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Computer algebra systems (CAS) are powerful tools for obtaining analytical expressions for many
engineering applications in both academic and industrial environments.

CAS have been used in this paper to generate exact expressions for the stiffness matrix of an 8-node plane
elastic finite element. The Maple software system was used to identify six basic formulas from which all the
terms of the stiffness matrix could be obtained. The formulas are functions of the Cartesian coordinates of
the corner nodes of the element, and elastic parameters Young’s modulus and Poisson’s ratio.

Many algebraic manipulations were performed on the formulas to optimize their efficiency. The redaction
in CPU time using the exact expressions as opposed to the classical Gauss-Legendre numerical integration
approach was over 50%. In an additional study of accuracy, it was shown that the numerical approach could
lead to quite significant errors as compared with the exact approach, especially as element distortion was
increased. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 24: 249-261, 2008
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I. INTRODUCTION

The finite element method (FEM) is the most popular tool for mathematical-sis of engineering
and applied sciences problems in both academic and industrial environments. Generation of finite
element stiffness matrices is usually carried out by numerical integration (Gaussian—Legendre
quadrature) over the plane of each element. In the case of a nonlinear dynamic-sis for example,
the user may be called upon to reform the element stiffness matrices for each element at each time
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a finite element development environment based on the computer software Mathematica. The
environment is used to automatically program standard element formulations and develop new
elements with novel features.

Mbakogu and Pavlovi [20] discussed a variational solution obtained symbolically for the analy-
sis of clamped plates. Also, Pavlovi [21] presented an extensive compilation on symbolic analysis
of some structural engineering areas. Fields such as finite elements and variational techniques
are treated using symbolic manipulation. Felippa [22] presented a set of Mathematica modules
of numerical integration rules, which are then used considered for symbolic finite element work.

More recently, Lozada et al. [23] have obtained semianalytical expressions to compute the stiff-
ness matrix of an 8-noded plane elasticity superparametric finite element. The authors reported
savings of 37% in CPU times.

This work presents and discusses the exact integration of the stiffness matrix of an 8-node
plane elastic superparametric finite element. The technique developed here in could be extended
to other types of elements and strain conditions (i.e., axisymmetric or 3D).

Il. SYMBOLIC APPROACH: FORMULATION AND IMPLEMENTATION

In what follows a brief summary of the FEM formulation for plane elasticity is included. The
finite element shown in Fig. 1 is a superparametric 8-node plane elastic element, displayed in
both Cartesian and local coordinate space.
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FIG. 1. 8-node plane superparametric element.
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Now, a typical submatrix K, ; is written as

| BN BN +1 an; ONj 1 AN ONj 1 aN; N}
dx dx (l—u) 2 ay dy dx (?y (l u) 2 dy dx
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Now, the computation of the stiffness terms of the finite element is carried out with Maple,
by generating automatic procedures for each stiffness term. These expressions are grouped into
terms having the nodal coordinates as well as the elastic parameters of the element.

Equation (7) was obtained for plane stress problems however the user can easily convert to
plane strain conditions by replacing —— = U) and 7= U) by + =5 m and respectively.

A typical Maple input procedure is shown below:

(1 2v)

fl:=proc(i,j,X.Y)

option inline;
DNODO[][X]*DNODO[j][X]+DNODO[][Y]*DNODO[I[Y]*(1/2-v/2)
end proc

Then, we are now able to identify six Characteristic Basic Equations (CBEs), as a function of the
local coordinates &, n which are used to generate all the terms of the stiffness matrix. The index
“i”” in equation (8) stands for the number of the CBE being used (i = 1,...,6).

In what follows, the six CBE formulas obtained in this work are presented, as well as the
stiffness matrix terms generated by each CBE. Because of the symmetry of the stiffness matrix,
only 136 terms need to be calculated (16*(16 4 1)) /2.

In all CBE equations, the terms AKm(j), BKm(j), CKm(j), etc. are constants depending
upon element Cartesian coordinates and elastic properties. The letter “m” indicates the number of
the CBE equation (m = 1, ...,6), while the index “;” indicates the stiffness term to be obtained.
For instance, in CBE1 group, by setting j = 1 we w1ll obtain ky;, j = 2 will lead to k;, and
SO on.

In that follows, the CBEs are identified (see the Appendix for detailed expressions of CBEs):

CBE]I: interaction between DOF of corner nodes
The 36 stiffness terms (j = 1, ...,36) generated by CBE1 are

kiy kio kis kiakis ki ki kig Koo Kos ko kas kog kog kog kaa ksg kas
kse ks kg kas kas ks ko kag kss ksg ks ksg kee ke kes k77 k7g ksg

CBE2: interaction between DOF of corner nodes with even mid-side nodes
The 32 stiffness terms (j = 1,...,32) generated by CBE2 are

kl,]l Ikl,lZ k2,ll k2,12 kB,II k3,12 k4,11 Ikl,]Z kS.ll kS‘IZ kﬁ,ll k6,12 k’?,ll k?,lZ k&ll kS,lZ
kll,5 kll.ﬁ k2,15 k2,16 k3,15 k3.l() k4,15 kﬂl‘lﬁ kS,lS k5‘16 k6,15 k?,lS k?,lﬁ k8,15 k&]ﬁ
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FIG. 2. Stiffness terms computed by each of the six CBEs.

of the very large size of the K, only a fraction of it is included herein:

KG,j, ) =—LIKG, j)CI*BI*AJ’ + DK, j))CJ BJ*AJ* + LFK (i, ))CJBJ*AJ*

—IBK(i, j)CJ*BI*AT* + (- AK (i, )CT*BJ*AJ’ + £DK(, j)CI*BJ*AJ’

—3LBK(i, j))CJ*BJ®AJ — £BK(i, j)CJ*BJ*AT + SHK (i, j)AJ"’cﬂ In(AJ +BJ +CJ)
+L1EK(i, j)AJ'BJ*In(AJ — BJ + CJ) — 20K (i, j))AI*CJ’ In(—AJ — BJ + CJ)
+iPKG, NATBIPCIIn(—AJ +BJ +CI)--- (12)

The expressions obtained for each term of the stiffness matrix were optimized by simplifying and
post processing the expressions. Duplicated and similar operations were deleted, as well as any
other unnecessary calculations. In this way, the CPU time required to compute the stiffness terms
was reduced significantly, as shown in the next section.

lll. ACCURACY AND INTEGRATION TIMES

To test the accuracy and efficiency of the analytical formulations described in this paper, compar-
isons were made with results obtained using both 2 x 2 (“reduced integration™) and 3 x 3 Gauss—
Legendre quadrature. The relative error between results obtained by numerical and analytlcal
integration was measured by using an error formula of the form:

anaiyncal - K ya_umerical)

ERROR = ‘/Z“ l n analytical
Zr J=1 IK |

(13)

Comparisons were made on an 8-node element, which was increasingly distorted by moving
node 3, 6, and 7 (nodes 1, 2, 4, 5, and 8 are fixed) further and further away from node 1, as shown
in Table I.
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The limit case when the 8-node element is degenerated to a triangle yielded, as expected,
singular values of the integrals.

Regarding the computation times, it can be noted that the relative error increased with ele-
ment distortion CPU savings, of approximately 50% were also obtained using the analytical
formulation.

Table Il reports these comparisons, by considering meshes consisting of up to 1 million elements
using 3 x 3 Gaussian rule.

Figure 3(a,b) show two cantiliver beams discretized following the McNeal-Harder Test cases
[24].

A comparison of numerical results against analytical results in the McNeal-Harder test were
performed and reported in Table II1.

Axial and shear loading on a simple cantilever beam was analyzed, using two rather distorted
elements with aspect ratios of approximately 28:1 as shown in Fig. 4.

A comparison of the displacement § (horizontal in axial loading and vertical in shear loading)
at the end of the beam by analytical integration, numerical integration, and exact beam theory is
shown in Table IV.

As it can be observed in Table IV, the axial force case is integrated almost exactly by using
both 2 x 2 and 3 x 3 Gaussian rules. However, in the shear force case, important numerical errors
are obtained when using the 2 x 2 rule (25%), while the 3 x 3 rule leads to an error of 4.9%. Also
note that, as expected, the analytical integration developed in this paper provides the same results
as predicted by structural beam theory.

Two more practical engineering examples are now considered where accuracy relating to dis-
placements and stresses by both numerical and analytical integration is compared. Figures 5

TABLEIIL. Comparison between analytical and numerical results corresponding to cases shown in Fig. 3.

AXIAL SHEAR
Sanaly/ 8 Anaty/ Sanay/ Spnaty/ SAnaty/ Sanaty/
CASE 8ax2) 83x3) deory d2x2) d3x3) STeory
Figure 3.a 1.0001 1.0000 1.0000 0.9069 0.9998 1.0000
Figure 3.b 1.0001 1.0000 1.0000 0.7114 0.9994 1.0000
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FIG. 4. Simple cantilever beam subjected to axial and shear forces.
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TABLE V. Nodal displacement and element stresses comparison: numerical and analytical integration.
2. %2 3x3 4 x4

Numerical Analytical Numerical Analytical Numerical Analytical

Earth dam

Nodal displacement 0.126E—3 0.121E—3 0.121E-3 0.121E—3 0.121E—3 0Q.121E—-3
at node A v 0276E—4 0285E—-4 0285E—-4 0285E—-4 0285E—4 0285E—4

Stresses gy —0137E+1 —0124E+1 —0257E+1 —0222E+1 —0274E+1 —0274E+1

gy 0174E+4+1 0.196E+1 0.191E+1 0211E+1 0219E4+1 0219E+1

Quarter-plate with elliptical hole
Nodal displacement u  0320E—1 0308E—1 0304E—1 0308E—-1 0304E—1 0.308E-1
atnode B v —0786E—-2 —0805E—2 —0804E—2 —0.805E—2 —0804E -2 —0.805E—2
Stresses o 019%4E+4 019E+4 0290E+4 0293E+4 0341E+4 0345E+4
gy —0546E+3 —0469E+3 —~0531E4+3 —0589E+3 —0579E+3 —0.580E +3

The same behavior is observed in element stresses at selected Gauss points, belonging to one of
the elements adjacent to selected nodes (A or B).

IV. CONCLUDING REMARKS

This research was oriented towards the generation of the stiffness matrix of an 8-noded plane
elasticity finite element in a fully analytical way. The main goal was to reduce substantially the
integration (CPU) times, which is a subject of concern when dealing with very large FEM meshes,
especially in the case of dynamic non-linear analysis. Some of the most relevant conclusions are
reported below:

* Six CBEs were obtained to compute analytically the 136 stiffness terms of the 8-node plane
element.

* The savings in CPU time of the order of 50%.

» The analytical integration guarantees accuracy, even for distorted elements.

¢ The “hand-postprocessing” of the CBEs analytical formulas generated by CAS is essential
in order to reduce even more the integration times, CAS software produces well-posed for-
mulas but many repeated operations (as well as unnecessary operations) were found in them.
These operations could be removed by hand, thus improving not only the CPU time, but also
leading to a reduction of the analytical code size.

* CAS software was able to output the complex analytical expressions directly into a high-level
programming language, such as Fortran.

APPENDIX: CHARACTERISTIC BASIC EQUATIONS (CBEs)

CBEI: interaction between DOF of corner nodes

CBEl = ((AK1(j)&* + BK1(j)§ + CK1(j)n* + (DK1(j)&* + EK1(j)€> + FK1(j)E
+GKIGNT + (HK1(NE + TK1(j)E® + TK1(j)E + KK1(j)E + LK1(j)n’
+ (MK1(j)E* + NK1())E® + OK1(j)E* + PK1(j)e)n + (QK1(j)E*
+ RK1(j)E* + SK1(j)EM)/ 1
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