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Three-dimensional slope stability analysis by elasto-plastic finite
elements

D. V. GRIFFITHS* and R. M. MARQUEZ*

Slope stability analysis is one of the oldest applications in
geotechnical engineering, yet it remains one of the most
active areas of study in both research and practice. The
vast majority of slope stability analyses are performed in
two dimensions under the assumption of plane strain
conditions. Even when two-dimensional (2D) conditions
are not appropriate, three-dimensional (3D) analysis is
rarely performed. There are a number of reasons for
this. The majority of work on this subject strongly sug-
gests that the 2D factor of safety is conservative (i.e.
lower than the ‘true’ 3D factor of safety). Even when 3D
may be justified on geometric grounds, the available
methods, being often based on extrapolations of 2D
‘methods of slices’ to 3D ‘methods of columns’, are
complex, involve numerous assumptions, and are not
readily modified to account for realistic boundary condi-
tions in the third dimension such as sloping abutments.
The power and versatility of the elasto-plastic finite
element approach to slope stability analysis in 2D are
well known, and these advantages are even more attrac-
tive in 3D. The paper demonstrates some 3D slope
stability analyses by finite elements, placing the results in
context with 2D solutions and validating the results where
possible against alternative methods.

KEYWORDS: failure; limit equilibrium methods; numerical
modelling; plasticity; pore pressures; slopes

L’analyse de la stabilité des versants représente l’une des
plus anciennes applications en ingénierie géotechnique.
Elle reste pourtant l’une des disciplines d’étude les plus
actives, en recherche et en pratique. La grande majorité
des analyses de stabilité des versants est réalisée en deux
dimensions, en considérant des conditions de déformation
plane. Même lorsque des conditions à deux dimensions
ne sont pas adaptées, il est rare que des analyses à trois
dimensions soient effectuées, et ce pour un certain nom-
bre de raisons. La majorité des travaux à ce sujet
suggère fortement que le coefficient de sécurité 2D est
conservateur (c’est-à-dire inférieur au « vrai » coefficient
de sécurité 3D). Même lorsque des raisons géométriques
justifieraient la 3D, les méthodes disponibles, souvent
basées sur des extrapolations de « Méthode de coupes »
2D en « Méthode de colonnes » 3D, sont complexes,
s’appuient sur de nombreuses hypothèses et ne peuvent
être aisément modifiées pour tenir compte de conditions
de frontière réalistes en 3D, telles que des culées incli-
nées. La puissance et la versatilité de l’approche des
éléments finis en comportement élasto-plastique pour
l’analyse de la stabilité des versants en 2D sont bien
connues, et ces avantages sont encore plus prometteurs
en 3D. Cet article présente certaines analyses de stabilité
de versants en 3D en adoptant la méthode des éléments
finis, mettant les résultats en contexte avec les solutions
2D et les validant contre des méthodes alternatives lors-
qu’il est possible.

INTRODUCTION
Slope stability analysis remains an active and important area
of study for geotechnical engineers, both in practice and in
academia. The vast majority of slope stability analysis is
performed in two dimensions, without much consideration
being given to the appropriateness of that assumption, or the
impact that a more realistic three-dimensional (3D) analysis
would have.

There are a number of reasons for this apparent omission.
Most importantly, the two-dimensional (2D) factor of safety
is generally considered to be conservative (i.e. lower than
the ‘true’ 3D factor of safety), so practitioners are reluctant
to invest in the more time-consuming 3D approaches. A
further disadvantage of some 3D methods is that, being
based on extrapolations of 2D ‘methods of slices’ to 3D
‘methods of columns’ (e.g. Stark & Eid, 1998, Chen et al.,
2005), they contain many assumptions relating to side forces
that are not easily justified, and the methods are not readily
modified to account for realistic geometries and boundary
conditions in the third dimension such as sloping abutments.
Furthermore, in cases where the critical failure surface is

initially unknown, it is difficult to set up general algorithms
that would search for the critical failure surface, especially
in cases where it may not be spherical.

The assumption that 2D analyses lead to conservative
factors of safety needs some qualification, however. First,
a conservative result will be obtained only if the most
pessimistic section in the 3D problem is selected for 2D
analysis (e.g. Duncan, 1996a). In a slope that contains
layering and strength variability in the third dimension,
this ‘most pessimistic’ section may not be intuitively
obvious. Second, as pointed out by Arellano & Stark
(2000), the corollary of a conservative 2D slope stability
analysis is that back-analysis of a failed slope will lead to
an unconservative overestimation of the soil shear strength.
Although Hutchinson & Sarma (1985) and Hungr (1987)
have both asserted that the factor of safety in 3D is
always greater than in 2D, it cannot be ruled out that an
unusual combination of soil properties and geometry could
lead to a 3D mechanism that is more critical. Bromhead
(2004) argued that some landslide configurations with
highly variable cross-sections could lead to failure modes
in which the 3D mechanism was the most critical. Other
investigators have indicated more critical 3D factors of
safety (e.g. Chen & Chameau, 1982; Seed et al., 1990),
although this remains a controversial topic (see Table 1
later for a summary of recent papers).

The potential benefits of the elasto-plastic finite element
(FE) approach to slope stability analysis in 2D are well
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known, and were summarised by Griffiths & Lane (1999) as
follows:

(a) No assumption needs to be made in advance about the
shape or location of the failure surface. Failure occurs
‘naturally’ through the zones within the soil mass in
which the soil shear strength is unable to sustain the
gravitationally generated shear stresses.

(b) Since there is no concept of slices or columns in the
FE approach, there is no need for assumptions about
side forces and the consequent implications for local
and global equilibrium. The finite element method
preserves global equilibrium until ‘failure’ is reached.

(c) If realistic soil compressibility data are available, the
FE solutions will give information about deformations
at working stress levels.

(d ) The FE method is able to monitor progressive failure
up to and including overall shear failure in, for
example, an analysis involving sequential construction
of an excavation or embankment.

Thanks to the remarkable increase in computational power
and falling costs in recent years, meaningful 3D analysis can
now be performed on a conventional desktop or laptop
computer. A free 3D FE slope stability analysis program is
described in detail in the text by Smith & Griffiths (2004),
and can be downloaded from the web.y

While 2D and 3D slope stability analyses are not expected
to give significantly different results in many cases, the
availability of accurate and inexpensive software for 3D
analysis makes the use of 2D approaches for all cases harder
to defend. Perhaps the best justification for promoting 3D
analysis at this stage lies mainly in advancing the state of
the art. Three-dimensional analysis is more realistic in being
able to account properly for the fixity and geometry of
abutments in the third dimension. This leads not only to
improved accuracy, but also to a better understanding of the
fundamental nature of slope failure mechanisms.

RECENT ACTIVITY
It is fair to say that, at the time of writing, 3D slope

stability analysis is performed so rarely in practice that there
is no ‘standard’ method (analogous to Bishop’s method, say)
that is widely accepted by geotechnical engineers. There has

been significant activity in recent years on 3D analysis
techniques, however, with many of the methods based on
extrapolations of 2D analyses. Using a similar format to
Duncan (1996b), Table 1 provides a list of 3D slope stability
publications that have appeared in the last five years.
Although direct comparisons with 2D results were not
directly presented in all these papers, the overwhelming
majority either stated or implied that 3D analysis gave
higher factors of safety than 2D analysis, provided the most
critical cross-section was selected for the 2D analysis.

BRIEF REVIEW OF FINITE ELEMENTS IN SLOPE
STABILITY

The elasto-plastic FE method has been shown to be a
powerful alternative to conventional slope stability analysis
techniques (e.g. Smith & Hobbs, 1974; Zienkiewicz et al.,
1975; Griffiths, 1980). The first published FE slope stability
software was reported in the second edition of the text by
Smith & Griffiths (1988), and increased use of the method
by other researchers over the years (e.g. Kidger, 1990; Potts
et al., 1990; Matsui & San, 1992; Jeremic, 2000; Sainak,
2004) has now led to its inclusion in several proprietary
geotechnical software packages.

The FE program used in the present paper employs a 3D
analysis of elastic-perfectly plastic soils with a Mohr–Cou-
lomb failure criterion assuming zero dilation. Although any
3D FE could be used in principle, the current work utilises
20-node hexahedral elements with ‘reduced integration’
(eight Gauss points per element: see e.g. Zienkiewicz, 1977;
Hughes, 1987) in the stiffness matrix generation and stress
redistribution phases of the algorithm. This element was
chosen because it is the 3D counterpart of the 8-node plane
element used successfully by the authors and other investiga-
tors in the past to model 2D collapse problems.

It is well documented that the factor of safety of slopes
assuming elastic-perfectly plastic constitutive models is in-
sensitive to the construction sequence (e.g. Smith & Grif-
fiths, 2004). In the current study, therefore, stresses are
applied to an initially weightless FE mesh through the
generation of gravity loads that are applied in a single
increment. The stresses developed from the addition of
gravity are then compared with the Mohr–Coulomb failure
criterion. If the resulting stresses at a particular Gauss point
lie within the Mohr–Coulomb failure envelope then that
point is assumed to remain elastic. Alternatively, if the
stresses lie outside the failure envelope, yielding of that
point has occurred, and the non-linear parts of the algorithm
are activated. The resulting stresses in the yielding regions
are redistributed to neighbouring elements that still have
reserves of strength, using a viscoplastic algorithm (e.g.
Perzyna, 1966; Zienkiewicz & Cormeau, 1974). The algo-
rithm is iterative, since redistribution of stresses in one
yielding region may initiate yielding in neighbouring regions
that were initially elastic. This iterative process continues
until the formation of a failure mechanism consisting of a
contiguous zone of soil at failure.

Properties of soil model
To model the soil mass during the FE analysis, the

program utilises the six parameters shown in Table 2. The
key parameters are the total unit weight ª and the shear
strength parameters �9 and c9 (or �u ¼ 0 and cu in un-
drained analysis). For the examples presented in this paper,
the elastic parameters Young’s modulus and Poisson’s ratio
were assigned nominal values of 105 kN/m2 and 0:3 respec-
tively, for both drained and undrained analyses, as they have

Table 1. 3D slope stability methods

Authors Method

Chen et al. (2001) Upper-bound plasticity
Huang et al. (2002) Limit equilibrium
Chang (2002) Limit equilibrium
Chugh (2003) Finite differences
J. Chen et al. (2003) Limit equilibrium
Z. Chen et al. (2003) Upper-bound rigid FE
Farzaneh & Askari (2003) Upper-bound analysis
Xie et al. (2003) Limit equilibrium
Bromhead & Martin (2004) Limit equilibrium
Sainak (2004) Finite elements
Loehr et al. (2004) Limit equilibrium
Jiang & Yamagami (2004) Spencer’s method
Chen et al. (2005) Upper-bound rigid FE
Zhang et al. (2005a, 2005b) Extended Janbu
Chang (2005) Sliding blocks
Silvestri (2006) Analytical
Xie et al. (2006) GIS methods

† www.mines.edu/�vgriffit/4th_ed/Software
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little influence on the computed factor of safety (e.g.
Hammah et al., 2005).

In this work, the dilation angle ł was set to zero,
implying no volume change during yield. The role of the
dilation angle has been discussed in detail elsewhere (e.g.
Griffiths & Lane, 1999); however, the practical consideration
for all geotechnical limit analysis is that this parameter,
which affects volume change during plastic yielding, has
relatively little influence on collapse load predictions in
unconfined drained problems.

Obtaining a factor of safety
In traditional geotechnical practice the factor of safety is

defined as the ratio of the average shear strength of the soil
to the average shear stress developed along the critical
failure surface. Typically, a factor of safety of about 1.5 is
required for design.

Based on the above definition, the current approach is to
use a shear strength reduction technique in which factored
shear strength parameters c9f and �9f, given by

c9f ¼
c9

SRF
(1)

�9f ¼ tan �1 tan�9

SRF

� �
(2)

are used in the analysis, where SRF is a ‘strength reduction
factor’. In line with conventional slope stability analysis
methods, the strength reduction factor is assumed to apply
equally to both c9 and tan�9. In order to obtain the ‘true’
factor of safety the strength reduction factor is gradually
increased until failure of the slope, as described in the next
section, occurs. When this critical value has been found, the
factor of safety of the slope is equal to the strength reduc-
tion factor and FS � SRF.

Failure of the slope
In the program used in this study, slope failure is said to

have occurred when the algorithm cannot converge within a
user-specified iteration ceiling (typically set to 1000). If the
algorithm reaches the iteration ceiling it means that the
algorithm is unable to find a stress redistribution that will
simultaneously satisfy both global equilibrium and the
Mohr–Coulomb failure criterion with reduced strength para-
meters. At this point slope failure occurs, resulting in rapidly
increasing nodal displacements in the mesh. Fig. 1 shows a
typical graph of SRF against E9�max/ªH2 (a dimensionless
displacement), where �max is the maximum nodal displace-
ment component at convergence, and H is the slope height.

VALIDATION AGAINST 2D ANALYSIS
An initial step in validating the results was to compare the

results from the 3D analyses with those obtained by conven-
tional 2D limit equilibrium analysis. The example geometry
shown in Fig. 2(a) is of a homogeneous slope in which the
geometry and dimensions in the x–y plane are extended by

a distance L/2 (assuming symmetry) in the z direction. Fig.
2(b) shows typical coarser and finer meshes of 20-node
elements as used in this study. In both cases, the depth of
the mesh in the z direction was altered by simply adding or
removing ‘slices’ of elements in that direction.

The first slope analysed consisted of ‘undrained clay’ with
shear strength given by

�u ¼ 08,
cu

ªH
¼ 0:20 (3)

and elastic properties as indicated above.
The slope is inclined at an angle of 26.578 to the

horizontal (2:1 slope), and the boundary conditions are given
as ‘rough-smooth’ for the 3D analysis. Table 3 explains the
meaning of the various boundary conditions that can be
specified by the user. The ‘rough-smooth’ boundary condi-
tion implies a symmetric analysis about the plane z ¼ L/2:
thus only half of the actual depth L of the slope is analysed.
The bottom (y ¼ D ) and far side (z ¼ 0) of the slope are
fully fixed, while the back (x ¼ 0) and front side (z ¼ L/2)
of the slope are constrained by vertical rollers. The dimen-
sions of the slope analysed are given in Table 4. The depth
L of the slope is to be varied in the range H , L , 14H
(because of symmetry the actual mesh depth varied by half
this amount), enabling an investigation to be made of the
influence of three-dimensionality. Both the coarser and finer
meshes indicated in Fig. 2(b) were run to illustrate the
sensitivity of results to mesh refinement.

Table 5 shows results for the specific case of L ¼ 2H
(coarser mesh) as SRF was gradually increased. The table
shows seven trial strength reduction factors, ranging from
0.5 to 1.734.

The ‘Iterations’ column displays the number of iterations
needed for convergence. As the factor of safety is ap-
proached, the algorithm has to work harder to reach conver-
gence, as seen by the increase in the number of iterations.
When SRF ¼ 1.73 the analysis was unable to converge
within 1000 iterations, and a sudden increase in the dimen-
sionless displacement was observed. At this point FS �
SRF, and the factor of safety is given by FS � 1.73. The
results in Table 5 were the actual values plotted in Fig. 1.

Several 3D analyses were performed using both the
meshes indicated in Fig. 2(b). In addition, a conventional
limit equilibrium analysis was performed on the same cross-
section, giving a 2D factor of safety of FS ¼ 1.25. A
comparison of the 3D FE and 2D limit equilibrium analyses
is given in Fig. 3. The factor of safety in 3D was always
higher than in 2D but tended to the plane strain solution for
depth ratios of the order of L/H � 10. It should be noted

Table 2. Six-parameter soil model

�9 (�u) Friction angle
c9 (cu) Cohesion
ł Dilation angle
E9 (Eu) Young’s modulus
�9 (�u) Poisson’s ratio
ª Unit weight

0

0·01

0·02

0·03

0·04

0·05

0·06

0·07

SRF

FS 1·73�
Iterations

25
48

80

218

676

1000�

E
H

δ
γ

m
ax

2
/

0 0·5 1 0· 1·5 2 0·

13

Fig. 1. The rapid increase in the dimensionless displacement
along with non-convergence signifies slope failure, at which FS
� SRF
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that the finer FE mesh always gave slightly lower factors of
safety than the coarser mesh, but the difference never
exceeded 2%.

OTHER VALIDATION EXAMPLES
For further verification of the present method, a series of

3D analyses is now presented for comparison with results
obtained by various investigators using other 3D slope
stability techniques. The examples described are typically

quite simple, geometrically, and include relatively homoge-
neous material properties. It should be emphasised that these
simplifications are merely to validate the present approach
and facilitate comparison with other published results. The

H

W1

S

W2

L/2

z

x

y

D

(a)

(b)

Fig. 2. (a) 3D slope dimensions with uniform section and properties in the z direction;
(b) typical coarser and finer 3D meshes of 20-node hexahedral elements (L/H = 2)

Table 3. Description of 3D boundary condition

Plane Smooth-smooth Rough-smooth Rough-rough

x ¼ 0 Vertical rollers Vertical rollers Vertical rollers
x ¼ W1 + S + W2 Vertical rollers Vertical rollers Vertical rollers
y ¼ �D Fixed Fixed Fixed
z ¼ 0 Vertical rollers Fixed Fixed
z ¼ L Vertical rollers Vertical rollers

(z ¼ L/2 for symmetry)
Fixed

Table 4. Dimensions of slope for 2D and 3D analyses

D W1 S W2 L

1.5H H 2H H H ! 14H

Table 5. 3D results for L = 2H (coarser mesh) with an iteration
ceiling of 1000

SRF E9�max/(ªH2) Iterations

0.500 0.701 13
1.000 1.004 25
1.500 1.470 48
1.625 1.645 80
1.6875 1.845 218
1.7188 2.217 676
1.7344 2.855 1000+
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FE approach described herein requires no such simplifica-
tions, since complex geometries and material variability are
easily implemented.

Baligh & Azzouz (1975)
In this example a 3D slope was considered as shown in

Fig. 4, in which Baligh & Azzouz (1975) suggested a
spherical failure surface. From the radius of the sphere, a
suitable out-of-plane dimension for the FE mesh was de-
duced that would force a mechanism in the same general

region. In view of the symmetry, ‘rough-smooth’ boundary
conditions were used, as described in Table 3. It should be
noted that the spherical failure surface does not necessarily
represent the critical failure mechanism: thus in a less
confined mesh the FE approach might find a more critical
failure path. The results from the FE analysis in the present
study, together with results obtained by several other investi-
gators who considered the same slope, are summarised in
Table 6. The deformed mesh corresponding to the uncon-
verged solution when SRF ¼ 1.39 is shown in Fig. 5.

Zhang (1988)
The example shown in Fig. 6 is taken from Zhang (1988)

and has been used by various investigators as part of the
validation of their particular 3D slope stability methods (e.g.
Lam & Fredlund, 1993; Huang & Tsai, 2000; J. Chen et al.,
2003). The proposed critical slip surface from limit equili-
brium considerations was circular in the x–y plane and
ellipsoidal in the out-of-plane direction, which indicated
suitable 3D mesh dimensions. Symmetry implied the use
once more of ‘rough-smooth’ boundary conditions.

The problem was analysed for two different cases. In Case
1, the slope is composed of a drained homogeneous soil.
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Fig. 3. Comparison of 3D FE and 2D limit analyses for �u = 08
slope with cu/ªH = 0.20
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Fig. 4. Plan and section of 3D failure surface in purely cohesive
slope as reported by Baligh & Azzouz (1975)
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Fig. 6. Cross-section of 3D slope reported by Zhang (1988)

Table 6. Comparison of 3D results (FS) for the slope in Fig. 4

Baligh & Azzouz (1975) Hungr et al. (1989) Huang & Tsai (2000) Present study

1.402 1.422 1.399 1.39

Rough

Smooth

Fig. 5. Undeformed and ‘failed’ FE meshes for example shown in Fig. 4
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The resulting factor of safety of 2.17 from the present study
is comparable to those obtained by other investigators, as
seen in Table 7. The results found using the package
CLARA (Hungr, 1988) were obtained by the authors. Fig. 7
shows the undeformed and ‘failed’ meshes for this analysis.
It can be seen that the failure mechanism is similar to that
described in Fig. 6.
Case 2 has the same slope geometry, but includes a

weak layer in the foundation of the slope (e.g. geosyn-
thetic layer). Chen et al. (2001) used their upper-bound
approach to analyse the slope, while a limit equilibrium
analysis was used by Chen et al. (2003a). The present
study yielded a factor of safety of 1.58, which again is in
the vicinity of those provided by other investigators, as
shown in Table 8. Fig. 8 shows that the failure mechanism
concentrated itself along the weak layer, giving a lower
factor of safety, as would be expected. Fig. 9 shows the
curves of dimensionless displacement against SRF for both
cases.
For the relatively simple validation examples shown here,

the computed FE results lay well within the quite narrow
range of values obtained by other investigators.
The main power of the FE method, however, lies in its

ability to deal with more complicated geometries, boundary
conditions and property variability. With the confidence
gained through the validation examples, the final part of
this paper introduces more realistic boundary conditions
and examines their influence on the computed factor of
safety.

INFLUENCE OF SLOPING SIDES
All the examples considered so far had vertical boundaries

in the out-of-plane direction. In geotechnical practice it is
clearly more likely that these boundaries will be inclined to

Table 7. Comparison of 3D results (FS) from various investigators for Case 1 of Zhang
(1988) example

Zhang (1988) Chen et al.
(2001)

Chen et al.
(2003)

CLARA Present study

2.122 2.262 2.187 2.167 2.17

Rough

Smooth

Fig. 7. Undeformed and ‘failed’ FE meshes for Case 1 of Zhang (1988) example

Table 8. Comparison of 3D results (FS) from various investigators for Case 2 of Zhang
(1988) example

Zhang (1988) Chen et al.
(2001)

Chen et al.
(2003)

CLARA Present study

1.553 1.717 1.603 1.620 1.58

Rough

Smooth

Weak layer

Fig. 8. ‘Failed’ FE mesh for Case 2 of Zhang (1988) example
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Fig. 9. Dimensionless displacements for Cases 1 and 2 of Zhang
(1988) example
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the horizontal, as would be the case at the abutments of an
earth dam.

In order to accommodate these changes, a geometry
subroutine was developed (Marquez, 2004) to allow the
inclination of the side slopes to be controlled through the
input data. With this modification, the vertical sides consid-
ered earlier can be considered as a special case.

Parametric studies
To help understand the influence of sloping sides a series

of tests and comparisons was made. Fig. 10 shows the
parameters involved in defining the sloping geometry. In the
examples that follow either l1 or l2 was held constant while
Æ was varied, with other dimensions fixed to the values
given in Table 9. The boundary conditions in this case were
‘rough-smooth’, with the sloping boundary fully restrained
(rough) and the vertical boundary allowed to move freely in
the vertical plane (smooth). This analysis implies symmetry,
so the actual depth of the embankment modelled was twice
the depth of the mesh in the third dimension.

Top depth l1 held constant
When l1 is held constant and Æ is increased, it can be

expected that the calculated factor of safety will increase.
As Æ is increased, the soil mass begins to sit more on the
abutment or canyon wall. The slope also becomes more
confined, resulting in added stability. Two examples were
developed, one with l1/H ¼ 0.833 and the other with l1/H ¼
1.67. The results for the calculated factor of safety for the
two problems can be seen in Fig. 11. It can be seen that the
factor of safety for the narrower (l1/H ¼ 0.833) slope is
greater than that of the deeper slope (l1/H ¼ 1.67). The data
also show that the influence of Æ on the slope decreases as
the slope becomes wider. This indicates that 3D effects are
much more important in narrow slopes than in deep slopes.

Bottom depth l2 held constant
Another comparison was completed by holding l2 constant

and varying Æ. This time, as Æ is increased, it can be
expected that the calculated factor of safety will decrease.
When l1 is increased, the soil mass becomes less confined
and a failure mechanism can develop more easily. Increasing
Æ in this case results in a less stable slope, with a summary
of results shown in Fig. 12.

The 2D result is included in both sets of analyses,
emphasising the conservativeness of a ‘plane strain’ analysis
performed at the centreline.

Comparing the results obtained from various trials, it can
be seen that the depth of the slope (out-of-plane) and the
side slope inclination both have a significant influence on
the calculated factor of safety.

INFLUENCE OF VARIABLE STRENGTH
The first example of variable strength involves an un-

drained clay (�u ¼ 08) with dimensions given in Table 10.
The slope is constructed with a ‘strong’ soil (cu/ªH ¼
0.263) near the abutments surrounding a ‘weak’ soil (cu/ªH
¼ 0.132) in the central parts of the slope. Sloping sides
were included in the analysis with l1/l2 ¼ 2 and Æ ¼ 298.
Since the slope was no longer symmetrical (the side slope
angle on either side differs, as seen in Fig. 13(a)), the
boundary conditions used are now ‘rough-rough’. The analy-
sis was performed, and the corresponding deformed mesh at
failure is shown in Fig. 13(b). The 3D factor of safety was
computed as 1.42, while the 2D analysis based on the
weaker soil in the centre of the slope gave a factor of safety
equal to 0.81.

The second example is similar to that in Fig. 13. The
example again assumes undrained soils (�u ¼ 0) with
dimensions given in Table 11. The strong soil (cu/ªH ¼
0.263) is once again surrounding the weaker soil (cu/ªH ¼
0.132). The top of the slope l1 was held constant, with the
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Fig. 10. 3D sloping side geometry
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Fig. 11. Results for constant l1 with �9 = 208, c9/ªH � 0.127 and
rough-smooth boundary conditions
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Fig. 12. Results for constant l2 with �9 = 208, c9/ªH � 0.127 and
rough-smooth boundary conditions

Table 9. Dimensions for analyses with sloping sides

D W1 S W2

1.5H H 2H 0.66H

Table 10. Dimensions for the slope in Fig. 13 (see Fig. 10)

D W1 S W2 l1 l2

1.5H H 2H 0.667H 2.5H 1.25H
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bottom of the slope l2 decreased to give a ratio of l1/l2 ¼ 3
and Æ ¼ 35.88, as shown in Fig. 14(a). The boundary
conditions used were again ‘rough-rough’. The 3D factor of
safety in this case was computed as 1.50, which should be
compared with the unchanged 2D factor of safety of 0.81.
The deformed mesh at failure is given in Fig. 14(b). A
higher 3D factor of safety in this case is to be expected
because of the greater confinement of the soil mass provided
by the increase in the l1/l2 ratio. This is a similar effect to
that demonstrated in Fig. 11.
The final example, shown in Fig. 15, utilises symmetry

(‘rough-smooth’ boundary conditions): thus only half the
problem is analysed. The slope consists of undrained clay
(�u ¼ 0) with dimensions given in Table 12. In this case,
the strength decreases linearly from cu/ªH ¼ 0.219 at the
abutments to cu/ªH ¼ 0.132 at the centreline. The 3D factor
of safety in this case is computed as 1.30, and should be
compared with the usual 2D factor of safety of 0.81 at the
centreline. The 3D deformed mesh at failure is given in Fig.
15(b). The difference between the 2D and 3D results is still
significant but not as pronounced as when there was a step
change in strength.

CONCLUDING REMARKS
The FE technique for slope stability analysis has grown

significantly in popularity in recent years, owing to its power
and versatility. The benefits of the FE approach to 2D slope
stability analysis are well documented; however, these ad-
vantages over traditional limit equilibrium approaches are
even more important in 3D owing to the ease with which
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Fig. 13. Finite element mesh displaying a non-symmetric slope
with weak soil (c9/ªH = 0.132) surrounded by stronger soil (c9/
ªH = 0.263)

Table 11. Dimensions for the slope in Fig. 14

D W1 S W2 l1 l2

1.5H H 2H 0.667H 2.5H 0.833H
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Fig. 14. Finite element mesh showing a more confined slope
with weak soil (c9/ªH = 0.132) surrounded by stronger soil (c9/
ªH = 0.263)
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Fig. 15. Finite element mesh with linearly decreasing soil
strength

Table 12. Dimensions for the slope in Fig. 15

D W1 S W2 l1 l2

1.5H H 2H 0.667H 2.08H 1.25H
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complex geometries, boundary conditions and property var-
iations in the out-of-plane direction can be introduced. The
paper has presented results from several 3D slope examples
using an elasto-plastic FE approach. Results were validated
against conventional 2D limit equilibrium analyses of a
homogeneous slope and demonstrated the convergence of the
3D factor of safety on the 2D result as the out-of-plane
dimension was increased. Further examples demonstrated the
influence of boundary conditions and confinement in the
form of sloping abutments and embankment depth. Finally,
some examples were presented that introduced variable
strength parameters across the slope in the out-of-plane
direction.

While it seems unlikely that 3D slope stability will
become a routine approach in geotechnical practice any time
soon, the increased speed and falling costs of computers
mean that 3D non-linear FE analyses can now be performed
routinely on a desktop or laptop computer. Perhaps the best
justification for promoting 3D analysis at this stage lies
mainly in advancing the state of the art. Three-dimensional
analysis is simply more realistic, and leads not only to
improved accuracy but also to a better understanding of the
nature of slope failure mechanisms.
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