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ABSTRACT

The critical height of vertical excavations in both plane strain and
axisymmetry has been considered using finite element analysis incorporating
plasticity theory. The numerical solutions obtained are found to compare
favourably with values from centrifuge tests and T1imit analyses. The
results are presented in a form which shows the variation of the stability
number at failure with the height/width ratio of the excavation. Graphical
output is also included to emphasise the changing mechanisms as this ratio
varies.

INTRODUCTION

The stability of slopes in soft homogeneous clay in undrained shear was
one of the earliest soil mechanics problems. Tay]orl presented charts for
estimating the stability of slopes in plane strain expressed through a
stability number N, where -

N=M (1)
Cu

Referring to figure la, vy and Cu represent the saturated unit weight
and undrained shear strength of the soil. The stability number represents
the combination of material properties and slope geometry to just cause
failure. The stability of a vertical excavation in plane strain may also be
obtained from Taylor's chart by considering a slope inclined at 90° to the
horizontal.

Limit analyses, such as those of Pastor’ and Heysnan3 are in close
agreement with Taylor and show that the stability number of a vertical
excavation in plane strain must lie in the range -

3.635 < N < 3.835 (2)
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Fig.1 Geometry of excavations

For trench excavations, such as that in figure 1b, the width of the
trench is not normally thought to have a large effect on the stability
number in plane strain. For the circular excavation of figure 1c, however ,
the stability number has been shown to rise? as the H/r ratio increases.

The intention of this paper 1is to report on some numerical studies
performed on vertical cuts in both plane strain and axisymmetry.
Particularly of interest is the effect that the ratios H/B and H/r
(figs. 1b and lc respectively) have on the stability number.

Solutions to similar problems obtained by other authors using limit
analyses, numerical analyses and centrifuge tests are referred to for
comparison.
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NUMERICAL SOLUTION TECHNIQUE

Finite element discretisation of the vertical cut problem used 8-noded
quadrilateral elements with "reduced" integration although as a check some
of the axisymmetric cases were repeated using l5-noded triangles.

A gravity turn-on procedure was used which resulted in a set of
"consistent" nodal forces obtained from the expression -

F =3 INT dv for all elements (3)

Elastic, perfectly plastic material behaviour was assumed with a Tresca
failure criterion. . The non-linear material behaviour was$ introduced
numerically using a viscoplastic a1gorithm5. This technique has been shown
to be an efficient and reliable method® for solving plasticity problems in
geomechanics. In this case, viscoplasticity has the added advantage that
the gravity loads can be applied in one increment whereas other techniques,
such as initial stress methods, require the loads to be applied in several
steps.

Failure of the system was initiated by gradually reducing the undrained
strength C, until a sudden increase in the magnitude of plastic strains was
recorded. This was usually accompanied by an equally sudden rise in the
number of iterations required for convergence. It may be noted that due to
the dimensionless nature of the stability number, it would be equally valid
to keep the undrained shear strength constant and gradually increase the
unit weight of the soil, much as would be done in a centrifuge test.

In the present work, it was decided to keep the unit weight and
dimensions of the problem constant while reducing the strength. This means
that the gravity loads vector needs to be generated once only, and these
integrations were conveniently carried out simultaneously with the stiffness
matrix formulation.

Having obtained the gravity loads vector, an initial "guess" for the
value of C, was made. This value of C, was then reduced, at first using
fairly crude steps, with a full elasto plastic analysis performed for
each. During this process, the number of iterations required for
convergence and the magnitude of the plastic displacements were monitered.
Once the value of C, to cause failure was determined to fairly narrow limits
the process was repeated within these limits, but using much more refined
steps.

The gravity turn-on procedure was checked on a column of material of
height H and unit weight v (figure 2). As the problem was one-dimensional,
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with no shear stress developing, the surface settlement was expected to be
uniform, and given by -

H
:S=mjcdz (4)

= (1+v) (1-2v)
E(l-v)

where o, = ¥ and m

Integration of equation (4) gives

s = (1+v)(1-20) H2
v 2E(1-v)

and this value was closely reproduced by the finite element procedure under
both plane and axisymmetric strain conditions.

The majority of the analyses were performed using a Young's modulus of
10° kN/m2 and Poisson's ratio of 0.45, although some brief parametric
studies were made to investigate their influence, if any, on failure.
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Fig.2 Mesh for checking gravity loads

RESULTS AND DISCUSSION

1. PLANE STRAIN CONDITIONS

The geometry and boundary conditions imposed for the finite element
analyses are fillustrated in figure 3. The influence of so0il thickness
beneath the excavation has been considered by Cascini’/. It was found that
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N-values at failure were hardly changed for H/D < 1 so H/D = 1 has been
adopted for the present work. For Tateral boundaries, it was found that if

they were placed at least 1.5H from the vertical face, then Tlittle
interference was apparent.

N=- ¥H
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Fig.3 Boundary Conditions

Fully restrained

Firstly, the influence of mesh refinement was examined using the meshes
of figure 4 with the computed stability number at failure plotted in
figure 5. It can be seen that in this case, a four-fold increase in the
number of degrees of freedom does not have great effect, but as expected the
solution has been improved from the upper-bound side.

Plastic displacement vectors at failure for mesh B are shown in
figure 6 and it is apparent that for this particular geometry, the mechanism
is confined almost exclusively to the wall of the excavation. The failure
mechanism is what Taylor would have called a 'toe failure'.

As the cohesion is reduced there is, at first, a gradual increase in
deformation but, eventually, a lower bound on the value of C; is reached
where the displacements increase considerably. Figure 7 shows the variation
of plastic displacements with cchesion for mesh B.  When using a large
cohesion of 67.5 kN/mz, the mesh remained essentially elastic but subsequent
reduction of the shear strength resulted in failure at C, = 35.9 kN/mz.

Further analyses of plane strain stability were performed on the more
confined meshes of figure 8 in order to observe the effect of the H/B
ratio. Practically no variation in the stability number was observed as
this ratio was increased. As shown in figure 9, the mechanism of failure
was still confined to the wall of the excavation, with 1ittle heave of the
base.
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In general, problems of plane strain slope stability are highly
amenable to elasto-plastic finite element analyses of the type described
herein. Reports of similar analyses for frictional soils®:8 have also given
results in close correspondence with more traditional slope stability

methods. Hm.‘
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Fig.9 Failure displacement vectors in plane strain (H/B = 4)

2. AXISYMMETRIC CONDITIONS

The greater confinement imposed by axisymmetric conditions and the
corresponding restraint this has on plastic flow, results in generally
higher stability numbers than are observed in plane strain. The effect of
the H/r ratio on stability of circular excavations has been discussed by
Britto and Kusakabe® on the evidence of centrifuge tests. For small values
of the ratio, the problem approximates to plane strain conditions, but as
the ratio is increased so does the stability number. The observed variation
was found to be related to the form of the failure mechanism. For
H/r < 2 a similar wall mechanism to that observed in plane strain was
obtained. For 2 < H/R < 7, the mechanism was still confined mainly to the
wall, but with more curvature and activity towards the base. For higher H/r
values, the mechanism extended fully into the base of the excavation. The
base mechanism proposed, however, seemed to overestimate the stability of
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the excavation and this was thought to be due to the need for the mechanism
to extend fully from the base to ground level. Field studies by Bjerrum and
Eide? have suggested a more Tocalised failure mechanism which could be
approximated by Skempton's10 bearing capacity factor for deep circular
foundations. A summary of the proposed upper bound as a function of H/r is
given 1in figure 10. Some other solutions are also included in this
figure. For example, for H/r = 1, Pastor and Turgeman11 obtained an upper
bound of N = 5.298 and for the same geometry, Pastorl? presented a lower
bound of N = 3.464. Using finite element analysis, Sloanl3 obtained a
stability number of 7.7 for H/r = 4, and Britto and Kusakabel? reported
values of 6.6, 8.12 and 8.12 for H/r equal to 2, 7 and 9 respectively.
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Fig.10 Upper bound and F.E. solutions for the circular excavation

Using the meshes of figure 8 1in an axisymmetric elasto-plastic
analysis, a range of H/r ratios were considered. As before, the shear
strength Cu was gradually reduced until a sudden increase in plastic
deformation was observed and these results are also given in figure 10.

A1l the values lie close to the upper-bound sclution proposed by Britto and
Kusakabed. A typical plot of plastic displacement at failure shear for
H/r = 4 is given in figure 11. The constrast with figure 9 for the plane

strain case is striking and reflected in a stability number some 90% higher.
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Finally, a study was made of the effects of element type on the results
achieved in axisymmetry. An element that has been recommended for problems
of incompressible plastic flow in axisymmetry is the 15-noded triang1e15
with 16 integration points. A typical mesh is shown in figure 12a. The
analyses proceeded exactly as before except due to the larger bandwidths an
'out of core' solver was required for the equilibrium equationslﬁ. Very
similar stability numbers to those computed previously were obtained. For
comparison, the displacement vector plot at failure for the mesh with
H/r = 4 is shown in figure 12b.

Although barelling of quadratic elements with reduced integration can
occur in crude finite element meshes, evidence produced in this paper and
elsewherel’ suggests that this has Tittle impact on failure loads. Although

the eight-node element with reduced integration axisymmetry only satisfies
plastic incompressibility at its Gauss-points, any reasonably refined mesh
will have sufficient Gauss-points to provide an adequate discretisation.
Finally, some brief analyses were performed on the non-homogeneous case
in which the shear strength of the soil increased 1inearly with depth. This
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problem has been considered analytically by Davis and Booker!8 and
physically modelled in the centrifuge by Britto and Kusakabel4. The
notation of the Tatter authors is preserved here.

Using the axisymmetric meshes of figure 8 the shear strength at each
Gauss-point was made proportional to its distance below ground level. Two
different rates of increase of shear strength were considered as shown in
figure 13 and failure was achieved by keeping k constant and gradually

reducing C,q4. Excellent agreement with the centrifuge solutions was
recorded.
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Fig.13. Notation and solutions for non-homogenous soil
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CONCLUSIONS

Elasto-plastic finite element methods have been used to analyse the
short term stability of vertical excavations in undrained clay. \Using a
gravity turn-on procedure, failure was finduced by keeping the geometry and
soil unit-weight constant while gradually reducing the shear strength.
Using this approach, both the stability number at failure and the mechanism
were indicated. In plane strain the stability number was in close agreement
with the classical solutions of Taylor with the mechanism confined mainly to
the wall of the excavation. It was also found that stability was hardly
influenced by the excavation width. In axisymmetry, however, the stability
number tended to rise with reduced excavation width and thus was in
agreement with other solutions obtained by 1imit analyses, finite elements
and centrifuge tests. The stabilising effect of reducing the excavation
width was due to the mechanism extending fully into the base. The
displacement vector plots showed this clearly, with movements at failure in
axisymmetry being more localised around the base of the excavation than was
observed in plane strain.

The influence of the elastic properties of the soil on the computed
stability number at failure was found to be minimal. Young's modulus had no
effect although as Pofsson's ratio approached the incompressibility limit of
0.5, a stiffening of the soil response prior to failure was apparent.

The finite element procedures described here have been shown to give
reliable estimates of the stability number at failure for both plane strain
and axisymmetric configurations. The results have shown that the method can
reproduce, with sufficient accuracy, %nown solutions for homogeneous
soils. The particular power of the method, however, lies in the ease with
which non-homogeneous soil strata can be analysed with no 'a priori'
assumption necessary regarding the eventual failure mechanism.

The finite element method therefore remains a powerful tool for
assessing the stability of ‘awkward' slopes that are not amenable to
analysis by simple methods.
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