure surface to develop which deviates significantly from
the deterministic Prandtl mechanism (consisting of circular arcs

because it allows enough variability
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Fig. 6. Estimated mean bearing capacity as function of undrained shear strength statistics @, ., and COV,
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and straight lines). Too much spatial variability, where @, -0
so that the weakest path would become too long. or too little,
where 6, .~ so that no weakest path exists, both tend back to
the deterministic solution.

From these two figures, it can be seen that the bearing capacity
of a footing on a heterogeneous soil with spatially varying un-
drained shear strength will generally be less than the deterministic
bearing capacity computed with the mean shear strength P,
This important result shows that weak soil elements, rather than
strong soil elements, tend to dominate the overall performance of
the footing.

The horizontal line in Fig. 6(a) corresponds to the solution that
would be obtained for the hypothetical case of ® ¢, =%*. This
condition implics that each realization of the Monte Carlo process
mvolves @ uniform soil, albeit with properties varying from one
realization to the next. In this case, the distribution of the bearing
capacity g, will be statistically similar to the underlying lognor-
mal distribution of ¢, but magnified by N,. . i.., the mean bear-
ing capacity will be equal to the deterministic bearing capacity for
all values of COV

The change in the coefficient of variation of computed bearing
capacitics, C()\'q, . with respect to COV_for the rough footing is
shown in Fig. 7. For this, the standard deviation in the estimated
beuring capacity o, for each set of input parameters is normal-
ized by the comresponding mean bearing capacity to obtain
COV‘.I. At lower values of COV, , the COV 5 increases almost
lincarly with COV, oy and at higher values of COV(.” the curves
flatten and the rate of increase is reduced. It is noted that the
mfuence of O, ¢ is also significant; COV‘:r increases with in-

creasing Oy, and approaches the limiting value represented by
the 45" inclined line for the hypothetical case of ©,, . =+ for
which, as explained above, C'OV_J would be equal to COV,_ .
Fig. 8 shows typical deformed meshes at failure under & rough
footing for some of the realizations and the corresponding dis-
placement vector plot. The deformed mesh is superimposed on a
gray scale in which lighter regions indicate stronger soil and
darker regions indicate weaker soil. As the variance of the shear
strength for a spatially variable soil increases, the symmetry of
the failure field is lost and the failure mechanism tends to go one
way or the other. Failure of the footing in the very first load
increment with negligible bearing capacity has also been ob-
served during some realizations with C()V,”:- I. In thesc cases,
the random field simulation has generated a region of clements
close to the fooling with very low shear strength that is unable to
provide any resistance o the footing load. Similarly, higher val-
ues of COV, have also resulted in very high bearing capacities in
some realizations, as high as 11 times the deterministic value.

Probabilistic Interpretation

The probability that the computed bearing capacity, for any set of
input parameters, is less than the deterministic value, q7 gy . can
be expressed as

i { In 97,7 Png, )
Ply,<qy ] q)\_?_— (10)
n iy !

where @ = cumulative normal function.
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Fig. 15. Comparison of mean bearing capacity for smooth and rough footings

The summary of P[yg, fq_f‘_']. shown in Fig. 9 for rough foot
ing conditions, indicates that there is always a greater than 50%
chance that the bearing capacity of the footing on a soil with
spatially random shear strength is less than the deterministic bear-
ing capacity based on the mean. Higher probabilities correspond
to higher valucs of COV,. and lower values of Oy, . The higher
probabilitics corresponding to low values of 0, occur due to
the reduced variance of the benaring capacity values, The “bunch-
ing up” ol bearing capacity values, combined with a reduced

mean (Figs. 6), means that the majority of the bearingy capacity
distribution lies below the deterministic bearing eapacity based on
the mean strength. Theorctically, as the COV_  approaches zero,
all the probabilities in Fig. 9 tend to 0.5, iirespective of the value
of @, . It can also be observed from Fig. 9 that this converpence
toward 0.5 occurs faster for higher values of ()‘_”“.

For a fixed mean, the lognormal distribution will becorie in-
creasingly skewed to the right as the COV increases (which is to
say, the median moves farther to the leit from the mean), so that
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Fig. 16. Comparison of probability of design failure for smooth and rough footings: @, = (a) 05,(b) 8
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there is an increasing area to the left of the mean. Thus, even a
known lognormal distribution (as represented by the ©, . =¢
case) will show an increasing probability that ¢, <g., with in-
creasing COV,, . However, the fact that lesser values of O,
show even higher values of P[g,<g, ] is indicative of the
“weakest path” effect arising from spatial variability in soil prop-
erties. In effect, for ©, ¢, <7, the weaker soil regions in the re-
sulting random field tend to dominate the failure mode.

The usual design practice for footings is deterministic. This
involves the estimation of ultimate bearing capacity using average

values of design paramcters and application of a suitable factor of

safety (F) to arrive at an allowable bearing capacity. The factor of
safety used for shallow {ootings is generally between 3 and 4. The
results in Fig. 9 imply a factor of safcty of unity, o0 the probabil-
ity results have been reinterpreted in Figs. 10-12 to indicate the
estimated probability of design failure after the deterministic so-
lution has been reduced by a factor of safety F>> 1. The probabil-
ity of design failure P[g,<q, /F] is now greatly reduced. For
example, for the recommended maximum value of C()V(.“= 0i5,
the chance of failure has been reduced to 11% for F=2, 1.3% for
F=3, and 0.2% for F=4. Fig. 13 shows directly how F affects
the probability of desipn failure for a range of COV, where the
correlation length is held constarnit.

The above results confirm that a factor of safety of 3-4 is
generally able to reduce the probability design failure to negli-
gible level for all soils in the recommended range of COVL.:
20.5. Higher factor of safety values would be required for ex-
ceptionally variable soils.

Comparison with Smooth Footing Results

A parametric study for smooth footing conditions (e.g., Griffiths
and Fenton 2001) has been carried out and compared with that jor
rough conditions. Some typical deformed meshes and the corre-
sponding displacement vectors for realizations under smooth con-
ditions are shown in Fig. 14. In a deterministic analysis, the fail-
ure mechanism of a smooth footing is similar to Hill’s mechanism
of failure with two smaller symmetrical triangular wedges under-
neath the footing, one sliding to the left and the other sliding to
the right. As the COV,. increases, the symmetry of the failure
field is lost; the slip lines on one side are shallower than on the
other, or the failure mechanism tends to go one way or the other.
The slip lines of smooth footing are generally shallower than that
of rough footing.

Fig. 15 compares the mean bearing capacities under smooth
and rough conditions after being normalized by their respective
deterministic bearing capacity values. The gencral trend in the
variation of the mean bearing capacities with respect to COV,.
and @,
ized mean bearing capacity of the smooth footing is somewhat
lower than that of the rough footing. Fig. 16 compares the prob-
ability of design failure P{g,< ¢, /F] for smooth and rough foot-

for both footing conditions is similar; but the normal-

ings for &, =0.5 and 8. Although the general trend in the varia-
tion of the probability of failure is similar for both footing
conditions, the smooth footing zenerally has somewhat higher
probabilities of design failure than in the rough casc.

Since the slip lines at failure for a rough footing arc generally
decper than for a smooth footing, a greater volume of soil mass is
being sheared, resulting in a marginally higher bearing capacity
and lower probability of failure than for the smooth case.

Concluding Remarks

A probabilistic study on the bearing capacity of a rough rigid strip
footing on a soil with randomly varying shear strength has been
carried out. Random field theory has been combined with a con-
ventional nonlinear finite element algorithm, in conjunction with
a Monte Carlo method. The parametric study carried out involves
1,000 realizations for each set of parameters. From this probabi-
listic study the following conclusions can be made.

The mean bearing capacity of a footing on a soil with spatially
varying shear strength is always lower than the deterministic
bearing capacity based on the mean value. This important obser-
vation is due to the Hnking up of weak clements beneath the
footing, and shows that weak elements rather than strong cle-
ments tend to dominate the expected bearing capacity of a footing
on spatially random soil.

The reduction in the expected bearing capacity was greatest
for higher values of COV, and values of the spatial correlation
length @y, on the order of the footing width.

The results confirm that a factor of safety of 3-4 would gen-
erally be adequate to reduce the probability of design failure to
negligible levels for soils with (‘,OV(H'-;-(}.S.

The results of rough and smooth footings were compared. The
trend in the variation of the mean bearing capacity with respect to
COVv, . and @ ac, in both cases is generally similar. Due to the
greater volume ol soil involved in the failure mechanism bencath
a rough footing, however, the bearing capacities were marginally
higher and hence the probabilities of design failure marginally
lower than in the smooth case.
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Notation

The following svimbols arc used in this paper:
B = footing width;
COV,, = coefficient of variation of undrained shear
strengthy;
COV,, = estimated coefficient of variation of bearing capac-
ity;
- undrained shear strength;
€y, == undrained shear strenpth assigned to ith clement;
£ = Young’s modulus;
F = factor of safety;
f-++) = probability density function;

G(x) = standard Gaussian field with zero mean and unit
variance;
G(x;) = local average of Gaussian field over ith element:
i = integers that count realizations or elements;
N, = bearing capacity factor;

Ne, = bearing capacity factor for deterministic solution;
N, = bearing capacity factor Tor ith realization;
Pl---] = probability;
¢; = bearing capacity;
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q¢, = deterministic bearing capacity;
Gy, =+ bearing capacity for ith realization;
x; = vector containing coordinates of center of ith ele-
ment;
O, = dimensionless spatial correlation of log undrained
shear strength;
01.., = spatial correlation length of log undrained shear
strength;
P, = mean of undrained shear strength;
Fene, = mean of log undrained shear strength;
K, = estimated mean of log bearing capacity;
By, = estimatcd mean bearing capacity;
v = Poisson’s ratio;
p = correlation coefficient;

e, = standard deviation of undrained shear strength;
T, == standard deviation of log undrained shear strength;
Ty, = estimated standard deviation of log bearing capac-

ity;

o, = cstimated standard deviation of bearing capacity;

T = distance between two points in random field; and
P(---) = cumulative normal function.
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