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Abstract: In this paper we investigate the probability of failure of a cohesive slope using both simple and more advanced probabilistic
analysis tools. The influence of local averaging on the probability of failure of a test problem is thoroughly investigated. In the simple
approach, classical slope stability analysis techniques are used, and the shear strength is treated as a single random variable. The advanced
method, called the random finite-element method �RFEM�, uses elastoplasticity combined with random field theory. The RFEM method
is shown to offer many advantages over traditional probabilistic slope stability techniques, because it enables slope failure to develop
naturally by ‘‘seeking out’’ the most critical mechanism. Of particular importance in this work is the conclusion that simplified probabi-
listic analysis, in which spatial variability is ignored by assuming perfect correlation, can lead to unconservative estimates of the
probability of failure. This contradicts the findings of other investigators who used classical slope stability analysis tools.
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Introduction

Slope stability analysis is a branch of geotechnical engineering
that is highly amenable to probabilistic treatment, and it has re-
ceived considerable attention in the literature. The earliest papers
appeared in the 1970s �e.g., Matsuo and Kuroda 1974; Alonso
1976; Tang et al. 1976; Vanmarcke 1977� and have continued
steadily �e.g., D’Andrea and Sangrey 1982; Chowdhury and Tang
1987; Li and Lumb 1987; Mostyn and Li 1992; Christian et al.
1994; Lacasse 1994; Christian 1996; Lacasse and Nadim 1996;
Wolff 1996; Duncan 2000; Hassan and Wolff 2000; Whitman
2000�. Most recently, El-Ramly et al. �2002� produced a useful
review of the literature on this topic, and also noted that the
geotechnical profession was slow to adopt probabilistic ap-
proaches to geotechnical design, especially for traditional prob-
lems such as slopes and foundations.

Two main observations can be made in relation to the existing
body of work on this subject. First, the vast majority of probabi-
listic slope stability analyses, while using novel and sometimes
quite sophisticated probabilistic methodologies, continue to use
classical slope stability analysis techniques �e.g., Bishop 1955�
that have changed little in decades, and were never intended for
use with highly variable soil shear strength distributions. An ob-
vious deficiency of traditional slope stability approaches is that
the shape of the failure surface �e.g., circular� is often fixed by the
method, thus the failure mechanism is not allowed to ‘‘seek out’’
the most critical path through the soil. Second, while the impor-
tance of spatial correlation �or autocorrelation� and local averag-

ing of statistical geotechnical properties has long been recognized
by some investigators �e.g., Mostyn and Soo 1992�, it is still
regularly omitted from many probabilistic slope stability analy-
ses. In recent years, the present authors have been pursuing a
more rigorous method of probabilistic geotechnical analysis �e.g.,
Fenton and Griffiths 1993; Paice 1997; Griffiths and Fenton
2000�, in which nonlinear finite-element methods are combined
with random field generation techniques. This method, called here
the ‘‘random finite-element method’’ �RFEM�, fully accounts for
spatial correlation and averaging, and is also a powerful slope
stability analysis tool that does not require a priori assumptions
related to the shape or location of the failure mechanism.

In order to demonstrate the benefits of this method and to put
it into context, in this paper we investigate the probabilistic sta-
bility characteristics of a cohesive slope using both the simple and
more advanced methods. Initially, the slope is investigated using
simple probabilistic concepts and classical slope stability tech-
niques, followed by an investigation on the role of spatial corre-
lation and local averaging. Finally, results are presented from a
full-blown RFEM approach. Where possible throughout this
paper, the probability of failure (p f) is compared with the tradi-
tional factor of safety �FS� that would be obtained from charts or
classical limit equilibrium methods.

The slope under consideration, known as the ‘‘test problem’’ is
shown in Fig. 1, and consists of undrained clay, with shear
strength parameters �u�0 and cu . In this study, the slope incli-
nation and dimensions, given by �, H, and D, and the saturated
unit weight of the soil, � sat , are held constant, while the und-
rained shear strength cu is assumed to be a random variable. In
the interest of generality, the undrained shear strength will be
expressed in dimensionless form C, where C�cu /(� satH).

Probabilistic Description of Shear Strength

In this study, shear strength C is assumed to be characterized
statistically by a log–normal distribution defined by a mean, �C ,
and a standard deviation �C .

The probability density function of a log–normal distribution
is given by
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shown in Fig. 2 for a typical case with �C�100 kN/m2 and �C

�50 kN/m2. The function encloses an area of unity, thus the prob-
ability of the strength dropping below a given value is easily
found from standard tables. The mean and standard deviation can
conveniently be expressed in terms of the dimensionless coeffi-
cient of variation, defined as

VC�
�C

�C
(2)

Other useful relationships that relate to the log–normal function
include the standard deviation and mean of the underlying normal
distribution as follows:

� ln C��ln	1�VC
2 
 (3)
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2 � ln C
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Rearrangement of Eqs. �3� and �4� gives the inverse relationships

�C�exp�� ln C� 1
2� ln C

2 � (5)

�C��C�exp�� ln C
2 ��1 (6)

Finally the median and mode of a log–normal distribution are
given by

medianC�exp�� ln C� (7)

modeC�exp�� ln C�� ln C
2 � (8)

A third parameter, the spatial correlation length � ln C will also be
considered in this study. Since the actual undrained shear strength
field is log normally distributed, its logarithm yields an ‘‘under-
lying’’ normal distributed �or Gaussian� field. The spatial correla-
tion length is measured with respect to this underlying field, that
is, with respect to ln C. The spatial correlation length (� ln C) de-
scribes the distance over which the spatially random values will
tend to be significantly correlated in the underlying Gaussian
field. Thus, a large value of � ln C will imply a smoothly varying
field, while a small value will imply a ragged field. The spatial
correlation length can be estimated from a set of shear strength
data taken over some spatial region simply by performing statis-
tical analyses on the log data. In practice, however, � ln C is not
much different in magnitude from the correlation length in real
space and, for most purposes, �C and � ln C are interchangeable
given their inherent uncertainty in the first place. In the current
study, the spatial correlation length has been nondimensionalized
by dividing it by the height of embankment H and will be ex-
pressed in the form,

�C�� ln C /H (9)

It has been suggested �see, e.g., Lee et al. 1983; Kulhawy et al.
1991� that typical VC values for undrained shear strength lie in
the range of 0.1–0.5. The spatial correlation length, however, is
less well documented and may well exhibit anisotropy, especially
in the horizontal direction. While the advanced analysis tools used
later in this study have the capability of modeling an anisotropic
spatial correlation field, the spatial correlation, when considered,
will be assumed to be isotropic.

Preliminary Deterministic Study

To put the probabilistic analyses into context, an initial determin-
istic study has been performed assuming a homogeneous soil. For
the simple slope shown in Fig. 1, the factor of safety can readily
be obtained from Taylor’s �1937� charts or simple limit equilib-
rium methods to give the data in Table 1.

These results, plotted in Fig. 3, indicate the linear relationship
between C and FS. Fig. 3 also shows that the test slope becomes
unstable when the shear strength parameter falls below C
�0.17.

Single Random Variable Approach

The first probabilistic analysis presented here investigates the in-
fluence of giving the shear strength C a log–normal probability

Fig. 1. Cohesive slope test problem

Fig. 2. Typical log–normal distribution with mean of 100 and
standard deviation of 50 (VC�0.5)

Table 1. Factors of Safety Assuming Homogeneous Soil

C Factor of safety

0.15 0.88
0.17 1.00
0.20 1.18
0.25 1.47
0.30 1.77
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density function similar to that shown in Fig. 2, based on a mean
�C and a standard deviation �C . The slope is assumed to have
the same value of C everywhere, however the value of C is se-
lected randomly from the log–normal distribution. Anticipating
the random field analyses that will be described later in this paper,
this ‘‘single random variable �SRV� approach’’ implies a spatial
correlation length of �C� , so no local averaging is applicable.

The probability of failure (p f) in this case, is simply equal to
the probability that the shear strength parameter C will be less
than 0.17. Quantitatively, this is equal to the area of the probabil-
ity density function that corresponds to C�0.17.

For example, if �C�0.25 and �C�0.125 (VC�0.5), Eqs. �3�
and �4� give the mean and standard deviation of the underlying
normal distribution of the strength parameter as � ln C��1.498
and � ln C�0.472.

The probability of failure is therefore given by

p f�p�C�0.17���� ln 0.17�� ln C

� ln C
��0.281 (10)

where ��cumulative standard normal distribution function.
This approach has been repeated for a range of �C and VC

values, for the slope under consideration, and it leads to Fig. 4
which gives a direct relationship between the factor of safety and
the probability of failure. It should be emphasized that the factor
of safety in this plot is based on the value that would have been
obtained if the slope had consisted of homogeneous soil with a
shear strength equal to the mean value �C in Fig. 3. From Fig. 4,
the probability of failure (p f) clearly increases as the factor of
safety decreases, however it is also shown that, for FS�1, the
probability of failure increases as VC increases. The exception to
this trend occurs when FS�1. As shown in Fig. 4, the probability
of failure in such cases is understandably high, however the role
of VC has the opposite effect, with lower values of VC tending to
give the highest values of the probability of failure. This is ex-
plained by the ‘‘bunching up’’ of the shear strength distribution at
low VC rapidly excluding area to the right of the critical value

of C�0.17. Fig. 5 shows that the medianC is key to understand-
ing how the probability of failure changes in this analysis. When
medianC�0.17, increasing VC causes p f to fall, whereas when
medianC�0.17, increasing VC causes p f to rise.

While the single random variable approach described in this
section leads to simple calculations and useful qualitative com-
parisons between the probability of failure and the factor of
safety, the quantitative merit of the approach is more question-
able. An important observation highlighted in Fig. 4 is that soil
with a mean strength of �C�0.25 �implying FS�1.47� would
give a probability of failure as high as p f�0.28 for soil with
VC�0.5. Practical experience indicates that slopes with a factor
of safety as high as FS�1.47 rarely fail.

Fig. 3. Linear relationship between factor of safety and C for a
cohesive slope with slope angle of ��26.57° and depth ratio of
D�2

Fig. 4. Probability of failure versus factor of safety � based on the 
mean� in single random variable approach

Fig. 5. p f versus VC for different medianC values
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An implication of this result is that either the perfectly corre-
lated single random variable approach is entirely pessimistic in
the prediction of the probability of failure, and/or it is unconser-
vative to use the mean strength of variable soil to estimate the
factor of safety. Presented with a range of shear strengths at a
given site, a geotechnical engineer would likely select a ‘‘pessi-
mistic’’ or ‘‘lowest plausible’’ value for design, Cdes , that would
be lower than the mean. Assuming for the time being that the
single random variable approach is reasonable, Fig. 6 shows the
influence on the probability of failure of two strategies for factor-
ing the mean strength �C prior to calculating the factor of safety
for the test problem. In Fig. 6�a�, linear reduction in the mean
strength has been proposed using a factor, f 1 , where

Cdes��C�1� f 1� (11)

and in Fig. 6�b�, the mean strength has been reduced by a factor,
f 2 , of the standard deviation, where

Cdes��C� f 2�C (12)

All the results shown in Fig. 6 assume that after factorization,
Cdes�0.25, implying a factor of safety of FS�1.47. The probabil-
ity of failure of p f�0.28 with no factorization, f 1� f 2�0, has
also been highlighted for the case of VC�0.5. In both cases, an
increase in the strength reduction factor reduces the probability of
failure, which is to be expected, however, the nature of the two
sets of reduction curves is quite different, especially for higher
values of VC . From the linear mean strength reduction �Eq. �11��,
f 1�0.6 would result in a probability of failure of about 0.6%. By
comparison, a mean strength reduction of one standard deviation
given by f 2�1 �Eq. �12�� would result in a probability of failure
of about 2%. Fig. 6�a� shows a gradual reduction of the probabil-
ity of failure for all values of f 1 and VC , however quite different
behavior is shown in Fig. 6�b�, where standard deviation factoring
results in very rapid reduction of the probability of failure, espe-
cially for higher values of VC�2. This curious result is easily
explained by the functional relationship between p f and VC ,
where the design strength can be written as

Cdes�0.25��C� f 2�C��C�1� f 2VC� (13)

hence as VC→1/f 2 , �C→ . With the mean strength so much
greater than the critical value of 0.17, the probability of failure
falls very rapidly towards 0.

Spatial Correlation

Implicit in the single random variable approach described above
is that the spatial correlation length is infinite. In other words,
only homogeneous slopes are considered, in which the property
assigned to the slope is taken at random from a log–normal dis-
tribution. A more realistic model would properly take into account
smaller spatial correlation lengths in which the soil strength is
allowed to vary spatially within the slope. The parameter that
controls this is the spatial correlation length � ln C , discussed ear-
lier. In this work, an exponentially decaying �Markovian� corre-
lation function of the following form is used:

��e��2�/� ln C� (14)

where ��familiar correlation coefficient; and ��absolute dis-
tance between two points in a random field. A plot of this function
is given in Fig. 7 and it indicates, for example, that the strength at
two points separated by � ln C (�/�ln C�1) will have an expected
correlation of ��0.135. This correlation function is merely a way
of representing the field observation that soil samples taken close
together are more likely to have similar properties than samples
taken far apart. There is also the issue of anisotropic spatial cor-
relation, in that soil is likely to have longer spatial correlation
lengths in the horizontal direction than in the vertical, due to
depositional history. While the tools described in this paper can
take anisotropy into account, this refinement is left for future
studies.

Random Finite-Element Method

A powerful general method of accounting for spatially random
shear strength parameters and spatial correlation is the random
finite-element method which combines elastoplastic finite-
element analysis with random field theory generated using the
local average subdivision method �Fenton and Vanmarcke 1990�.
The methodology has been described in detail in other publica-
tions �e.g., Griffiths and Fenton 2001�, so only a brief description
will be given here.

Fig. 6. Influence of different mean strength factoring strategies on
probability of failure versus factor of safety relationship: �a� linear
factoring and �b� standard deviation factoring; all curves assume fac-
tor of safety �1.47 �based on Cdes�0.25)
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A typical finite-element mesh for the test problem considered
in this paper is shown in Fig. 8. The majority of the elements are
square, however the elements adjacent to the slope have degener-
ated into triangles.

The code developed by the writers enables a random field of
shear strength values to be generated and mapped onto the finite-
element mesh taking into full account the element size in the local
averaging process. In a random field, the value assigned to each
cell �or finite element in this case� is itself a random variable, thus
the mesh in Fig. 8, which has 910 finite elements, contains 910
random variables. The random variables can be correlated to one
another by controlling the spatial correlation length � ln C de-
scribed earlier, hence the single random variable approach dis-
cussed in ‘‘Spatial Correlation’’ where the spatial correlation
length is implicitly set to infinity can now be viewed as a special
case of a much more powerful analytical tool. Figs. 9�a and b�
show typical meshes that correspond to different spatial correla-
tion lengths. Fig. 9�a� shows a relatively low spatial correlation
length of �C�0.2 and Fig. 9�b� shows a relatively high spatial
correlation length of �C�2. Dark and light regions depict
‘‘weak’’ and ‘‘strong’’ soil, respectively. It should be emphasized
that both these shear strength distributions come from the same
log–normal distribution, and it is only the spatial correlation
length that is different.

In brief, the analyses involve the application of gravity loading
and the monitoring of stress at all Gauss points. The slope stabil-
ity analyses use an elastic-perfectly plastic stress–strain law with
a Tresca failure criterion which is appropriate for ‘‘undrained
clays.’’ If the Tresca criterion is violated, the program attempts to
redistribute excess stress to neighboring elements that still have
reserves of strength. This is an iterative process which continues
until the Tresca criterion and global equilibrium are satisfied at all
points within the mesh under quite strict tolerances.

Plastic stress redistribution is accomplished using a viscoplas-
tic algorithm with 8-node quadrilateral elements and reduced in-
tegration in both the stiffness and stress redistribution parts of the
algorithm. The theoretical basis of the method is described more
fully in Chap. 6 of the text by Smith and Griffiths �1998�, and for
a detailed discussion of the method applied to slope stability
analysis, the reader is referred to work by Griffiths and Lane
�1999�.

For a given set of input shear strength parameters �mean, stan-
dard deviation, and spatial correlation length�, Monte Carlo simu-
lations are performed. This means that the slope stability analysis
is repeated many times until the statistics of the output quantities
of interest become stable. Each ‘‘realization’’ of the Monte Carlo
process differs in the locations at which the strong and weak
zones are situated. For example, in one realization, weak soil may
be situated in locations where a critical failure mechanism devel-
ops causing the slope to fail, whereas in another, strong soil in
those locations means that the slope remains stable.

Fig. 7. Markov correlation function

Fig. 8. Mesh used for random finite-element method slope stability analyses

Fig. 9. Influence of scale of fluctuation in random finite-element
method analysis
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In this study, it was determined that 1,000 realizations of the
Monte Carlo process for each parametric group was sufficient to
give reliable reproducible estimates of the probability of failure,
which was simply defined as the proportion of 1,000 Monte Carlo
slope stability analyses that failed.

In this study, ‘‘failure’’ is said to have occurred if, for any
given realization, the algorithm was unable to converge within
500 iterations. While the choice of 500 as the iteration ceiling is
subjective, Fig. 10 confirms, for the case of �C�0.25 and �C

�1, that the probability of failure defined this way is stable for
iteration ceilings greater than about 200.

Local Averaging

The input parameters that relate to the mean, standard deviation,
and spatial correlation length of the undrained strength are as-
sumed to be defined at the point level. While statistics at this
resolution are obviously impossible to measure in practice, they
represent a fundamental baseline of the inherent soil variability
which can be corrected through local averaging to take in to ac-
count the sample size.

Within the context of the RFEM approach, each element is
assigned a constant property at each realization of the Monte
Carlo process. The ‘‘sample’’ is represented by the size of each
finite element used to discretize the slope. If the point distribution
is normal, local averaging results in reduced variance but the
mean is unaffected. In a log–normal distribution, however, both
the mean and the standard deviation are reduced by local averag-
ing. This is because, from Eqs. �5� and �6�, the mean of a log–
normal relationship depends on both the mean and the variance of
the underlying normal relationship. Thus the cruder the discreti-
zation of the slope stability problem and larger the elements, the
greater the influence of local averaging in the form of reduced
mean and standard deviation. These adjustments to the point sta-
tistics are fully accounted for in the RFEM, and are implemented
before the elastoplastic finite-element slope stability analysis
takes place.

Variance Reduction over a Square Finite Element

Here, an algorithm used to compute the locally averaged statistics
applied to the mesh is described.

A log–normal distribution of random variable C, with point
statistics given by mean �C , standard deviation �C , and spatial
correlation length � ln C is mapped onto a mesh of square finite
elements. Each element is assigned a single value of the und-
rained strength parameter.

The locally averaged statistics over the elements will be re-
ferred to here as the ‘‘area’’ statistics by subscript A. Thus, with
reference to the underlying normal distribution of ln C, the mean,
which is unaffected by local averaging, is given by � ln CA

, and the
standard deviation, which is affected by local averaging, is given
by � ln CA

.
The variance reduction factor due to local averaging �, is de-

fined as

��� � ln CA

� ln C
� 2

(15)

and is a function of the element size and the correlation function
from Eq. �14�, repeated here in the form,

��exp� �
2

� ln C
��x

2��y
2� (16)

where �x�difference between the x coordinates of any two points
in the random field; and �y�difference between the y coordinates.

For a square finite element of side length �� ln C , shown in Fig.
11, it can be shown �Vanmarcke 1984� that, for an isotropic spa-
tial correlation field, the variance reduction factor is given by

��
4

��� ln C�4 �0

�� ln C�
0

�� ln C

exp� �
2

� ln C
�x2�y2� ��� ln C�x �

���� ln C�y �dxdy (17)

Numerical integration of this function leads to the variance reduc-
tion values given in Table 2 and plotted in Fig. 11.

Fig. 11 indicates that elements that are small relative to the
correlation length ��→0� lead to very little reduction in variance

Fig. 10. Influence of plastic iteration ceiling on computed probabil-
ity of failure

Fig. 11. Variance reduction function over a square element of side
length �� ln C with a Markov correlation function
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��→1�, whereas elements that are large relative to the correlation
length can lead to very significant variance reduction ��→0�.

The statistics of the underlying log field, including local aver-
aging, are therefore given by

� ln CA
�� ln C�� (18)

and

� ln CA
�� ln C (19)

which leads to the following statistics of the log–normal field,
including local averaging, that is actually mapped on the finite-
element mesh from Eqs. �5� and �6�, thus

�CA
�exp�� ln CA

� 1
2� ln CA

2 � (20)

�CA
��CA

�exp�� ln CA

2 ��1 (21)

It is instructive to consider the range of locally averaged statistics,
since this helps to explain the influence of the spatial correlation
length �C(�� ln C /H) on the probability of failure in the RFEM
slope analyses that is described in ‘‘Locally Averaged Single Ran-
dom Variable Approach.’’

Expressing the mean and the coefficient of variation of the
locally averaged variable as a proportion of the point values of
these quantities leads to Figs. 12�a and b�, respectively. In both
cases, there is virtually no reduction due to local averaging for
elements that are small relative to the spatial correlation length
��→0�. This is to be expected, since the elements are able to
model the point field quite accurately. For larger elements relative
to the spatial correlation length, however, Fig. 12�a� indicates that
the mean of the locally averaged field tends to the median, and
Fig. 12�b� indicates that the coefficient of variation of the locally
averaged field tends toward zero.

From Eqs. �18�–�21�, the expression plotted in Fig. 12�a� for
the mean can be written as

�CA

�C
�

1

�1�VC
2 ��1���/2

(22)

which gives the following: When �→0, �CA
/�C→1/(1

�VC
2 )1/2, thus �CA

→e� ln C�medianC . The expression plotted in
Fig. 12�b� for the coefficient of variation of the locally averaged
variable can be written as

VCA

VC
�

��1�VC
2 ���1

VC
(23)

which gives the following: when �→0, VCA
/VC→0, thus VCA

→0.
Further examination of Eqs. �22� and �23� shows that for all

values of �,

medianCA
�medianC (24)

hence it can be concluded that

1. Local averaging reduces both the mean and the variance of a
log–normal point distribution;

2. Local averaging preserves the median of the point distribu-
tion; and

3. With significant levels of local averaging, the variance tends
to zero and the mean tends to the median.

Locally Averaged Single Random Variable Approach

Here the probability of failure is reworked with the single random
variable approach using properties derived from local averaging
over an individual finite element, termed ‘‘finite element locally
averaged properties’’ throughout the rest of this paper. With ref-
erence to the mesh shown in Fig. 8, the square elements have a
side length of 0.1H , thus �C�0.1/� . Fig. 13 shows the probabil-
ity of failure p f as a function of �C for a range of input point
coefficients of variation, with the point mean fixed at �C�0.25.
The probability of failure is defined, as before, by p(C�0.17),
but this time the calculation is based on the finite-element locally
averaged properties, �CA

and �CA
from Eqs. �20� and �21�. Fig.

13 clearly shows two tails to the results, with p f→1 as �C→0
for all VC�1.0783, and p f→0 as �C→0 for all VC�1.0783. The
horizontal line at p f�0.5 is given by VC�1.0783, which is the
special value of the coefficient of variation that causes the
medianC to equal 0.17. If we recall that, in Table 1, this is the
critical value of C that would give FS�1 in the test slope. Higher
values of VC lead to medianC�0.17 and a tendency for p f→1 as

Fig. 12. Influence of element size expressed in the form of a size
parameter � on local averaging: influence on the �a� mean and �b�
coefficient of variation

Table 2. Reduction in Variance over a Square Element

� �

0.01 0.9896
0.1 0.9021
1 0.3965

10 0.0138
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�C→0. Conversely, lower values of VC lead to medianC�0.17
and a tendency for p f→0. Fig. 14 shows the same data plotted the
other way round with VC along the abscissa. Fig. 14 clearly
shows the full influence of spatial correlation in the range of 0
��C� . All the curves cross over at the critical value of VC

�1.0783, and it is of interest to note the step function that corre-
sponds to �C�0 when p f changes suddenly from zero to unity.

It should be emphasized that the results presented in this sec-
tion involved no actual finite-element analysis, and were based
solely on a SRV approach using locally averaged properties de-
rived from a typical finite element in a mesh such as that shown in
Fig. 8.

Results of Random Finite-Element Method Analyses

Now, the results of full nonlinear RFEM analyses with Monte
Carlo simulations are described based on a range of parametric
variations of �C , VC , and �C .

In the elastoplastic RFEM approach, the failure mechanism is
free to ‘‘seek out’’ the weakest path through the soil. Fig. 15
shows two typical random field realizations and the associated
failure mechanisms for slopes with �C�0.5 and 2. The convo-
luted nature of the failure mechanisms, especially when �C

�0.5, would defy analysis by conventional slope stability analy-
sis tools. While the mechanism is attracted to the weaker zones
within the slope, it will inevitably pass through elements assigned
many different strength values. This weakest path determination,
and the strength averaging that goes with it, occurs quite naturally
in the finite-element slope stability method, and represents a very
significant improvement over traditional limit equilibrium ap-
proaches to probabilistic slope stability analysis. In these tradi-
tional methods, if local averaging is included at all, it has to be
computed over a failure mechanism that is preset by the particular
analysis method �e.g., a circular failure mechanism when using
Bishop’s method�.

In fixing the point mean strength at �C�0.25, Figs. 16 and 17
show the effect of spatial correlation length �C and coefficient of
variation VC on the probability of failure for the test problem. Fig.
16 clearly indicates two branches, with the probability of failure
tending toward unity or zero for higher and lower values of VC ,
respectively. This behavior is qualitatively similar to that ob-
served in Fig. 13, in which a single random variable approach was
used to predict the probability of failure based solely on finite-
element locally averaged properties. Fig. 17 shows the same re-
sults as Fig. 16, but plotted the other way round with the coeffi-
cient of variation along the abscissa. Fig. 17 also shows the
theoretically obtained result corresponding to �C� , indicating
that a single random variable approach with no local averaging
will overestimate the probability of failure �conservative� when
the coefficient of variation is relatively small and underestimate
the probability of failure �unconservative� when the coefficient of
variation is relatively high. Fig. 17 also confirms that the single
random variable approach described earlier in the paper, which

Fig. 13. Probability of failure versus spatial correlation length based
on finite-element locally averaged properties; the mean is fixed at
�C�0.25

Fig. 14. Probability of failure versus coefficient of variation based
on finite-element locally averaged properties; the mean is fixed at
�C�0.25

Fig. 15. Typical random field realizations and deformed mesh at
slope failure for two different spatial correlation lengths
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gave p f�0.28 corresponding to �C�0.25 and VC�0.5 with no
local averaging, is indeed pessimistic. The RFEM results show
that the inclusion of spatial correlation and local averaging in this
case will always lead to a smaller probability of failure.

Comparison of Figs. 13 and 14 with Figs. 16 and 17 highlights
the influence of the finite-element approach to slope stability,
where the failure mechanism is free to locate itself optimally
within the mesh. From Figs. 14 and 17, it is clear that the ‘‘weak-
est path’’ concept made possible by the RFEM approach has re-
sulted in the crossover point falling to lower values of both VC

and p f . With only finite-element local averaging, the crossover

occurred at VC�1.0783, whereas by the RFEM it occurred at
VC�0.65. In terms of the probability of failure with only finite-
element local averaging, the crossover occurred at p f�0.5
whereas by the RFEM it occurred at p f�0.38. The RFEM solu-
tions show that the single random variable approach becomes
unconservative over a wider range of VC values than would be
indicated by finite-element local averaging alone.

Fig. 18 gives a direct comparison between Figs. 13 and 16: it
indicates clearly that, for higher values of VC , RFEM always
gives a higher probability of failure than using finite-element
local averaging alone. This is caused by the weaker elements in
the distribution that dominate the strength of the slope and the
failure mechanism that seeks out the weakest path through the
soil.

At lower values of VC , the locally averaged results tend to
overestimate the probability of failure and give conservative re-
sults compared to RFEM. In this case the stronger elements of the
slope dominate the solution and the higher median combined with
bunching up of the locally averaged solution at low values of �C

means that potential failure mechanisms cannot readily find a
weak path through the soil.

In all cases, as �C increases, the RFEM and the locally aver-
aged solutions converge on the single random variable solution
that corresponds to �C� with no local averaging. The p f

�0.28 value, corresponding to VC�0.5, discussed earlier in the
paper is also indicated in Fig. 18.

All of the above results and discussion in ‘‘Results of Random
Finite-Element Method Analyses’’ so far were applied to the test
slope in Fig. 1 with the mean strength fixed at �C�0.25, corre-
sponding to a factor of safety �based on the mean� of 1.47. In the
next set of results �C is varied while VC is held constant at 0.5.
Fig. 19 shows the relationship between FS �based on the mean�
and p f assuming finite-element local averaging only, and Fig. 20
shows the same relationship computed using RFEM.

Fig. 19, based on finite-element local averaging only, shows
the full range of behavior for 0��C� . Fig. 19 shows that �C

Fig. 16. Probability of failure versus spatial correlation length from
random finite-element method; the mean is fixed at �C�0.25

Fig. 17. Probability of failure versus coefficient of variation from
random finite-element method; the mean is fixed at �C�0.25

Fig. 18. Comparison of the probability of failure predicted by ran-
dom finite-element method and by finite-element local averaging
only; the curve with points comes from random finite-element
method analyses; the mean is fixed at �C�0.25
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only starts to have a significant influence on the FS versus p f

relationship when the correlation length becomes significantly
smaller than the slope height (�C�1). The step function in
which p f jumps from zero to unity occurs when �C�0, and it
corresponds to a local average with zero variance. In this limiting
case, the local average of the soil is deterministic and yields con-
stant strength everywhere in the slope. With VC�0.5, the critical
value of mean shear strength that would give �CA

�medianC

�0.17 is easily shown by Eq. �22� to be �C�0.19, which corre-

sponds to a FS�1.12. For higher values of �C , the relationship
between FS and p f is quite ‘‘bunched up,’’ and generally insensi-
tive to �C . For example, there is little difference between the
curves corresponding to �C� and 0.5. It should also be ob-
served in Fig. 19 that, for FS�1.12, failure to account for local
averaging by assuming �C� is conservative, in that the pre-
dicted p f is higher than it should be. When FS�1.12, however,
failure to account for local averaging is unconservative.

Fig. 20 gives the same relationships as those computed using
RFEM. By comparison with Fig. 19, the RFEM results are more
spread out, implying that the probability of failure is more sensi-
tive to spatial correlation length �C . Of greater significance is
that the crossover point has again shifted by RFEM as it seeks out
the weakest path through the slope. In Fig. 20, the crossover
occurs at FS�1.37, which is significantly higher and of greater
practical significance than the crossover point of FS�1.12 by
finite-element local averaging alone. The theoretical line corre-
sponding to �C� is also shown in this plot. From a practical
viewpoint, the RFEM analysis indicates that failure to properly
account for local averaging is unconservative over a wider range
of factors of safety than would be the case by finite-element local
averaging alone. To further highlight this difference, the results in
Figs. 19 and 20 that correspond to �C�0.5 �the spatial correla-
tion length equal to half the embankment height� are replotted in
Fig. 21.

Concluding Remarks

In this paper we have investigated the probability of failure of a
cohesive slope using both simple and more advanced probabilistic
analysis tools. The simple approach treated the strength of the
entire slope as a single random variable, and ignored spatial cor-
relation and local averaging. In the simple studies, the probability
of failure was estimated as the probability that the shear strength
would fall below a critical value based on a log–normal probabil-

Fig. 19. Probability of failure versus factor of safety �based on the
mean� using finite-element local averaging only for the test slope; the
coefficient of variation is fixed at VC�0.5

Fig. 20. Probability of failure versus factor of safety �based on the
mean� using random finite-element method for the test slope; the
coefficient of variation is fixed at VC�0.5

Fig. 21. Probability of failure versus factor of safety �based on the
mean� using finite-element local averaging alone and random finite-
element method for the test slope; VC�0.5 and �C�0.5
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ity density function. These results led to a discussion on the ap-
propriate choice of design shear strength value suitable for deter-
ministic analysis. Two factorization methods were proposed that
were able to bring the probability of failure and the factor of
safety more into line with practical experience.

The second half of the paper implemented the random finite
element method on the same test problem. The nonlinear elasto-
plastic analyses with Monte Carlo simulation were able to take
into full account spatial correlation and local averaging, and ob-
serve their impact on the probability of failure using a parametric
approach. The elastoplastic finite-element slope stability method
makes no a priori assumptions about the shape or location of the
critical failure mechanism, and therefore offers very significant
benefits over traditional limit equilibrium methods in the analysis
of highly variable soils. In the elastoplastic RFEM, the failure
mechanism is free to seek out the weakest path through the soil
and it has been shown that this phenomenon can lead to higher
probabilities of failure than could be explained by local averaging
alone.

In summary, simplified probabilistic analysis, in which spatial
variability is ignored by assuming perfect correlation, can lead to
unconservative estimates of the probability of failure. This effect
is most pronounced at relatively low factors of safety �Fig. 20� or
when the coefficient of variation of the soil strength is relatively
high �Fig. 18�.
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Notation

The following symbols were used in this paper:
C � dimensionless shear strength;

Cdes � design value of C;
cu � undrained shear strength;
D � foundation depth ratio;
f 1 � linear strength reduction factor;
f 2 � strength reduction factor based on standard

deviation;
H � height of slope;
p f � probability of failure;

VC � coefficient of variation of C;
x � Cartesian x coordinate;
y � Cartesian y coordinate;
� � dimensionless element size parameter;
� � slope angle;
� � variance reduction factor;

� sat � saturated unit weight;
�C � dimensionless spatial correlation length of ln C;
�C � spatial correlation length of C;

� ln C � spatial correlation length of ln C;
�C � mean of C;

�CA � locally averaged mean of C over a square finite
element;

� ln C � mean of ln C;
� ln CA� locally averaged mean of ln C over a square finite

element;
� � correlation coefficient;

�C � standard deviation of C;
�CA � locally averaged standard deviation of C over a

square finite element;
� ln C � standard deviation of ln C
� ln CA � locally averaged standard deviation of ln C over a

square finite element;
� � absolute distance between two points;

�x � x-component of distance between two points;
�y � y-component of distance between two points; and
�u � undrained friction angle.
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