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Abstract: By modeling soil as a three-dimensional spatially random medium, the reliability of shallow foundations against serviceability
limit state failure, in the form of excessive scttlement and/or differential settlement, can be cstimated. The soil's clastic modulus, £, is
represented as a lognormally distributed random field with an isotropic correlation structure. The settlements of individual and pairs of
square footings placed on the surface of the soil are computed using the finite element method. A probabilistic model for total and
differential settlement is presented and compared to results obtained using Monte Carlo simulation. The distributions of total and
differential settlement are found to be closely predicted using the distributions of geometric averages of the underlying soil elastic

modulus field.
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Introduction

Sinee the design of shallow foundations is most often governed
by settlement requirecments, a reliability-bascd approach to their
design necessitates knowledge about the distribution of settlement
under a given footing. Traditional approaches to the design prob-
lem involve estimating the elastic modulus and designing the
footing to avoid excessive settlements. Aside from very large total
settlements, it is usually differential settlement which leads to
serviceability problems. Existing code requirements limiting dif-
ferential settlements to satisfy scrviceability limit statcs [see
building codes ACI 318-89 (ACL 1989) or CAN3-A23.3-M84
(CSA 1984)] specify maximum deflections ranging from
D/180 to D/480, depending on the type of supported elements,
where D is the center-to-center span of the supported structural
element. In practice, differential settlements between footings are
generally controlled, not by considering the differential settlement
itself, but by controlling the total scttlement predicted by analysis
using an estimate of the soil ¢lasticity. This approach is largely
based on correlations between total settlements and differential
scttlements  observed  experimentally  (see, for example,
D’ Appolonia et al. 1968) and leads to a limitation of 4 to 8§ cm
in total settlement under a footing as stipulated by the Canadian
Foundation Engincering Manual, Part 2 (CGS 1978).

This paper presents a study of the probability distributions of
settlement and differential settlement where the soil is modcled as
a fully three-dimensional random field and footings have both
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length and breadth. The study is an extension of previous work by
the writers (Fenton and Griffiths 2002), which used 2 two-
dimensional random seil o investigate the behavior of a strip
footing of infinite length. The resulting two-dimensional probabi-
listic model is found to also apply in concept to the three-
dimensional case here. Improved results are given for differential
seltlement by using a bivariate lognormal distribution, rather than
the approximate univariate normal distribution used in Fenton and
Griffiths (2002).

The paper first considers the case of a single square rigid pad
footing, a cross section which is shown in Fig. 1(a), and estimates
the probability density function governing the total settlement of
the footing as a function of footing arca for various statistics of
the underlying soil. Only the soil elasticity is considered to be
spatially random. Uncertainties arising from model and test pro-
cedures and in the loads are not considered. In addition, the soil is
assumed to be isotropic——that is, the correlation structure is as-
sumed to be the same in both the horizontal and vertical diree-
tions. Although soils generally ¢xhibit a stronger correlation in
the horizontal directions, due to their layered nature, the degree ol
anisotropy is site specific. Considering that, this study is attempt-
ing to establish the basic probabilistic behavior of settlement, an-
isotropy is left =5 a refinement for site-specific investigations. The
writers expect that the averaging model suggested in this paper
will drift from a geometric average to a harmonic average as the
ratio of horizontal o vertical correlation lengths incicascs (see
also the section entitled, “Single-Footing Case™). Although it is
felt that the results of this paper can still be used conservatively
by using an cffective isotropic correlation length equal to the
minimum correlation length, this contention needs testing.

The footings are assumed to be founded on a soil layer under-
lain by bedrock. The assumption of an underlying bedrock can be
relaxed if a suitable averaging region is used---recommendations
about such an area are given by Fenton and Griffiths (2002).

The second part of the paper addresses the issue of differential
settlements under a pair of footings, as shown in Fig. 1(b), again
for the particular case of footings founded on a soil layer under-
lain by bedrock. The footing spacing is held constant at -1
while varying the footing size. Both footings are square and the
same size. The mean and standard deviation of differential settle-
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Fig. 1. Slices through a random ficld/finite element method mesh of:
(a) a single footing and (b) two footings founded on a soil layer

ments are estimated as functions of footing size for various input
statistics of the underlying elastic modulus field. The probability
distribution governing differential settlement is found to be rea-
sonably approximated using a joint lognormal distribution with
correlation predicted using local geometric averages of the elastic
modulus feld under the two footings.

Random Field Finite Element Model

The soil mass is discretized into 60 eight-noded brick elements in
cach of the horizontal directions by 20 elements in the vertical
direction. Each element is cubic with side length 0.05 giving a
soil mass which has plan dimension of 33 and depth of 1.
(Note: Length units are not used here since the results can be used

Fig. 2. Finite element mesh modeling soil supporting two footings

Table 1. Input Parameters Varied in the Study while Holding H- I,
D=1, Pl py <1, and v 0.25 Constant.

Parameter Values considered

oy 0.1%, 0.5, 1.0%, 2.0, 4.0

B 0.01, 0.1%, 0.5%, 1.0*, 5.0%, 10.0"
Wy 0.2, 0.4, 0.8, 1.6 {sinple looting)

0.27, 0.4, 0.3* (Iwo lootings)
Nole: Starred parametess were run with 1,000 realizations in the lwo-
footing case. The single-fooling czse and nonslarred parameters were min
with 100 realizations.

with any consistent set of length and force units.) Fig. 2 shows the
finite element mesh in three dimensions for the case of two foot-
ings.

The finite element analysis uses a preconditioned conjugate
gradient iterative solver [see, e.g., Smith and Griffiths (1998)] that
avoids the need to assemble the global stiffness matrix. Numerical
experimentation indicates that the finite element model gives ex-
cellent agreement with analytical results for a flexible footing. In
the case of a rigid footing, doubling the number of elements in
each direction resulted in a settlement which increased by about
3%, indicating that the rigid footing model may be slightly too
stiff at the current resolution. However, the stochastic behavior
will be unaffected by such slight shifts in total settlement (i.e., by
the same fraction for cach realization). The 60 by 60 by 20 dis-
cretization was considered adequate to characterize the behavior
of the settlement and differential settlement probability distribu-
tions.

The vertical side faces of the finite element model are con-
strained against horizontal displacement but are free to slide ver-
tically while the nodes on the bottom boundary are spatially fixed.
The footing(s) are assumed to be rigid, to not undergo any rota-
tions, and to have a rough interface with the underlying soil (no-
slip boundary). A fixed load 1 is applied to each footing—
since settlement varies linearly with load, the results are easily
scaled to different values of P.

To investipate the effect of the square footing area, the soil
layer thickness, //, was held constant at 1.0, while the footine
plan dimension, },, was varied according to Table 1. Because the
settlement problem is linear in some of its parameters, the follow-
ing results can be scaled to arbitrary square footing arcas as long
as the ratio W,/ H is held fixed [note that the latter restriction also
holds in the two-dimensional case which was inadvertently not
mentioned in Fenton and Grifiiths (2002)]. For example, the
settlement of a square footing of dimension W, ~0.2 m on an H

1 m thick soil Tayer with load 2’1 kN and elastic modulus
E- 1 kN/m? corresponds to 1.2 times the settlement of a footing
of width #+4.0 m on an /'+-20.0 m thick soil layer with P’
=1,000 kN and elastic modulus E' 60 kN/m®. The scaling factor
is (P/P')E"EYW W), as long as W[/H'=W,/F.

[n the two-footing case, the distance between footing centers
was held constant at 1.0, while the footing widths (assumed
equal) were varied. Footings of widths greater than 0.8 were not
considered since this situation becomes basically that of a strip
footing (the footings are joined when W, 1.0). The soil has two
properties of interest to the settlement problem: These arc the
(effective) elastic modulus, E(x), and Poisson’s ratio, v(x), where
x 18 spatial position. Only the elastic modulus is considered to be
a spatially random soil property. Poisson’s ratio was believed to
have a smaller relative spatial variability and only a second-order
importance to settlement statistics. It is held fixed at 0.25 over the
entire soil mass for all simulations.
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Fig. 1 shows a gray-scale representation of a possible realiza-
tion of the elastic modulus field along a vertical plane through the
soil mass cutting through the footing. Lighter areas denote
smaller values of E(x) so that the elastic modulus field shown in
Fig. I(b) corresponds to a higher elastic modulus under the [eit
footing than under the right-—this leads to the substantial ditfer-
ential settlement indicated by the deformed mesh. This is just one
possible realization of the ¢lastic modulus field; the next realiza-
tion could just as easily show the opposite trend.

The elastic modulus field is assumed to follow a lognormal
distribution so that In(£) is a Gaussian (normal) random field with
mean .y, ;, and variance of, . The choice of a lognormal distri-
bution is motivated in part by the fact that the elastic modulus is
strictly non-negative, a property of the lognormal distribution (but
not the normal), while still having a simple relationship with the
normal distribution. In addition, soil properties are generally mea-
sured as averages over some volume, and these averages are often
low-strength dominated, as may be expected. The writers have
found in this and other studies that the geometric average well
represents such low-strength-dominated soil properties. Since the
distribution of 2 gcometric average of positive quantities tends to
the lognormal distribution by the central limit theorem, the log-
normal distribution may very well be a natural distribution for
many spatially varying soil propertics. The parameters of the
transformed In(£) Gaussian random field may be obtained from
the relations

(J’;_E In(1 (ri'u,:) (la)

I,
o In(pp) = S0, (1b)

from which it can be seen that the log-elastic modulus variance,
o, - varies from 0.01 to 2.83 in this study.

A Markovian spatial correlation function, which gives the cor-
relation coefficient between log-elastic modulus values at points
separated by the distance 7, is used

P (1) ~expy -~ —— (2)

where 7 x=x' vector between spatial points x and x’; and 1|

absolute length of this vector (the lag distance). In this paper,
the word “corrclation” refers to the correlation coelficient. The
results presented here are not particularly sensitive to the choice
in functional form of the correlation-—the Markov model is popu-
lar because of its simplicity. The correlation function decay rate is
governed by the so-called scale of fluctuation, 8,,,, which,
looscly speaking, is the distance over which log-clastic moduli
are significantly correlated (when the separation distance |71, is
areater than 6y, r, the correlation between In E(x) and In E(x') is
less than 14%%). The correlation structure is assumed to be isotro-
pic in this study which is appropriate for establishing the basic
stochastic behavior of scttlement. Anisotropic studies are more
ppropriate for site-specifie analyses.

As was found in the two-dimensional case for the two footing
case (e.g., Fenton and Griffiths 2002), using « scale of {luctuation,
01, equal to the footing spacing, [, is conservative in that it
yields the largest probabilities of differential settlement. For total
settlement of a single footing, taking 8y, large is conservative
since this leads to the largest variability of settlement (least vari-
ance reduction due to averaging of the soil properties under the
footing).

To investigate the effect of the scale of fluctuation, 8, ~, on the
settlement statistics, 0, ~ is varied from 0.01 (i.e., very much
smaller than the footing and/or footing spacing) to 10.0 (i.c., sub-
stantially larger than the footing and'or footing spacing). Tn the
limit as 8, ;—+0, the elastic modulus field becomes a white noise
field, with independent £ values at any two distinet points. [n
terms of the finite clements themselves, values of 0, ~ smaller
than the elements result in a set of elements which are largely
independent (increasingly independent as 0, - decreases). But be-
cause the footing effectively averages the elastic modulus field on
which it is founded, and since averages have decreased variance,
the settlement in the limiting case 0, »— 0 is expected to ap-
proach that obtained in the deterministic case, with £ equal to its
median everywhere (assuming gecometric averaging), with vanish-
ing variance for finite 0‘_—"'

At the other extreme, as 0y, -~ =, the elastic modulus ficld
becomes the same everywhere. In this case, the settlement statis-
tics are expected to approach those obtained by using a single
lognormally distributed random variable, E, to model the soil,
E(x)- E. That is, since the scttlement, o, under a footing founded
on a soil layer with uniform (but random) elastic modulus £ is
given by

(3)

where 8., computed settlement when E- ., everywhere, then,
as By, g+, the settlement assumes a lognormal distribution with
parameters

: . '
Bins B4 + In(py) — ne = I8y :{T:-n E (44)

Tins Tiar (45)

where Eq. (15) was used in Eq. (4a).

By similar reasoning, the difierential settlement between two
footings [sec Fig. 1(b)] as 8y, ~~-0 is expected to go to zero since
the average ¢lastic modulus seen by both {ootings approach the
same value, namely the median (assuming geometric averaging).
Al the other extreme, as (0, -~ =, the diflerential settlement i3
also expected to approach zero, since the elastic modulus ficld
becomes the same everywhere. Thus, the differential setilement
approaches zero at both very small and at very large scales of
fluctuation--the largest differential settlements will occur at
scales somewhere in between these two cxtremes. This “worst
case” scale has been observed by other researchers——sce, for ex-
ample, the work on a flexible foundation by Baecher and Inpia
(1981).

The Monte Carlo approach adopted here involves the simula-
tion of a realization of the elastic modulus ficld and subscquent
finite element analysis (e.e., Smith and Gritliths 1998) of that
realization to vield a realization of the footing settlement(s). Re-
peating the process over an ensemble of realizations eencrates a
set of possible settlements which can be plotted in the formi of'a
histogram and from which distribution parameters can be esti-
mated.

If it can be assumed that log-settlement is approximately nor-
mally distributed (whicli is seen later to be o reasonable assump-
tion and 1s consistent with the distribution selected for £), and
my, , and sy, 5 are the cstimators of the mean and variance of log
scttlement, respectively, then the standard deviation of thesc esti-
mators obtained frony the 7100 realizations performed for the
single footing case are given by
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Fig. 3. Tvpical frequency density plot and fitted lognormal
distribution of settlement under a single footing
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These estimator errors are not particularly smazll but, since the
three-dimensional analysis is very time consuming, the number of
realizations selected was deemed sufficient to verily that the peo-
metric averaging model suggested in the two-dimensional case is
also applicable in three dimensions. A subset of the cases consid-
ered in Table 1 (sce starred quantities) was rerun using 1,000
realizations to verify the probability distributions further out in
the tails for the difterential scttlement problem.

Realizations of the log-elastic modulus field are produced
using the three-dimensional Local Average Subdivision (LAS)
technique (Fenton and Vanmarcke 1990; Fenton 1994). The elas-
tic modulus value assigned to the ith element is

E(-l ] e\:p{p mi” T, ‘(}(S.'J} (6)

where ((x;)- local average, over the element centered at x;, of a
zero mean unit variance Gaussian random field.

Single-Footing Case

A typical histogram of the settlement under a single footing is
shown in Fig. 3 for W, 04, o /0.5, and 8, 1.0 (1,000
realizations were performed for this case to increase the resolu-
tion of the histogram). With the requirement that settlement be
non-negative, the shape of the histogram suggests a lognormal
distribution, which was adopted in this study [see, also, Eq. (4a)].
The histogram is normalized to produce a {requency density plot,
where a straight line is drawn between the interval midpoints. A
Chi-square poodness-of-fit test on the data of Fig. 3 yielded a p
value of 0.54 indicating very good support for the lognormal hy-
pothesis. The fitted lognormal distribution, with parameters given
by m,; and 5,5 shown in the line key, is superimposed on the
plot.

Accepting the lognormal distribution as a reasonable fit to the
simulation results, the next task is to estimate the parameters of
the fitted lognormal distributions as functions of the input param-
eters (W, o, and 8}, ). The lognormal distribution

(=]
I I
0 1 4 2 3
OinE
Fig. 4. Estimated mean of log settlement
i i 1 x= s )
S3(x)=—== expy _(______m_['m , O=x-<= (7)
V2o, 5x 2 Tin

has two parameters, b, ; and o, ;. Fig. 4 shows how the estima-
tor of Wins, Mg varies with oy, » for W, =0.4 based on 100
realizations. All scales of fluctuation are drawn in the plot, but are
not individually labeled since they lie so close together. Also
shown in the plot are the 95% confidence interval bounds on the
true parameter, [Ly, 5. As can be scen, all the estimators lie within
these bounds indicating that the threc-dimensional results are
much the same as found using a two-dimensional model, namely
that p, = 1s well predicted by the cquation [see Eq. (4a)),

S .
Fms ln(adct) + :;U-l-n E (8)

where 34, is the “deterministic” settlement obtained from a single
finite element analysis (or appropriate approximate calculation) of
the problem uvsing £ - everywhere. This equation is also shown
in Fig. 4, and it can be seen that the agreement with estimated
values of p,, 4 is very good. The other footing sizes considered
showed similar results.

Estimates of the standard deviation of log settlement, sy, 5, arc
plotted in Fig. 5 (as symbols) for two footing sizes based on 100
realizations. The other footing sizes gave similar results. In all
cases, S,z lncreases to o,y as Oy, ~ increases, which is as ex-
pected since large scales give less variance reduction. Assuming
that Tocal geometric averaging of the volume directly under the
footing accounts for all of the variance reduction scen in Fig. 5
the standard deviation of log settlement is predicted by

3

One ANV W H)o, (9)

where (W, W H)=so-called variance function (Vanmarcke
1984), giving the amount that the variance is reduced due to av-
eraging. It depends on the averaging volume, I, X B X [ as well
as on the scale of fluctuation, 6, -. The agrecment between Eq.
(9) and the cstimated standard deviations is remarkable, as shown
in Fig. 5, indicating that a geometric average of the elastic modu-
lus field under the footing is a good model of the effective modu-
lus seen by the footing. The geometric average, £, has the fol-
lowing mathematical definition (for a square footiﬁg)
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Fig. 5. Comparison of simulated sample standard deviation
of log-settlement shown with symbols, with theoretical estimate via
Eq. (9) shown with lines

| oW iy
E,: exp( =5 f J’ J In E(x.p,2)dx dy a’:) (10)
WetJy Jy g /

from which the scttlement of the footing can be expressed as

B = By, b (an
E‘-\

Taking the logarithm of Eq. (11), and expectations, leads to Eqs.
(8) and (9). The practical implication of this result is that settle-
ments are better predicted using an effective clastic modulus com-
puted as a geometric average of the experimentally obtained
moduli under the footing, For example, if n observations of the
elastic modulus under a footing are taken, £,,F,, ... . E,, then the
footing settlement is best computed using the clastic modulus £,
computed as

’ N\ Ln / "
1
. (H F) exp(—Z In £, (12)
\ il A ey

To lend support to the geometric average idea, consider the settle-
ment of a horizontally layered soil, where the elastic modulus
varies only from layer to layer but is constant within each layer. It
is relatively simple to show that the effective elastic modulus seen
by a footing in this case is the harmonic average, if edge effects

are ignored
1" a | i
HJ, E(2)

where [ soil depth. Alternatively, if the layers are oriented ver-
tically, the effective elastic modulus seen by a rigid footing be-
comes the arithmetic average of the layer moduli. The true situa-
tion will lie somewhere between these two extremes. Since the
geometric average of a random field lies between the arithmetic
and harmonic averages, its use in the more general case appears
reasonable. Note, however, that this argument suggests that a har-
monic average would be more reasonable for a strongly layered
soil, a situation which is not considered in this study.

Once the parameters of the settlement distribution, W, , and
., . have been calculated using Eqgs. (8) and (9), probabilitics
associated with settlement are easily found

N x .
P[5 < x]: qs(—”")

Oln &

where @ =cumulative standard normal function.

Two-Footing Case

Consider now the case of two square footings cach of plan di-
mension B, X W, and separated by center-to-center distance D
=1, as shown in Fig. 1(b). If the settlements, &, and 8., under
each footing are lognormally distributed, as found in the previous
section, then the joint distribution between the two-Tooting sctile-
ments follows a bivariate lognormal distribution [Fenton and
Gritiiths (2002), corrected to include the omitted factor of 2 on
the correlation term]

: 1 1 5 5
Fagplr) = m——exp] = (W} - 2py, ¥ W+ W,

x=0,p=0 (15)

where W (Inx— ) oy o Wo(Iny=qu, ) @ e !""'[),2"5:
and py, 5 -correlation cocfiicient between the log scttlement of the
two footings. 1t is assumed in the above that &, and §- have the
same mean and variance, which, for the symmetric conditions
shown in Fig. 1(b), is 2 reasonable assumption.

Defining the diflerential settlement between footings to be A
=8 B,, then the mean of A is zero if the elastic modulus field is
statistically stationary, as assumed here (if not, then the differen-
tial settlement due to any trend in the mean must be handled
separately). If Eq. (15) holds. then the exact distribution govern-
ing the differential scttlement is given by

Salx) j Sanl
0

and differential settlement probabilities can be computed as

X -y (16)

PlA|> x]=P[A<-xU A >x] 2] JAlE)E  (17)

Fig. 6 shows typical frequency -density plots ol differential settlc-
ment, for three different values of 8, -, between two equal sized
footings with ¥~ 0.4 and o,/p 1.0, For small scales of fuc-
tuation, the density plot looks 1casonably normal, but for larger
scales of fluctuation, the density has a sharper mode with longer
tails. Motice that the widest distribution occurs when €, -1 is
equal to about 1.0, indicating that this is a worst case when it
comes to differential scttlement.

The distribution j'ﬁl ., and thus also '\, has three parameters
Pangs Tinss aid pyy oo The mean and standard deviation can be
estimated using Eqs. (5) and (9) from the previous section. Sine
local averaging of the log-elastic modulus field under the footing
was found to be an accuraic predictor of the variance of log
settlement, it is reasonable to sugpest that the covariance betw
log settlements under a pair of footings will be well predicted by
the covariance between local averages of the log-elastic modulus
field under each footing. For equal sized footings, the covariance
between local averages of the log-elastic modulus field under two
footings separated by distance D is given by

]
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Fig. 6. Frequency density and iitted distribution for differential
scttlement under two equal-sized footings with 0y, /0 0.1 in (a);
O, /D1.014n (b); and 8y, /D 10.0 in (¢)

0, B
R f f Pro #(x1 ~ x2)dxady, (18)
il Vi

where 17 =T, X WX H volume under Footing 1; 75 equivalent
volume under Footing 2; and x+ spatial position. From this, the
correlation coefficient can be computed 2s

(‘,'Al '

. 2
Pma™

2
Ind

(19)

The predicted correlation can be compared to the simulation re-
sults by first transforming back from log space

CX]‘){(:‘" h_} =1

: 5 (20,
exploy, | )

Pic

where ¢, ; is given by Eq. (9). The agreement between the cor-
relation coefficient predicted by Eq. (20) and the correlation co-
eilicient estimated from the simulations (1,000 rcalizations) is
shown in Fig. 7. The agreement is reasonable, particularly for the
smaller sized footings. For larger footings, the correlation is un-
derpredicted, particularly at small 8, .. This is believed to be due
to mechanical interaction between the larger footings, where the
settlement of one footing induces some settlement in the adjacent
footing due to their relatively close proximity.

Armed with the relationships (8). (9), and (19), the differential
settlement distribution, [, can be computed using Eq. (16). The
resulting predicted distributions have been superimposed on the
frcquency-density plots of Fig. 6 for 1V, 0.4, The agreement is
very good for intermediate to large scales of fluctuation. At the

Fig. 7. Predicted 2nd samplc correlation cocfficicnts between footing
scttlements for various relative scparation distances between the
footings and for o /ps 1

smaller scales of fluctuation, Eq. (16) yields a distribution which
is somewhat too wide-—this is duc to the underprediction of the
correlation between footing settlements [Eq. (19)] since as ihe
actual correlation between settlements increases, the difiercntial
settlement decredases and the distribution becomes narrower.
However, an underprediction of correlation is at least conserva-
tive in that predicted difierential settlement probabilitics will tend
to be too large.

To test the ability of the bivariate lognormal distribution (o
accurately estimate probabilities, the probability that the absolute
value of A exceeds some threshold is compared to empirical prob-
abilities derived from simulation. For generality, thresholds of
apy Will be used, where p.y is the mean absolute differential
settlement, which can be appfoximated as (which holds for A
normally distributed)

s
(2
A —y 21y
T
where (Ti 2rr:(1--‘ pz). Fig. 8 shows a plot of the predicted [Eq.
(17)] versus empirical probabilitics P[|Al>au « | for « varying
in 20 steps from 0.2 to 4.0. If the prediction is accurate, then the
plotted points should lie on the dizgonal line.

When the footings arc well separated [17,/D 0.2, see Fig
8(a)] so that mechanical correlation is negligible, then the agree-
ment between predicted and empirical probabilitics is excellent.
The two solid curved lines shown in the plot form a 95% confi-
dence interval on the empirical probabilities, and it can be seen
that most lie within these bounds. The few that lie outside are on
the conservative side (predicted probability exceeds empirical
probability).

As the footing size increases [see Figs. 8(b and ¢)] so that their
relative spacing decreases, the ¢ffect of mechanical correlation
begins to be increasingly important and the resulting predicted
probabilities increasingly conservative. A strictly empirical cor-
rection can be made to the correlation to account for the missing
mechanical influcnees. If p ¢ is replaced by (1-W,2D)p s
W 2D for all W'D greater than about 0.3, the differential
scttlements are reduced and, as shown in Fig. 9, the predicted
probabilities become reasonably close to the empirical probabili-
ties while still remaining slightly conservative. Until the complex
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interaction between two relatively closely spaced footings is fully
characterized probabilistically, this simple empirical correction
scems reasonable.

Conclusions
On the basis of this simulation study, the following observations

can be made.
As Tound in the two-dimensional case, the settlement under a
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footing founded on a three-dimensional spatially random elastic
modulus field of finite depth overlying bedrock is well repre-
sented by a lognormal distribution with parameters p., 5 and o7, ..
if £ is also lognormally distributed. The first parameter, ., 3, 18
dependent on the mean and variance of the underlying log-elastic
modulus field and may be closely approximated by considering
limiting values of ), ». The sccond parameter, (r;'n o 18 very well
represented by the variance of a local average of the log-elastic
modulus field in the rezion directly under the footing. Once the
parameters of the settlement, w,, , and (len .» have been computed,

sing Eqs. (8) and (9), the estimation of probahilitics zssociated
with settlement involves little more than referring to a stundard
normal distribution table [see Ig. (14)].

One of the implications of the findings for a single footing is
that footing scttlement is accurately predicted using a geomelric
average of the elastic modulus field in the volume under the foot-
ing. From a practical point of view, this {inding implies that =
geometric average of soil elastic modulus estimates made in the
vicinity of the footing (e.z. by cone penctration test soundings)
should be used to represent the effective elastic modulus rather
than an arithmetic average. The geometric average will generally
be less than the artthmetic average, reflecting the stronger influ-
ence of weak soil zones on the total settlement.

Under the model of a lognormal distribution for the settlement
of an individual footing, the bivariate lognormal distribution was
found to closcly represent the joint settlernent of two footings
when the footings are spaced sufficiently far (relative to their plan
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dimension) apart to avoid significant mechanical interaction.
Using the bivariate lognormal model, probabilities associated
with differential settlement are obtained that are in very good
agrecment with empirical probabilities obtained via simulation.
The bivariate lognormal model is considerably superior to the
approximate normal model developed in the two-dimensional
case by Fenton and Griffiths (2002) at the expense of a more
complicated numerical integration (the normal approximation
simply involved a table lookup).

When the footings become close enough that mechanical in-
teraction becomes significant, the bivariate lognormal model de-
veloped here begins to overestimate the probabilities associated
with differential settlement---that is, the differential settlements
will be less than predicted. Although this is at least conservative,
the reason is believed to be due to the fact that the stress field
from one footing is affecting the elastic modulus field under the
other footing. This results in an increased correlation coefiicient
between the two-footing settlements that is not fully accounted
for by the correlation between two local geometric averages
alone. An empirical correction factor has been suggested in this
paper which yields more accurate probabilities and which should
be employed if the conservatism without it is unacceptable.

Acknowledgments

The writers would like to thank the National Sciences and Engi-
ncering Rescarch Council of Canada, under Discovery Grant No.
RGPINO105445, and the National Science Foundation of the
United States of America, under Grant No. CMS-9877189, for
their essential support of this rescarch. Any opinions, findings,
conclusions or recommendations are those of the writers and do
not necessarily reflect the views of the alorementioned organiza-
tions.

Notation

The folloving symbols are used in this paper:

Cl,e = covariance between log settlements under the two
footings;
D = center-to-center distance between footings;
f; == elastic modulus;
E, = elastic modulus geometric mean;
J5 = settlement probability density function;
j},l; = joint settlement probability density function;

i = 'dif’f'ereminl settlement probability density function;
G(x) = standard normal (Gaussian) random field;
H = overall depth of soil layer;,

L = overall width of soil model;
mg = estimated mean of footing settlement via simulation;
my, 5 = estimated mean of log settlement via simulation;

P = applied footing load;

Sy - estimated standard deviation of log settlement via
simulation;

/= footing width;

x = spatial coordinate or position;

vy = variance function (variance reduction due to local
averaging);

A = differential settlement between footings;

& == footing settlement, positive downward;

04y = footing scttlement when E- pp everywhere;
0., = isotropic scale of fluctuation of the log-elastic
modulus field;
R, = mean elastic modulus;
My = mean absolute differential footing settlement;

. = mean of log-elastic modulus;
Fas = mean of log-settlement;

v = Poisson’s ratio;

ps = correlation coefficient between footing settlements;
Ps = correlation coefficient between log-footing

settlements;
Pg = correlation coefficient between In(E) at two points;
oy = standard deviation of elastic modulus;
o, = standard deviation of log-elastic modulus;

o = standard deviation of footing settlement;
o = standard deviation of log-settlement;

oy = standard deviation of differcntial settlement;
T = lag distance, equal to |1|;
7 = spatial lag vector; and
@ = standard normal cumulative distribution function.
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