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The semi-analytical integration of an 8-node plane strain finite element stiffness matrix is presented in this
work. The element is assumed to be super-parametric, having straight sides. Before carrying out the
integration, the integral expressions are classified into several groups. thus avoiding duplication of
calculations. Symbolic manipulation and integration is used to obtain the basic formulae to evaluate the
stiffness matrix. Then, the resulting expressions are postprocessed. optimized, and simplified in order to
reduce the computation time. Maple symbolic-manipulation software was used to generate the closed
expressions and to develop the corresponding Fortran code. Comparisons between semi-analytical inte-
gration and numerical integration were made. It was demonstrated that semi-analytical integration required
less CPU time than conventional numerical integration (using Gaussian-Legendre quadrature) to obtain the
stiffness matrix. + 2005 Wiley Periodicais, Inc. Numer Methods Partial Differential Eq 22: 296-316, 2006
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l. INTRODUCTION

The finite element method and the boundary element method are techniques that require
significant amounts of integration. This is usually achieved using numerical integration, which
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can be a time-consuming process. In addition, numerical integration can also lead to inaccura-
cies in very distorted element geometries.

For some time now, researchers have been interested in both semi-analytical and analytical
methods of integration of the stiffness, mass, and other element matrices required by these
methods. Use of symbolic manipulation and integration of these matrices is also not new. Since
the 1960s, symbolic computation techniques have been used to deal with very complicated
expressions, such as those that can arise in analysis of problems in engineering and the physical
sciences. The need to integrate complex and large expressions has motivated the development
of symbolic software or Computer Algebra Systems (CAS) such as Maple, Mathematica,
Macsyma, and Derive.

During the last 20 years, the development of computational codes based on symbolic
manipulation has increased substantially in the mechanical analysis of continuous media. For
example, the reader can refer to the works of Korncoff and Fenves [1], Korncoff [2], Noor and
Andersen [3], Andersen and Noor [4], Jensen, Niordson [5], and Cardoso [6] among others.

For instance, the applications related to nonlinear dynamic analysis of plates and shells
require very large CPU time to numerically integrate the stiffness matrices. Zienkiewicz et al.
[7] present a semi-analytical integration of plates and shells, and report a reduction in CPU time
of nearly 50%. Rengarajan et al. [8] analytically integrated a hybrid finite element for shell
analysis and carried out comparisons between analytical and numerical integration. One of the
advantages of hybrid finite elements is that the determinant of the Jacobian matrix does not
appear in the denominator of the stiffness matrix expression as it does in conventional
displacement based finite element formulations. Vlachoutsis [9) proposed analytical integration
of a degenerated shell element, by decomposing the Jacobian matrix into two terms: those
representing variables belonging to the middle surface of the shell and those related to the
outside regions. Results indicated CPU saving of 9% and also demonstrated the greater accuracy
of the analytical formulations.

Linear approximations for the Jacobian matrix of a shell element with thickness were treated
using symbolic integration by Milford and Schnobrich [10]. Mahe et al. [11] considered a shell
element, by integrating across the element thickness. Ledvinka [12] also analytically integrated
a hybrid four-node element, while Crisfield [13] applied symbolic manipulation in the analysis
of arches and shells.

In the field of the boundary element method (BEM) researchers have made a significant effort
in the symbolic integration of the singular kernel that frequently appears in boundary integrals.
The work of Gray [14] shows how to deal with hypersingular integrals, yielded by nontrivial
Green functions. Chen et al. [15] presented the gradients computation at internal points in a 2D
domain. They applied symbolic computation to evaluate singular integrals appearing in potential
problems discretized by the BEM. Ye et al. [16] also discussed symbolic integration applied to
BEM.

Returning to finite elements, Yagawa et al. [17] demonstrated CPU time savings of 15%
using a combined technique involving both numerical and analytical integration of stiffness in
plane elasticity. Bardel [18] showed that higher order polynomial expressions appearing in
p-adaptive FEM can be obtained using symbolic integration, giving large CPU time savings.
Mizukami [19] derived explicit integration formulas for a rectangular plane finite element with
straight sides. Kikuchi [20] used the Reduce package to obtain explicit formulas for an
isoparametric four-node finite element, showing accurate results for a distorted element. Rathod
[21] presented analytical integration formulas for a four-node isoparametric finite element and
showed that all the integration formulas could be obtained on the basis of four simple integrals,
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FIG. 1. Element node and freedom numbering.

In 1994, Griffiths [22] presented a general methodology based on coordinate transformations,
to obtain the semi-analytical closed expression for the stiffness matrix of a four-node elastic
plane finite element. This methodology was extrapolated to eight-node quadrilaterals by Car-
doso [23]. The techniques developed by these authors were based on the semi-analytical
integration of the expressions using 2 X 2 Gauss-Legendre integration points, leading to
substantial CPU time savings. Similar formulations for four-node elements applied to steady
seepage analysis have also been presented by Smith and Griffiths [23]. Using a different
approach to Griffiths, Videla et al. [24] used the Derive package to generate closed-form
analytical expressions for the integration of a four-node elastic plane strain finite element and
showed important CPU savings. The formulas yielded by the symbolic software were then
optimized to avoid unnecessary calculations.

In this article, a generalization of the Griffiths [22] methodology is presented in relation to
an eight-node elastic plane strain finite element with straight sides (super-parametric). The
technique allows easy computation of the stiffness matrix and substantially improves the CPU
times as compared to conventional numerical integration. Accuracy and CPU times comparisons
are reported, and the influence of geometric element distortion is considered.

Only eight-noded-plane finite elements with straight sides are considered in this work;
however, the authors are working to develop the semi-analytical and analytical formulae for
general curved-sides eight-noded elements. These expressions appear to be much more com-
plex.

2. FORMULATION
Figure 1 shows the finite element configuration and node numbering. Two degrees of freedom

are assumed at each node. A brief summary of the FEM formulation is now needed to set up the
variables and constants meaning. The constitutive relation is

o = Ds, (1)
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FIG. 2. Element in local coordinate space.
where
o=[o, o, of (2)
e=[e, & g (3)
For an isotropic material, the elastic matrix is
E,L E 0
D=|E E 0] (4)
0 0 G
being the shear modulus G = E/[2(1 + »)].
For plane stress we have
E
El = i_:-—f.}i’ Ez — vE1 {5)
and for plane deformation
_ E(1— ) £ = vE,
Ut ol-20 T a-9 ©

After the well-known coordinate transformation, the element in the Gauss-plane is shown in Fig.
2. The shape functions to interpolate the geometry and the displacements fields are

Ni==(0-U=HU+0+§ Ny="F(1—m(+8&(1-&+m)

Ny=—(+mU+HU-¢(—m) N="F(1+n1-81+¢E- )
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Ns=2(1-m1-8) Ne=301-m)1+8

No=50+m(1 =8 Ne=5(01-n)(1 -9, 7

where the coordinate transformation between the Cartesian plane and the Gauss-plane is given
by

8

x= 2 N(&mx,  y= 2 NLE )y (8)

i=1 i=1
The stiffness matrix terms of an element are obtained as follows:
K;= J B.DB;dxdy, (9
A

being the displacement-deformation matrix 5:

[aN,
— 0
dx
aN;
=1 0 >
B, o (10)
dN; dN,
L dy dx |
The coordinate transformation leads to
1 |
K; = J J Bi(¢, m)DB(E, m)|J|dédn, (11)
=1 1
where |J | is the determinant of the Jacobian matrix:
ox dy
_|9€ 98¢
J= dx  dy | (12)
on  dn
By using the notation: |J| = H, T; = aN,/dx, and S; = dN,/3y one obtains
_[E\TT; + GSS; E,TS;+ GST;| 1
B.DB = [EZS,-Tj +GTS, ESS +GTT,|H' (13)
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As a consequence, the stiffness matrix terms of an §-noded-plane finite element in the local
coordinate space are giving by

1 1 1 1 1 1
J J H (E\T.T; + GSS;)dédn J f 77 (E-TS; + GS,T)d&dn
1 ! =i

-1

(14)

1 1 ! L |
\_J J I (E,ST; + GT.S,)dédn J f 7 (E\S:S; + GT\T))d&dn
_qd g 1Y

2.1. “Parent” Terms of the Stiffness Matrix

The stiffness matrix terms will be obtained using a 2 X 2 Gauss-Legendre integration rule.
Because the matrix is symmetric and order 16 X 16, only 136 elements are needed. These
elements are classified into 10 groups (A, B, C, D, E, F, G, H, I, I), according to the adjacency
(which is a key-factor in this methodology from Griffiths [22]) between the degrees of freedom
(DOF) of the element nodes, as shown in Table I. Figure 3 displays the various adjacency
relationships between the nodes. Parallel and orthogonal freedoms are treated separately as
shown in Table I.
All the stiffness matrix terms are of the form

A(E*s; + Gsy) + fi(E*s3 + Gsy) - A(E*t + Gty) + f1(E*t; + Gty)
A% —3ft AT 33 ’

K;=9

(15)

where E* = E, for groups A, C, E, Gand [; E¥ = E, for groups B, D, F, H and J, whereas the
functions A, f;, and f, are as follows:

A = g{()’z =y — x3) + (03 — i) — x4)} (16)

FIG. 3. Adjacency around a typical node.
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TABLE 1. Stiffness matrix classification into 10 groups.

Group Terms Description Adjacency

A Ky Koo Ky 5o Ky oo Ks 5, Ko 0 Parallel DOF in the same node 0
K9, Kg g Ko 9, Kig100
Kl],]]’ Klz,l'l’ K13.l3’ K14,l4’
Kisis Kies

B K\ 5 K34, Ksgo K7 3. Ky 10 Orthogonal DOF at the same node 0
K12 Kiza Kis e

C K 3, K35 K57, Ky 7. Ko 115 Parallel DOF of two nodes with 2
Kiia3 Kiaas Koy K, one intermediate node between
Koo Koo Kago Kio2e them
K12,l4’ K14.16’ KIO.Ié

D Kz Kag Kos Ko Kioaos Orthogonal DOF of two nodes 2
K14 Kigs Kions: Kas with one intermediate node
Ksg K1 s Ky g0 K243, between them
Ki3,16: Ko,16 Ko,12 )

E K, s K53 K54, K150 K6 Parallel DOF at opposite nodes 4
Ka,sa Km‘lm Klz,m

F K6 Ko 14 Kag: Ki1160 Kaso Orthogonal DOF at opposite 4
Kio13 Kaz K215 nodes

G K Kio Kz 11: Ks 112 K5y Parallel DOF at adjacent nodes 1

K’n’.13> K7.15! Kl,l.ﬁ’ Kz,m’
4,10 K4,12’ Kﬁ,lZ’ K('),Iﬁl’
8,142 KB.](}’ KZ,J\‘S
H K100 Kai00 K000 Ks 120 K5 40 Orthogonal DOF at adjacent nodes 1
K7 140 K7 160 K 160 K00 Ky,
Kivis Koars Koz Ky s

Ksis Kois )
I K K1 Kro Ks o, K515 Parallel DOF at two nodes with 3
K15 K343 Ky g3 Ko p0s two intermediate nodes between
8120 Kg.100 Ko 100 Ke16 them
4,162 K4.14’ K2.14
J Ksq1: Kg 115 Koo Keov Ko 15 Orthogonal DOF at two nodes 3
Kiis Kiia Ko 13, K12 with two intermediate nodes
K3 12 K7 100 Ks 100 Ks 10 between them

K3 162 KS 143 Kl 14

= %(}‘4 = y)x +x) + %{Vstxs; — Xy} + %{)’41'2 — yaxa} + E{(yl = ¥l + x) + (33 = y4)
X (x4 x3) + (3 = yp)xs + 35) + (0 = 3)( + 2} + {02~ y)0e + x) + (0~ ys)
X (g + xa) + (= v+ x2) + (o — )05 + ) + 02 — 3 +x)F (17)

fai= %()Q + 1) — ya) + ib’ax.s —xp} + %{)"3351 — Xy} + 2{(x; T x) (= y3) + (5 + x)
X (2 = ) + (s + x)On — ) + O+ x) (03 — ya)} — é{(l] + 1) (e = yi) + O + xp)

X (3= ya) + G =)0 + ) + 0 +x)0, — )} (18)

On the other hand, functions s,, $,, $3, $4, 1}, £, I3, and t, depend on the nodal coordinates

as well as on the group. These functions are provided below. Now, having the “Parent” terms

of each group, the rest of the terms in the corresponding group (see Table I) can be generated
using one of the four transformations based on nodal coordinates, as shown in Table IL.
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TABLE II. Transformations based on nodal coordinates.

Node Transformation 1 Transformation 2 Transformation 3 Transformation 4
(x, ¥1) (x5 ¥4) (x4 ¥4) (¥4 Xx4) O xy)
(x5, ¥2) (xy, ¥)) (X3, ¥3) (¥3, Xx3) (y2, x5)
(3, ¥3) (X2, ¥2) (X2, ¥2) (¥as x3) (y3, X3)
(x4 ya) (X3, ¥3) (x1. ¥1) (yy, x) (4, X4)

2.1.1. Group A

Using equation 15, the “Parent” term k, , is obtained. Then, the diagonal terms of corner nodes
TI Tl T\ T\
can be obtained by applying the transformations in Table IL. k) | — k33 —> ks s —> k; 7 —> kg

TI Tl T\
—> kyp —> kyy — ke, With

= é()’z - J’4)2

S 1= %(xz - X4)2 (19)
432 (@2 + 32 + 00— 2 + 01+ 0 — 4930 + ys — 293 + 2y))
t 1= % R R i 288( —x,)
I 1= ﬁg(‘b’a =2y = 32— Y2 — Ya)

ty 1= ﬁ(‘hﬂx = 2x; — x5 — X)) (0 — xy) (20)

Now, with the “Parent” term K, 4, we can generate the diagonal terms of the midside nodes:

T, T, T, T T T T,
koo —> ki1 —> kians = kisis = kyaa = kigie — kigio — k120,

with
2 1
81 1= 555 (= 5y + Sys = 32 + 33 + 55 By = Y2 — 34 — y)?

1
8§y 1= — 216 (5xy — Sy + x5 — x)* + =AS — g — =T



304 LOZADA ET AL.
1 bl
§3 1= EU‘; + 3y, + %}’4(}’2 —yy) — %(yz + 3+ é}'l(‘l}’] — 2y; — 5y4)

5, 0= %(—BX, + o+ xy + x)(5x — 5x 4+ xy — x,)
t 2= {502 = )2 + O+ 295" + 300 = 29207 = 3:Gy2 + 3)) + s — Ty)
£y 1= == (x, — x, + 5% ~ 5x,)% + %(x, — 3x, + x4 + x3)°
I3 1= %(}ﬂ = Ys Sy = S5v)(s + ¥y — 3y, + )

b= — % (g — x; + 533 — 5% — 3 + x5 + x3).

2.1.2. Group B
With the “Parent” term K| ,, the terms related to corner nodes are generated:

T T T,
kia—> ksa—> kso—> ko,

with
51:=0
Sye= & é(}"z = ¥3)(% — x4)
§3:=10
g = 135()’2 — ¥ — x,)
t,:=0

Iy 1= {4_%2}((_2_‘.»’1 =¥~ Ya T Ay)x + (=20 + 2y v = yx

(21

(22)

(23)

+2(—4y; + 2y oy, + }’4)1'3 + (2 — 31+ 293 = 2y)x))

t;:=0
ty 1= {ﬁ}(@’z =yl = 20) + (0 + 31— 2yadx + (—y) — ys + 2ya)x,).

The rest of the terms of this group are calculated from Ky as follows:

(24)
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T, T, T,
o 10— ki —> kiays — ks, e

with

spi= (50 — ya)2x — x) + (2 — ya) (20, — xg) + 2y, = 2y, —y3 + Ya)Xa
+ (23 = Ty + e+ dp)x))

0= {Tég}((_zéxl + 20, + 17x, + Txz)y, + (=ys+yis— 2y, + (_)"2 — 4y, — 2yy)x,
+ {—1dyiy 435 — 4y )xg + (2y, + 17y, + Ty3)x))

§3 1= %}((3}’4 + v —Ay)x + 2(—y; — Vo= Y2+ 3y + (0 + Vi~ 2y4)%3

+ (—3y, + Vi ¥2 T yxy)

AP ;Ig ((— 15y, + 10y, + 4y, + )’2)4‘"1 +0nty— 2y)n + (_3}'4 + 4y, — y)x,

Ln

+ (—2y; — 5y, — 3y + 10y)x,)  (25)

L 1= {ﬁ}(_‘?}’a + Ty — x)

—
(=Y

1= {0 + 200 = 2y = 3)x + Q1+ 1795 + Ty — 263205 + (175, — 14y, — dy, + y)xy

+ (= = 4ys + Ty, — 2y4)x,)
1y:= {ﬁ}(—2y2 T2y =yt )l —x)
t4 2= {3H((2ys = 32— yox + (= 10y; — 4y, + 15y, = y)x, + 2y, + Sy + 3y, — 10y.)x,
+ (vs — 4y, + 3y)xy).  (26)

2.1.3. Group C

Using the “Parent” term K| 3, the following terms are generated:

T T T Ty T, T, T
kis—kss—> ks> ki —keg—> kag—> kyy—> kyg,

with
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5= {;E}(Uz = YalVi — 3yay + 4¥5 + )
s2:= f0n — xxm = Bxen + 45, + )

= {ﬁ}(z(vz =Yy 2+ (=y = 3yayz + yays + 4y9)

&

54 1= {4%8}(2(”(2 —x)x, + x% + (_XJ - 3x4)—’52 + xpxy + 41”2) (27)

h = ‘{4—13}()% + 02 = 3y3)y1 — Y + 43)

I
L= {g}(x% + (=325 + x)x; — xaxs + 413)

~

3= {ﬁ}(_)’l()'l = 3y; — ya + 2y2) + yi(2y: — 2ys — y)
Iy = {i}("xl(«‘ﬁ — By~ wat Do)+ a2 + 2 —w)) (28)

The other terms in group C are generated from K, ;, as follows:

i T, T, T, T T, T,
kov = kypas —> Kiaas — kojs — Kins — Kiais = Kioie — Kiouizs

with
s1 1= Gt 0@y — 2 — Tya + Sy) + (5ys — 8ys — vz + 33(2y; — Tyi) + 11y3)
o= {ﬁ}(}q(Z}gI — 20, — Txy + 5x) + (5x3 — 8x4 — x)x; + x3(2x3 — Txy) + 113)
53 1= H0n 01 + 5y2 = 7ys) + y5(Tya = 5y, — y3)
sa 1= {5hn(n + 53, — Ty) + x1(Tx, — 5x; — x3)) (29)

1= O — Sys — 16y3 + 19yy) + ys(—26y; + 19y + 14y,) + yi(—2p, — 5y;) + y3}

= {l]ﬁ}{xl(x] — 5x, — 16x3 + 19x,) + x5{(—26x, + 14x, + 19x3) + x,(— 20, — 5x5) + x5}
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Iy 1= {ﬁ}()’l(z.‘f} +4y; + 3y, — 1ly,) + }’u(15y2 — 8yy — 11ys) + (s + 3y3) + 4}*‘_%)

ty := {%}(‘xl(zfﬂ + 4}7_’; + 3X4 - 11)C2) + XQ(ISXE - SX4 - 11X3) <45 _[4(}{4 -+ 3%3) + 4,\:%)

(30)
2.1.4. Group D
From the “Parent” term K, , the following terms are generated:
T T T‘ 7 T 7 #i
kia—>kyg—> ksg—> kog—> oy —> kig —> ko7 — kus,
with
Sy = 41_3 (Vz - }’4)(% + x — 2x,)
53 1= 3 (o — x)(—ys — yi + 29
§3:= — 4]_8(}2 = ya)(=2x + 2x, — x3 + x3)
541= = =0 — X2 — 20 + 32— ¥) (31)
= ﬁ(xl —x) 2y =y —n)
L= — 4_180* =2 =X —x)
L= ;lg (e = x3) 0 = ya + 292 — 23)
ty:= — ﬁ O3 = y(=x4 + x, = 225 + 2xy), (32)

The terms related with midside nodes of group D are generated from K ,,:

n T T, T T T T
kopo—=> ki1 = Kisge = kious — Kinis = kigas = koo — ki,

with
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2.1.6. Group F

The “Parent” term K 4 is used to calculate the terms:

T T T
kig—>kszg—> kos—> kyq,

with
§) = {I_;}O’i = Ya) (2 — Xy)

S1:% {_1_6]}(}2 = Ya)(x2 = x4)

s54:=10 (39)

= {;;3}((_4)’1 = 2y2 — 2y, + 8y + (2y2 — 2y5 F ¥ — ya)xa + (—4ys + yr + ya + 2y

+ (=32t ¥ — ¥t yaxs)

I 1= {ﬁ}{(—‘b‘] + vy v+ 2yx + 2y, — 2y y3 = Y + 2(—2y; — v2 — ya t Ayx;

+(=2y, + 2y, — v, + ydxy)

I; i= {]jﬂ}(_(vz = ,V4)(X1 = X3) = Y2 — Y1 + 23300 — x4))

L= {ﬁ}(_bz - }’4)x, +(=m—yt 2y0x; + 200 — yaxs + (= 2y + yo + yadxg).
(40)

Now, terms associated to mid-side nodes are generated from Ko ,,:

T i 7,
koa—> kiy1e = Koz = Koo

with

$1:= {ﬁ}((’]}u + 2y — vy — 8ya)xy + (Tyy — 4yy — 2y — yo)xp + 0’2 =+ 2y — 2y
+ (—4y; — 8y; + 11y + y)xy)
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H(=y3 + ¥ — 2y + 2y)x; + O3 =4y =8y + 1lydx, + (—y, + 2y + Ty, — 8y,

+ (—dyy — 2y3 = ya + Tyxy)

§3 1= {é}((_i‘r’z +o F Ay + (—dys + 3y v+ (2 -y — V3)xs3
+ 18w —2yj — 3ya)xy)

8§ 0= {%}((}’z + 1= 2y)x + (2ya + 3y — Syxg + (—4y, + 5¥s — ya)xs
+ (—y; + 4y, — 3y)x,)  (41)

t =

~
=]

~
W

~
4=

((Tys — 4y, — y3 — 2y0)x; + (Tys + 2y, — By, — yax, + (1ly, — 4y; + Y2 = 8y4)x;

it (_2}'3 + 2y, — ¥ + y)xy)

= {ﬁ}((ﬁt — 4y, + 11y; — 8y,)x, + 0’3 —Yat 2y = 2y + (—y, — dys + Ty, — 2y)x,

+ (2ys — 8y; — 3o + Ty))xs)

= {T](,}((*Yz = 3y, +dy)x, + (—4y; — yo + Sy)x + (29, — Sy + 3y,)x

+(y; — 2y, + yax,)

= {%}((Sh =3y = 2y)x + (2ys —y —ydm + (<4 + V4 3y

+ (—5y; + 4y, + yaxy)

2.1.7. Group G

All the terms of this group are generated with only one “Parent” term (K |5):

and

with

TI TI TI T‘ TI TI T?
kays > kio = ks —> ks3> kg0 —> ke 1o —> kg s —> ki 16

T, T, T, T, T, T T T,
kygs—> ki3 —> ks = Kao—> ks g —> kg o —> kg —> kyyy — k2 105

= {ﬁg}(_h’% + (dyy — dys + 1dyn)y — 1003 + (Ty, — yalys — YiVs = Yi— ¥3)

s2:= 5= + (1o + 4oy — dx)xy — 1082 + (Tx, — x5 — 22 — 2 — xax,)

(42)
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s3:= L34y} + 9y + 23 = 3ydyi — 23+ (=ys — 4yl + 2y + 33)
5y = {%}(—4)(;2 + (=3x, 4+ 26 + 9)x; — 25 + (—x, — 4w, + 22+ 2x5xy)
L= {ﬁ}((_‘hh + 2+ 333y — 35— vy + dyay)

ty 1= {2]—4 ((x; — 4x; + 3x)x;, — 3%3 — x2X3 + 4xx,)

ty 1= {H0F + (2ys — Ty + 3y + Tyys — 493 — 2yay)

£ 1= R02 + (= Txy + 333 + 2y)xy + Ty — 43 — 2oy3).

2.1.8. Group H

Now, using “Parent” term K 4. all the terms of this group can be generated:

5 7, b7 T T T, T
kyia—> ki ka0 ksgo = kay = kayy — k3 — kg s

and
7, T T, T Ty Ty T, T

kyia—> ks> ko= ks = ks = kgs = kg — kyg —> ko s,

with

(43)

(44)

s 0= il On = 3o+ 202 = 2y30x, + (=y1 = Sy + 20y, — dya)x + (Tys — 2 + Syy — 10p2)x;

+(=2y, + 2y, — y3 + yaxy)

§2 1= {5 (— 02 — 11 + 23 — 2y)x, + (10y, — 10y; + 2p) — 2y)x, + (Tys — 4y2 — 2y — ya)xs

+ (=¥ + ¥4 — 5y, + Sy)xy)

s

53 0= {o5H((=2y5 + ya + yodx, + (=2y; = Zyy + ys + 3ya)xs + (= 3y, + 6y, — dy; + v

+ (=¥ + yixg)

84 0= {71—2}((_2}’1 + yi+ v + (=2, — 2y, — 2y + 6}’3)-’51 + (—dys + 3y T yi)xs

+ 2+ 3+ ¥~ 3vxy)

(45)
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= {%}0’» = yo(—x — x; + 4x,)
b= {%}(—4}‘4 + 3+ 3y)(x — x3)
I 1= {3%}(2(‘2-*71 — )3 — y1) — (3 — ) — 7xy)

I 1= {ﬁ}((h + 2y, — Ty + 4y)x, + (—dy, + Ty, — V3= 2y2)x3).

2.1.9. Group |

The terms of this group are generated from the “Parent” term K ,:
T T, T Ty T T T,
k19 —> kit = kays —> ks us = Kae —> kg0 —> kg o — kg4
and
T, 7 T 7 T, T T T

k19— ko) —> ki3 —> ka5 — kso—> kg o — Ko = kyng — ka1,

with

313

(46)

S1i= {ﬁ}{('f}’l = 1y, = 4y; + ydyi + ya(=2y, + 4y + 11y} + ya(=2y, + y;) — 5y}

82 1= {ﬁ}{xl(%"l = dxy +xy — 11xg) + xp(—2x, + 4x; + 11x,) + x% — x(2x; + 5x,)}

s3:= {51y~ 632 = 2y3)y1 + (2 + Ya + Yya + 34 — 1)
55 1= 500 (dxy = 225 — 6x0) + 0(20 + X+ x3) + xi0 — 1))
fe= =y — y2 + 3y3) + ya(=2y; + )

t; = {%}(x,(ﬁx] + 3x; — x3) + x3(=2x3 + 1))
1y 1= GH0(=210 + 33 + 29 — 30) + ya(=29 = 3 + 3))

ty 1= {%}(xl(ﬁZx] + 3y + 215 — xy) + x3(—2x, — x5 + x)).

(47)

(48)
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2.1.10. Group J

This last group is generated by using the “Parent” term K ;4

T T T T, T T T,
ky10 = k112> kaqg —> ks6—> kajs — Koo —> ks 1y — kos

T, T, 7, % T, 7 T,
kgo— ko = ky1a—>kgis —> ksjo = ksio —> koo — ki,

with

8y &= {ﬁ}()@ = )71)(_2)\:] =+ 2x2 + Xy — .’Cg_;)

5y 1= {ﬁ}((m}‘z =5yt 2y, = Tydx + oy — ya + 2y, — 2902 — (33 — ya + 2y — 2y1)x;

+ (5}"4 — 10y, + y; + 4y)x,)

§3 1= {-712}((3)’4 — 4y, + y)x; + 20(—y, — vy + 3y, — ¥3) + 0+ 31— 2ya)x,

+ (2 + ¥+ ya — 3y)x)

§q 1= {71—2}((6)?3 =3yt 3 — Ay + (=20 v+ v T sy - 20
+(=2y; = 2y + 3y + ya)xy)  (49)

L= {ﬁ}()z + 31— 2y3) (% = x3)
By 1= {21_4}0? = y)(—x — %+ 2x3)
L 0= i}((‘z)h + 2y v~ yax + (3 — v T 20— 290)x)

fy = {%}{y_; — y)(=2x; + 206, + x5 — xJ). (50)

3. COMPARISON ON CPU INTEGRATION TIMES

To verify the advantages of semi-analytical integration over standard numerical integration, a
comparison between both techniques is included herein. Table III shows the CPU times required
for numerical and symbolic integration. The last column of Table III displays the CPU savings
using semi-analytical integration. It can be noted that the saving in CPU time is close to one
third, which is a relevant achievement in finite element analysis. In all cases the results obtained
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TABLE III. CPU time comparisons.

Elements Numerical (sec) Symbolic (sec) Saving (%)
1000 5.5102E-02 4.0047E-02 27
10000 4.7565E-01 3.2290-01 32
100000 4.0425 2.5405 37
1000000 39.6342 24.790 37

using semi-analytical integration were exactly the same as those obtained using 2 X 2 numerical
quadrature, as expected.

4. CONCLUDING REMARKS

Semi-analytical integration of a plane strain eight-node finite element stiffness matrix was
performed using symbolic-manipulation Maple code. The methodology used was the one
developed by Griffiths [22], based on adjacency rules relating to element nodes. The power of
the method lies in its generality, which can be applied to higher order plane elements and 3D
elements.

Comparison between numerical and semi-analytical computation times showed that the
semi-analytical approach resulted in a reduction in CPU time of approximately one third over
the numerical approach.

This kind of improvement can be very significant when dealing with large problems (i.e.,
FEM meshes having thousands of elements), and other analyses in which highly repetitive
stiffness formulations is needed, such as dynamic nonlinear analyses and Monte-Carlo pro-
cesses.
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