Undrained Bearing Capacity of Two-Strip Footings
on Spatially Random Soil
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Abstract: A probabilistic study on the interference of two parallel rough rigid strip footings on a weightless soil with a randomly
distributed undrained shear strength performed. The problem is studied using the random finite element method, where nonlinear finite
element analysis is merged with random field theory within a Monte Carlo framework. The variability of undrained shear strength is
characterized by a lognormal distribution and an exponentially decaying spatial correlation length. The estimated bearing capacity
statistics of isolated and two footings cases are compared and the effect of footing interference discussed. Although interference between
footings on frictionless materials is not very great, the effect is shown to be increased by soil variability and spatial correlation length.
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Introduction

In general, most geotechnical analyses are treated deterministi-
cally, in which the soil medium is considered as a single homo-
geneous layer or a layered medium with uniform material
properties in each layer based on “average” values of soil param-
eters. However, in nature, soil parameters generally show signifi-
cant spatial variation in both vertical and horizontal directions,
and the results of deterministic analyses are only expected values
which may vary from actual performance of constructed facilities.
Probabilistic studies to assess the influence of various sources of
variability on the estimated performance of geotechnical struc-
tures are becoming increasingly popular among engineers, and a
wide range of geotechnical applications have been reported in the
literature (see e.g., Mostyn and Li 1993; Phoon et al. 2000; Li and
Lo 1993; Lemaire et al. 1995; Shackelford et al. 1996; Pula
2000). More recently, probabilistic studies on bearing capacity of
an isolated footing have been reported by Griffiths and Fenton
(2000, 2001), Nobahar and Popescu (2001) for b, =0 soils, and
Fenton and Griffiths (2000, 2003) for ¢’ -’ soils.

On some occasions, it may be necessary to place footings quite
close together, to accommodate structural details or to limit foot-
ing loads. In such cases, the interference of failure zones could
alter the bearing capacity and load-settlement behavior of foot-
ings from the isolated footing condition. Studies on the interfer-
ence of footings have been reported previously by various
authors. In frictional soils, experimental studies have shown that
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when the spacing between the footings is reduced, interference of
failure zones occurs and the bearing capacity of the footings in-
crease. (e.g., Stuart 1962; Mandel 1965; West and Stuart 1965;
Saran and Agarwal 1974; Deshmukh 1978: Dembicki et al. 1981;
Patankar and Khadilkar 1981; Das and Larbi-Cherif 1983; Selva-
durai and Rabbaa 1983; Graham et al. 1984) For footings on the
surface of fine grained undrained soils however, interference due
to footing proximity is much less pronounced, and any increase in
bearing capacity is usually not considered in design.

Probabilistic studies on multifootings are so far limited to the
estimation of differential settlements (e.g., Beacher and Ingra
1981; Fenton and Griffiths 2002). When examining bearing ca-
pacity, it might be expected that an important parameter would be
the spatial correlation length of the soil in relation to the footing
width and spacing.

This paper reports the results of parametric studies relating to
soil variability and spatial correlation, on the bearing capacity of
two parallel rough rigid strip footings on a weightless soil with
randomly varying undrained shear strength. For this probabilistic
study, a plane strain, nonlinear elastic-perfectly plastic (Tresca)
finite element analysis is combined with random field theory
using Monte Carlo simulation,

Brief Description of the Random Finite-Element
Method

The undrained shear strength is obtained through the trans-
formation

Cui = exp{p“ln c, Gz Oin cugi} (1)

in which ¢, ~undrained shear strength assigned to the ith ele-
ment; g;=local average of a standard Gaussian random field, g,
over the domain of the ith element; and w,,, and gy, . =mean
and standard deviation of the logarithm of ¢, (obtaincd from the
“point” mean and standard deviation . and o, after local
averaging). ! !

The LAS technique (Fenton 1994; Fenton and Vanmarcke
1990) generates realizations of the local averages g; which are
derived from the random field ¢ having zero mean, unit variance,
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Fig. 1. Mesh used in probabilistic bearing capacity analyses (a) isolated footing; (b) two footings

and a spatial correlation length, 8y, . As the spatial correlation
length tends to infinity, g; becomes equal to g; for all elements i
and j—that is, the field of shear strengths tends to become uni-
form for each realization. At the other extreme, as the spatial
correlation length tends to zero, g; and g; become independent for
all i # j—the soil’s undrained shear strength changes rapidly from
point to point. In the present study, a Markovian spatial correla-
tion function was used, of the form:

2
ol =exp) - m} @)

where p=correlation coefficient between the logarithm of the
undrained strength values at any two points separated by a dis-
tance 7 in a random field with spatial correlation length 6y, .

In the two-dimensional analyses presented in this paper, the
spatial correlation lengths in the vertical and horizontal directions
are taken to be equal (isotropic) for simplicity.

A local averaging process has been included in the formulation
to take full account of the level of mesh discretization, and the
size of the finite elements onto which the random field is to be
mapped. Local averaging preserves the mean, but reduces the
standard deviation of the underlying normal field to a “target”
value (it could also be noted that local averaging preserves the
median of the lognormal field). The amount by which the stan-
dard deviation is reduced, depends on the size of the elements, the
spatial correlation length and the nature of the spatial correlation
function governing the field. More specifically, there is a function
called the “variance function,” which can be derived from the
correlation function, which governs the rate at which the standard
deviation drops as the averaging domain grows larger (see e.g.,
Griffiths and Fenton 2004). The interested reader is also referred
to Vanmarcke (1977) for a detailed description of local averaging

and to Fenton and Griffiths (1993) and Griffiths and Fenton
(1993) for early implementations of the random finite-element
method (RFEM).

Deterministic Analysis

The bearing capacity analyses are carried out by the finite element
method using a viscoplastic algorithm incorporating an elastic-
perfectly plastic (Tresca) failure criterion (see e.g., Smith and
Griffiths 2004). A typical finite element mesh shown in Fig. 1,
consists of 1,440 8-node isoparametric plane strain square ele-
ments in 72 columns and 20 rows. The footing width B occupies
10 elements. The footing is placed at the center as shown in Fig.
1(a) for an isolated footing problem. In the two footing problem
the footings are placed symmetrically about the centerline as
shown in Fig. 1(a). The nodes representing the footing width are
incrementally displaced by an equal amount in the vertical direc-
tion, simulating a rough rigid footing condition with a uniform
vertical settlement and no rotation. The footing load for each
increment is the summation of the nodal forces backcomputed
from the converged stress field after each increment.

Results for the isolated and two footing cases on a homoge-
neous soil, are shown in Fig. 2. For an isolated footing, the finite
element analysis gave a bearing capacity factor No=q; / ¢, =542,
which is marginally (5.5%) higher than Prandtl’s closed form so-
lution of N.=5.14. This is due in part to the rough boundary
condition beneath the footing, combined with the relatively coarse
discretization beneath the footing edge. Under rigid footing con-
ditions, soil in the vicinity of the footing edge experiences stress
concentrations and high plastic strains. Use of a coarse mesh in
this vicinity leads to somewhat higher values of the back-
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Fig. 2. Analysis of footing interference on a homogeneous soil

computed loads. Better agreement could be obtained using a finer
mesh near the footing edge. In the present study however, a uni-
form finite element mesh consisting of square elements is used in
order to facilitate and simplify the random field generation and
mapping.

For the two footing case, the gap between the footings was
varied from 0.2B to 2B. In spite of some difference in the load-
settlement behaviors, the estimated bearing capacities are very
similar in all cases. These results confirm that for a homogeneous
fine grained undrained soil, the effect of interference on the bear-
ing capacity of two closely spaced footings is insignificant. It may
be noted that the total stress analyses presented in this paper take
no account of pore pressures generated by the footing and any
influence this might have on bearing capacity. The writers have
developed RFEM programs that perform effective stress analysis
with shear dilatancy coupling, however these studies are left for
future work.

The boundary effect of the considered finite element model on
the bearing capacity of a two footing problem was also consid-
ered by running the analysis with model widths ranging from 58
to 9.2B and two different depths of 2B and 3B while maintaining
the footing spacing at B. The results in Fig. 3 show that the
bearing capacity is essentially the same for all the considered
model sizes. The only variation that was observed occurred in the
load-settlement behavior.

The results from Figs. 2 and 3 suggest that the finite element
model shown in Fig. 1, is adequate to capture the bearing capacity
of two footings with reasonable accuracy.

A displacement vector plot at bearing failure of two footings in
the homogeneous case is shown in Fig. 4. Due to the interference
of failure mechanisms between the footings, the soil mass is
sheared mostly outward.

Probabilistic Study

Analyses have been performed for isolated and two footings cases
with the meshes of Figs. 1(a and b), respectively, and with the
input parameters taking the following values:
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Fig. 3. Influence of boundary proximity on computed bearing
capacity on a homogeneous soil

@;,=0.125,0.5,1,2.4,8

COV, =0.25,05,1,2,8

where COV, =0 /. and O, = /B.

Although typlcal maximum values of COV,. =0.5 are quoted
by some researchers (c.g., Lee et al. 1983), the current investiga-
tion covers a much wider range of values going up to COV,. =8.
The justification for this lies in the need to study the trends 1f1 the
results for highly variable materials. From a practical view point,
it also seems likely that the actual variability of soil may be
considerably higher than “typical values” which are often based
on rather limited data bases and small sample sizes.

The gap between the footings is kept constant at B for this
parametric study. For each set of assumed statistical properties
given by COVr , and G')C » Monte Carlo simulations were per-
formed. These involved the shear strength random field genera-
tion and the subsequent deterministic finite element analysis of
bearing capacity for each realization. Tt was observed that 500
realizations was generally adequate to achieve stable bearing ca-
pacity statistics within the considered range of parameters. For
further discussion on the optimal number of realizations the
reader is referred to Griffiths and Fenton (2001). Each realization,
although having the same underlying statistics, will lead to a quite
different spatial pattern of shear strength values beneath the foot-

Fig. 4. Displacement vectors at bearing failure in a two- footing
analysis on a homogeneous soil
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ing and hence a different bearing capacity. Unlike the homoge-
neous analysis, the load-settlement behavior and bearing capacity
of the left and right footings in the same realization were gener-
ally different. Following the Monte Carlo process, the mean and
standard deviation of the resulting 500 bearing capacities for the
left and right footings were computed.

In a two footings case, it is quite possible that both footings
may support a single structure (e.g., a portal frame supported by
two footings) or two separate, but close structures. When two
different structures are supported, failure of one footing might not
affect the performance of the other, so the finite element analysis
in each realization is carried out until both footings reach failure.
In this case, the statistical analysis for the mean and standard
deviation is carried out separately for the left and right footings.
When both the footings support a single structure, failure of any
one footing may be considered as failure of the entire structure,
since this may cause excessive damage, irrespective of the safe
loading condition of the other footing. For this case, only the
minimum value among the left and right footing capacities is
recorded at each realization, and subsequently used for the statis-
tical analysis.

In the following discussions, and in order to take account of
the discretization error mentioned previously, the mean bearing
capacity (uq) is normalized by the finite element deterministic
value (gy ).

Fig. 5 shows typical deformed meshes at failure under two
footings and the corresponding displacement vector plots. The
deformed mesh is superimposed on a grayscale, in which lighter
regions indicate stronger soil and darker regions indicate weaker
soil. As would be expected for a heterogeneous soil, the failure
mechanisms no longer exhibit symmetry.

Griffiths and Fenton (2001) have reported for an isolated foot-
ing, that the bearing capacity of a footing on a heterogeneous will
generally be less than the deterministic bearing capacity com-
puted with the mean shear strength . . For low values of COV_ ,
the mean bearing capacity, p, tends to the deterministic value,
but for higher values the mean Bearmg capacity falls quite steeply.

Figs. 6(a and b) compare the normalized mean bearing capac-
ity following Monte Carlo simulations, for the isolated and two
footing cases. The two footing results are computed separately for
the left and right footings, and also using the minimum value
from either footing. As the trend was generally similar for all @,
values considered, only results corresponding to the smallest and
largest values of ®, are shown here.

In the deterministic analysis for a footing gap of B, there is
virtually no increase in the bearing capacity due to footing inter-
ference. In the probabilistic study, it can be observed from Fig. 6
that the mean bearing capacities of the footings {either left or
right) tends to be higher than for an isolated footing. On the other
hand, the mean bearing capacity based on the assumption of any
footing failure, tends to be lower than for an isolated footing. In
both cases, the difference becomes more pronounced as , is
increased. The left and right footing mean bearing capacities are
very similar in both cases as might be expected.

This effect is shown in Fig. 7, where the soil variability is
fixed at COV, =1, and the spatial correlation length G)c is varied.
The maximum differences from the isolated footing case in both
directions is of the order of 10% when ®_ =8. Fig. 7 also dem-
onstrates the minimum or “worst case” beanng capacity corre-
sponding to @, =1 or By, ~B.

Fig. 8 compareﬂ; the coefficient of variation of the bearing
capacities (COV,, ) against the coefficient of variation of the input
undrained shear strength (COV, ) for the case of ®, =1. The
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e
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Fig. 5. Typical displacement vectors and deformed meshes at bearing
failure in a two-footing analysis on a stochastic soil

differences in COV,,_are not particularly significant at low values
of COV,, but increase at higher values.

Keepmg the footing spacing at B, Fig. 9 shows how the mean
value of the absolute difference between the left and right footing
bearing capacities, normalized by the deterministic bearing capac-
ity value, varies with ®CH and COV, . For small values of ®ru, the
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shear strength changes rapidly from element to element, and the
local averaging effect tends to give a similar bearing capacity
values for both the footings. As the value of @, increases how-
ever, the local averaging effect becomes less proﬁounced, and the
shear strengths field beneath each footing can vary more signifi-
cantly leading to greater differences between their respective
bearing capacity values. For a range of COVC":O.ZSfl, the maxi-
mum difference in the bearing capacities was observed to reach a
peak at about @, =4.

In the limit of @L.“—MO, the difference between the bearing
capacity of the two footings would tend to zero due to the random
field becoming more homogeneous within each realization,
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Concluding Remarks

The paper has described results from probabilistic analyses on
interference effects involving the bearing capacity of two parallel
rough rigid strip footings on fine grained undrained ($,=0) soil.
In this mainly qualitative study, the gap between the footings was
held constant at the footing width B, and parametric studies per-
formed to study the influence of COV, and O, on the bearing
capacity statistics.
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The probabilistic studies indicated that footing interference
generally increased the mean bearing capacity over the isolated
footing value, when the footings could be considered to support
separate structures. On the other hand, when the footings were
considered to be supporting a single structure, in which failure of
either footing could be considered failure of the whole, the esti-
mated mean bearing capacity due to interference was lower than
that of an isolated footing. In either case the difference from that
of an isolated footing on a random soil was no greater than 10%
for the range of parameters considered. Small differences such as
those observed are of little practical interest in the context of
bearing failure of fine grained undrained soils. This is especially
true in view of the high factors of safety generally used in bearing
capacity calculations.

The difference between the left and right footing bearing ca-
pacities was also investigated. The mean absolute difference was
influenced by both COV,. and ®C » however the results indicated
a critical value of ®, that led to a maximum differential bearing
capacity. For low and hlgh values of ®C » the difference fell due to
either local averaging or high correlations leading to a more uni-
form shear strength field beneath both footings.

In general, footing interference is significantly higher in fric-
tional soils than undrained soils, hence in a probabilistic context,
the trends observed in such a study will likely be much more
pronounced than those observed in this paper. The influence of
property variability in cohesive/frictional soils on geotechnical
analysis is an area of on-going research for the writers.
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Notation

The following symbols are used in this paper:

B = footing width;
cov,, = coefficient of variation of undrained shear
strength;
GOV, 5 = estimated coefficient of variation of bearing
capacity;
¢, = undrained shear strength;

N, = bearing capacity factor;

g; = bearing capacity;

9, = deterministic bearing capacity;

g5, = dimensionless spatial correlation of log
undrained shear strength;

0,,. = spatial correlation length of log undrained
‘ shear strength;
M, = mean of undrained shear strength;
g, = esti.matecl mean bearing capacity; .
P estimated mean absolute difference in the left

and right footing capacities;

o, = standard deviation of undrained shear
strength; and

O = estima.\ted standard deviation of bearing
capacity.
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