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Introduction

One of the fundamental ingredients of numerical implementation
of plasticity models in geomechanics is numerical integration of
the constitutive equations. This integration is carried out locally at
each Gauss point in typical finite-element implementations. Gen-
erally speaking, these techniques fall into two categories, namely,
explicit (forward Euler) and implicit (backward Euler). In the
context of implicit integration, the use of return mapping algo-
rithms has become standard nowadays. The return mapping is
carried out by first integrating the elastic equations with total
strain increments to obtain an elastic stress predictor. These pre-
dicted or trial stresses are then relaxed onto a suitably updated
yield surface by generating and correcting, iteratively, the plastic
strain component of the total strain increments. Among the best-
known return mapping algorithms are the radial return method,
the closest point projection method (CPPM), and the cutting plane
algorithm (CPA). The CPPM is the most commonly used strategy
for practical applications (see, e.g., Simo and Taylor 1985 and
Simo and Hughes 1998) leading to a nonlinear system of alge-
braic equations in the stresses and updated internal variables. An
iterative algorithm needs to be used to solve these equations, ex-
cept in the special case of the radial return method for von Mises
plasticity (Krieg and Krieg 1977), which leads to a closed-form
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solution. Bathe et al. (1984) and Koji¢ and Bathe (1987) intro-
duced the “effective-stress-function” method for the implicit inte-
gration of thermoelastoplastic and creep material models (see
detail in Bathe 1996; Koji¢ and Bathe 2005) The algorithm was
found to be robust, accurate, and efficient.

Convergence of the CPPM can be a major issue, however, for
complex models (e.g., models with highly nonlinear coupling be-
tween harding/softening parameters). Difficulty can also be expe-
rienced with relatively simple models (e.g., perfect plasticity
models) when Gauss point stresses occur in zones of high curva-
ture of the yield function (Ortiz and Popov 1985). In these cases
the plastic corrector can have difficulties returning stresses to the
yield surface. The numerical results reported by de Souza Neto
et al. (1994), Bi¢ani¢ and Pearce (1996), and Péréz-Foguet et al.
(2001) further illustrate these difficulties. Péréz-Foguet et al.
(2001) also suggest a substepping scheme along with the corre-
sponding consistent tangent matrix to improve convergence. Cad-
demi and Martin (1991) show that a line search algorithm may be
included to improve convergence when CPPM is implemented
with a full Newton—Raphson method. Asensio and Moreno (2003)
show that for perfect plasticity with an associated flow rule and an
“eikonal” yield surface, the stresses can be returned to the yield
surface by an explicit closed-form formula.

Motivated by the work of Krieg and Krieg (1977) and Asensio
and Moreno (2003), this paper will show that for perfect plastic-
ity, the trial stresses can be returned to the yield surface using a
closed-form expression for both associated and nonassociated
flow providing the yield criterion is piecewise linear. Moreover,
this paper will show that under such conditions, CPPM and CPA
are exactly equivalent.

Piecewise linear yield criteria contain discontinuities in the
form of corners in the deviatoric plane and at the apex, so special
care has to be taken when the stress point is returned to such a
discontinuity. Actually, there are two types of singularity. The first
singularity is due to the intersection of linear yield surfaces and
can be dealt with using Koiter’s theorem (Koiter 1953). Numer-
ous investigators have considered this type of singularity (e.g., de
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Borst 1987; Larsson and Runesson 1996; Crisfield 1997; Simo
and Hughes 1998; Clausen 2006). The second type of singularity
is due to undefined derivatives of the yield and potential functions
when expressed in general stress space using the invariant Jy {or
the Lode angle). This paper will show that this second type of
singularity can lead to serious numerical difficulties when comer
solutions are encountered. Returning stresses in principal stress
space are recommended because it is shown to avoid entirely the
second type of singularity.

Later in this paper a classical bearing capacity analysis will be
demonstrated uvsing five typical algorithms that use return map-
ping to the Mohr—Coulomb yield surface. The algorithms have
been implemented in the finite-element framework described by
Smith and Griffiths (2004). The results will demonstrate the exact
equivalence of CPPM and CPA for piecewise linear yield criteria
(such as Mohr—Coulomb) and also the numerical difficulties of
returning stresses in a general stress space framework.

Standard Elastoplasticity

This paper will be restricted to small strain, perfect nonassociated
plasticity, although the results can easily be extended to associ-
ated or linear hardening problems.

The starting point is the fundamental split of the strain rate €
into an elastic component €° and a plastic component €”

=€+ e (1)

Based on this decomposition, the elastic stress—strain relationship
can be rewritten as

o =D(é - ¢”) (2)
where D®=elastic stress—strain tensor.
Plastic strain rates for nonassociated plasticity are assumed to
follow the relations

. P
&=%q and q=(7g 3)
(02

where g=plastic potential function; A\ =0=consistency param-
eter, which represents the magnitude of the plastic flow; and
gq=flow direction given by the derivatives of the plastic potential
function g with respect to stress. It is noted that the plastic strain
increments are associated with vectors perpendicular to the plastic
potential surface.

Loading-unloading conditions are given by the three “Kuhn-
Tucker” conditions

A=0, f=0, Af=0 4)

where f=f(o)=yield function.

The first condition indicates that the consistency parameter is
nonnegative while the second indicates that the stress states must
lie on or within the yield surface. The last condition ensures that
the stresses lie on the yield surface during plastic loading.

From the loading—unloading conditions, the consistency con-
dition becomes

A=0, iff=0 (5)

hence, if X #0, then =0, that is to say
alo =0 (6)
a’Dé(é —€”) =0 (7)

a’D(e-\g)=0 (8)
a’D%
= 9
a’Deq &)

where a=(df/ dor).

Note that a and q are dependent on the stress state, which is
dependent on X through Egs. (2) and (3), so Egs. (2), (3), and (9)
are a set of nonlinear equations.

Combining Egs. (2), (3), and (9) yields the tangential relation
between stress and strain rates

D‘“’anDe)
p=|De- e 10
o ( a’Deq gty
Integration of Eq. (10) leads to the finite-stress increment
AT e _Trwe
Dfga’D
Aa:f (De— ;le)édr (11)
i a'Dq

where ¢ denotes a fictitious time quantity.
From Egq. (10), the continuum elastoplastic modulus D is
defined

Dfqa’D¢

Dep = Dg _
aTDeq

(12)

Integration of Rate Equation by Return Mapping

Return mapping algorithms for integration of Eq. (10) consist of
two parts. In the first part, a trial stress increment is computed
elastically, and in the second, a correction (or “return”) for inelas-
tic behavior is made.

Given the set (€,,€”,Ae) at step n and assuming a fully elastic
predictor, Eq. (10) can be written as

o™= gl . DAEP, (13)
where

o =0,+DAe (14)
o,=De,~€) (15)

t+Ar Te

a'D
A€, =J (qT = )e‘dr (16)

; a’Deq

Note that Ae=total strain increment relative to the converged
solution from the last load step. This leads to a path-independent
strategy, which was first introduced by Bathe et al. (1975). If, on
the other hand, Ae is taken as the strain increment between two
successive iterations, a path-dependent strategy results, which
may cause problems during elastic unloading (see, e.g., Crisfield
1991).

As mentioned before, a and q are dependent on the stress

state, which in turn is dependent on A through Egs. (2) and (3), so
Eq. (16) can be rewritten as

}\)H-l
A€, = f mglo(N)]dN (17)

X

n

where m,, =implicit function of \.
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Ortiz and Popov (1985) considered a generalized form of in-
tegration involving adjustable weighting factors (1-o) and « ap-
plied to the terms corresponding to the initial and final state,
respectively. The generalized trapezoidal rule (GTR) employs the
discretized flow rule in the form

A,y =0 {0~ ahmo[o ()] + amelo (K, 01} (18)
and the generalized midpoint rule (GMR) uses

A€l = AN, my[(1 —a)a(\,) + ao(N,.,)] (19)

where a=weighting factor with the range 0=a =1.
Both GTR and GMR lead to a system of nonlinear equations
that must be solved iteratively, usually by the Newton method.

Closest Point Projection Method

In the CPPM, the increments of plastic strain are calculated at the
end of the step (w=1) and the yield condition is enforced at the
end of the step. The integration in elastoplastic solutions is always
taken over the full load step in each iteration. The integration
scheme is written as

€,,1 =€, +A€ (20)
€. =€+ AN, G, (21)
O i1 = D€y — €, ) (22)

Ja1 =f(0,4) =0 (23)

which is a system of nonlinear algebraic equations. Egs.
(20)-(23), typically, are linearized using a Newton approach giv-
ing rise to a plastic corrector based on the concept of closest point
projection. During the plastic-corrector stage of the algorithm, the
total strain is constant and linearization is performed with respect
to the increment in the plasticity parameter, A\.

The notation used in the description of the Newton procedure
is as follows: Linearization of m(AXN)=0 with AN?=0 at the kth
iteration is written as

dm V&)
m® 4| ——] AP =0 and AN*D=ANE 450
dAX

(24)

where 8A®=increment in A\ at the kth iteration. In the follow-
ing, the load subscript n+1 will be omitted, but unless otherwise
indicated, all quantities are evaluated at step n+1.

Eq. (25) gives the plastic updates and yield condition for New-
ton iteration as

r=—e’+el+ANg=0
f=fo)=0 (25)
which after linearization become
r@ + DT 'Aa® + ANPAG® + 80 Wq® = 0

O+ a®TAg® =0 (26)

where

Aq = 2d WA G® (27
il g
Substituting Eq. (27) into the first part of Eq. (26) gives
Ac® = — RWp® _ g\ WRWG® (28)
where
J -1
R® = [1 + A)\“‘)D"(—q(")” D (29)
Jdo

and substituting Eq. (28) into the second part of (26) and solving
for 3\%) gives
0 _ gWTROL®)

O i L
BN = TR ®

(30)
Thus, the plastic strain and the plasticity parameter can be up-
dated as

ePkrl) — gpll) | A epll) — gp(B) _ [D"’]‘IAGU()

ANED = ANB 4 5\ (31)

With the increments as given in Egs. (28) and (30), the Newton
procedure is continued until convergence to the updated yield
surface is achieved to within an acceptable tolerance.

v

Consistent Elastoplastic Modulus

The concept of consistent linearization was first introduced by
Bathe et al. (1984); see, also, Koji¢ and Bathe (1987). To con-
struct the consistent elastoplastic modulus, the change of the
stress evaluated by a special return mapping algorithm corre-
sponding to an infinitesimal change of total strain increment is
considered. It is different from the continuum elastoplastic modu-
lus, which is obtained by differentiation of the constitutive law.
The benefit of using the consistent elastoplastic modulus is that it
preserves the quadratic rate of convergence of the Newton—
Raphson iterations.

The consistent elastoplastic modulus for the CPPM is defined
as

g
Do = (d—:) (32)
n+l1

To derive an expression for the consistent elastoplastic modulus,
Eqgs. (20)—(23) can be written in the incremental form (again
dropping the subscripts n+1)

do = D*(de — de”) (33)
de” = d(AN)q + ANdq (34)
df=a’do =0 (35)
where
]
iy = (—q>dcr (36)
aa

Substituting Eq. (34) into Eq. (33), using Eq. (36), and solving for
do

do =Rde — d(AN)Rq (37)

where
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)
R= {I+A?&D“(6—q” De (38)
dor

Substituting Eg. (37) into the incremental consistency condition
(35) and solving for d(AN) gives

d(AN) = f;”f; (39)
Substituting this result into Eq. (37)
do =Dde (40)
gives
DR - RTTR (1)
a'Rqg

which is the so-called consistent elastoplastic modulus.

Cutting Plane Algorithm

An alternative to the CPPM is the cutting plane algorithm pre-
sented by Simo and Ortiz (1985) and Ortiz and Simo (1986). The
method is based on a steepest descent strategy, which avoids an
implicit treatment of the governing equations. The resulting
scheme involves an explicit iterative process, thus exhibiting im-
proved convergence properties. The lack of a consistent lineariza-
tion (see, e.g., Simo and Hughes 1998) in the CPA makes the use
of the technique somewhat limited in actual finite-element imple-
mentations employing a Newton—Raphson solution strategy. Simo
(1998) noted that computational experiments indicated that, in
sharp contrast to CPPM, significant errors could result for large
load steps; but no details were given.

Using the same return mapping procedure as CPPM, CPA is
carried out by first integrating the elastic equations using total
strain increments to obtain an elastic predictor. The elastically
predicted stresses are then relaxed onto a suitably updated yield
surface by correcting iteratively the plastic strain increments. The
same steps that led to Eq. (13) in this case give

Ao = g*D) _ g = _ peAer® (42)

where k=iteration counter.
Defining the flow direction at the initial iterate

AP = ANOg® (43)
and substituting into Eq. (42) gives
Ac® = — ANBDeg® (44)

Linearization of the yield function f at each iteration about the
current value of stress o® leads to

fkﬂ o fk +a(k)T(u,Uc+1) _ O,(k)) (45)
Finally, substitution of Eq. (44) into Eq. (45), and noting that
F41=0 gives

£

A= —L
a(k)TDeq(k)

(46)

Equivalence of CPPM and CPA for Piecewise Linear
Yield Criteria

In the CPPM method, the flow direction and yield condition are
evaluated at the end of the step. As shown in Eq. (29), the gradi-

ents of the flow direction need to be computed. In the CPA
method, the flow direction is evaluated at the beginning of each
iterate. This leads to an explicit algorithm, which requires re-
peated evaluations of the yield function and the gradients of the
yield and plastic potential functions. Simo and Hughes (1998),
however, commented that the CPA cannot be exactly linearized.
Asensio and Moreno (2003) showed that for associated plastic
flow and eikonal yield surfaces, aD¢a is constant, thus the stresses
can be returned to the yield surface by an explicit closed-form
formula, and an exact form of the consistent tangent moduli can
be obtained. This paper will extend this observation to show that
for perfectly plastic materials, the trial stress can be returned to
the yield surface in closed form for piecewise linear yield criteria
under both associated and nonassociated flow. Moreover, it will
be shown that under such conditions, CPPM and CPA are exactly
equivalent and give exactly the same closed-form expressions.

Return Mapping of Piecewise Linear Yield Criteria in
the Case of One Active Yield Surface

Combining Egs. (2) and (3) gives
o =0 -\D?q (47)

and for a convex yield function f(o) (see, e.g., Hiriart-Urruty and
Lemarachal 1993)

aT(o.trial _ 0.) = f(G_trial) = a(Utrial)T(U.trial _ 0.) (48)

where a=df/do. _
Multiplying both terms in Eq. (47) by a and a(o™), we
obtain

ra’Déq=a"(o" - ) (49)
}'\a(o_m'al) TDeq o a(o.lrial)?'(o_trial -0) (50)
and combining Eqs. (48)—(50) gives
trial
aTDeq < f((l' ) = a(U_trial)TDeq (51)

If the yield criterion is piecewise linear and only one yield surface
is activated, a and q will remain constant during stress return.
Thus

trial
g L@

= a(atrial)TDeq(o_tria]) (52}
and substituting the second equation of Eq. (52) into Eq. (47)
gives

trial
wial ! (™) ¢
= = D 53
o a’Dq q (53)

It should be mentioned that in Eq. (53) both a and q can be
evaluated at the trial stresses point; thus, the final stress can be
obtained explicitly from the trial stress.

Return Mapping of Piecewise Linear Yield Criteria in
the Case of Two Active Yield Surfaces

In most cases, there are only two surfaces activated if multisur-
face return (e.g., return to the comers of Mohr—Coulomb) should
be used. The results presented here are easily extended to cases
where more than two yield surfaces are active (e.g., return to the
apex of Mohr—Coulomb). For determining which yield functions
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Fig. 1. (a) Stress return corresponding to CPPM; (b) stress return corresponding to CPA; and (c) CPPM and CPA for piecewise linear criteria

are active, readers are referred to Simo and Hughes (1998), de
Borst (1987), and Pankaj and Bi¢anié¢ (1997). This paper will give
a brief summary for the case of the Mohr-Coulomb model in the
next section.

Koiter (1953) has shown that when two yield functions are
active, the plastic strain rate can be written as

€= Xl‘ll + 7'\2']2 (54)

where q,=dg,/do, q,=dg,/do, and g,, g,=plastic potential
functions that belong to the active yield functions f;, f,; and A,

\,=two nonnegative plastic multipliers.
The consistency condition in this case can be written as

f1=0s f2=0 if fi=0, f,=0 (55)
and
alog=0
alo=0 (56)

From Eq. (47)

o = ¢ -\ D°q, - \,D’q, (57)
and for convex yield functions from Eq. (48)

ail'"(o_lrial _ 0,) Sfl (O_trial) = al(o_trial)T(o,tr]al _ 0_) (58)

ag(o.trial _ 0_) Efz(o.trial) = az(qtrial):i'(o.[rial_ 0.) (59)

where a,=(df,/dc) and a,=(df,/ dor). _
Multiplying both sides in Eq. (57) by a and a(o™®) and using
Eqgs. (58) and (59)

a{D"(ml <+ 7.\2'-]2) = fi(o") < 31(0'mal)TDe(?.\1(I1 = xﬂz)
(60)

ﬁizrDe(}.\l‘h * x2‘l2) = fz(ﬂ'trial) = ﬂz(UHm)TDe(Klf-ll T+ xz‘lz)
(61)

and since a and g are constant

fi(o") = a (") TDE(X, q, + Xyqy) (62)

Folo'™) = a,(a"™ ) DE(N, q; + A,q,) (63)
Solving for A;, N, from Egs. (62) and (63)

i C4fl(0.m'al) o szz(o.mal)
1=

C1Cq — C2C3

x B c,fz((r“ia]} _ Cycl(ﬂ.triai)
2=

(64)

C1Cq — €€

where ¢,=alD¢q,, c,=alD’q,, c;=alD?q;, and c,=alD’q,, and
substituting Eq. (64) into Eq. (57) gives

o =g caf 1 (0" DDEG, + ¢5f, () Deq,

C1C4 — CC3

N cafa2(6" D, + ¢, f5(0")DCg,
C1C4 — C2C3

(65)

It can be seen from Eq. (53) that the predicted stresses are re-
turned to the yield surface in closed form as a function of the trial
stresses. From Eq. (25) we have r=0, and thus, Eq. (30), which is
the iterative form of the plastic multiplier for CPPM, reduces to
Eq. (46) corresponding to CPA. It also can be seen from Eq. (53)
that no iterations are needed to get the final stresses.

The equivalence of CPPM and CPA can also be seen in Fig. 1.
The CPPM and CPA for general yield surfaces are shown in Figs.
1(a and b), respectively. Note that the flow direction is evaluated
at the end of each iteration in CPPM, while CPA evaluates the
flow direction at the beginning of each iteration. For piecewise
linear criteria, as shown in Fig. 1(c), however, the flow direction
corresponding to both the trial state and final states is the same;
thus CPPM and CPA are exactly equivalent and only a single
iteration is needed for exact return to the yield surface.

Since CPA and CPPM are equivalent for piecewise linear cri-
teria, consistent linearization as described in the section on Con-
sistent Elastoplastic Modulus can be performed. Readers are
referred to Larsson and Runesson (1996), Crisfield (1997), Simo
and Hughes (1998), Borja et al. (2003), and Clausen (2006) for
the case in which two yield surfaces are activated.
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Return Mapping to the Mohr-Coulomb Surface

A compression-negative sign convention is assumed throughout,
and a stress point in principal stress space is defined using the
invariants (see, e.g., Smith and Griffiths 2004)

(5.2,0) (66)
where
1
S E(0x+0y+0'z) (67)
1 2 2 2 2 12
t= E[(O’I -~ e, ~m ) g, ~a) b+ 6" L+ 6’1‘ o
(68)
and
1 . - 3 \/g.]g
=3 arcsm( 3 ) (69)
The third deviatoric stress invariant is given as
Jy=5,8,5,— sx’r;z— sy’rz -1 2T (70)

where s,=[(20,-0,-0,)/3], etc.

In this notation, s gives the perpendicular distance of the
plane from the origin, and (¢,8) act as polar coordinates within
that plane. Those invariants given in expression (66) are favored
by the writers because they represent actual lengths in principal
stress space.

Other invariants are equally applicable such as

S
=T (71)
G= \Et {72}
I, =30, (73)

2
h=% (74)

Principal stresses are easily obtained from the invariants as

s 2 . 2m
U]:E+ g.tsm B+?

3 2 . 21
0'3="\E+ \/;tsm(8—3> (75)

The angular invariant 6 from Eq. (69) can be shown to vary in the
range —30° =6=30°.

In terms of principal stresses, the Mohr—Coulomb criterion
may be written as

Fig. 2. Mohr—Coulomb surfaces

f: %(Umax - Umin) + %(Umax + O-min)Sin (b —CcCos (b (76)

where 0, and o ;,=maximum and minimum principal stresses,
respectively; and ¢ and ¢=familiar friction angle and cohesion of
the soil, respectively.

The plastic potential function g is given by replacing the fric-
tion angle ¢ by the dilation angle ¥ in Eq. (76) and omitting the
term ¢ cos 5.

Looking down the space diagonal, the Mohr—Coulomb surface
appears as an irregular hexagon, as shown in Fig. 2.

The six linear portions of the surface depend on the relative
size of the principal stresses as indicated, thus

fia=3(0;—03) +3(a, +03)sind - ccosd, when o, =0,

flb:%(cr_g—01)+%(03+crl)sind>—ccos¢, when o3 = o,

=0, (78)

fza=%‘(0’2*0‘1)+%(O’2+U’1)Sin¢0—CCOS¢, when o; = g3

=0, (79)

Far= %(0’1 -y + %(cl +oy)sind —ccosd, when o, =0y

=g, (80)

Fi =%(03 0-2)+2(crq+02)51nd)—ccoscb, when o3 =0

== (4] (81)
fan= %(02 -0y + %(02 +oy)sind —ccosd, when o, =0
= (023 (82)

Only yield surface f;, applies if the principal stresses are re-
stricted to oy =0, =03,

When performing return mapping, yield surfaces f5, and fs,
will also be involved if the trial stress is located at the corner
region. The algorithms to decide which yield surfaces are in-
volved is summarized here.

1. Use Eq. (53) and f, to get the trial returned stress o, o5,
and o} if f1,=0 is violated.
2. Check which yield surfaces are involved:
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Fig. 3. Singularity of Mohr—Coulomb surfaces due to the intersection
of yield surfaces

Fig. 4. Singularity of Mohr—Coulomb surfaces due to undefined
tan 36 and 1/cos 36 (no numerical intersections at corners)

« Case 1: Only one yield surface f,, is involved if o} =0o}
=04, 0,05, and o} are the final returned stresses.

« Case 2: Yield surfaces fi, and f,, are involved if o) = o}
= ). Eq. (65), f1, and f,;, are used to get the final returned
stresses.

« Case 3: Yield surfaces fj, and f3, are involved if o} =0
=ct. Eq. (65), f, and fs,, are used to get the final returned
stresses.

* Case 4: Yield surfaces fi,, fo,, and f3, are involved if none
of the above conditions are satisfied. The stress will be
returned to the apex. The final returned stresses are o
=0,=03=c cot d.

Substitution of the principal stresses from Eq. (75) into the cor-
responding Mohr—Coulomb surfaces from Eqgs. (77), (80), and
(82) gives the following expressions in terms of stress invariants:

cos 0 sin 0 sin ¢

5
f1a=E31n¢+f(—(7—\—[6)—CCOS¢' (83)

fop= E\E sind)-H(%(l +sin ¢) — W) —ccosd
v

(84)

fap= ‘\% sin¢+z(c;\—sg(l —sind) + Sl—ne—%%l) —ccosd

(85)

Return mapping algorithms require evaluation of first derivatives
of the yield and potential functions with respect to the stress
tensor. In principal stress space, due to isotropy of the involved
functions, the return mapping algorithm takes place at a fixed
principal axis so that these derivatives of the yield functions and
plastic potential functions will remain constant. That is to say,
Mohr-Coulomb in principal stress space is piecewise linear, The
singularities in this case only arise when two yield surfaces inter-
sect, as shown in Fig. 3. The multisurface plasticity formulation
of Koiter (1953) needs to be employed to deal with this type of
singularity.

In general stress space, however, the first derivative of any
single yield function or plastic potential function with respect to
the stress tensor is undefined when 6= =+ 30°. For example,

Wfia  f1000, If1g 30 00y 3f1, 39 0
e _0ha%m 0112 80 3y 9109990y o0

do  do, do 98 dJy,d0 38 AT, do
where
fra_ .
L=sm¢ (87)
do,,
afla a0 C.)flcr 1 i
————=—""—"=——c0s 0 V3(1l + tan 0 tan 30) + tan 36
0 o, o, 2\r_3-f2 [\f( an 0 tan 30) + sin &(tan

—tan 9)] (88)

&fla a0 6f1a cos 6

= = 5 tan 6 + sin 89
37, " 27, c0s 36" ind)  (89)

It can be seen that when 6= *=30° tan 36 and 1/cos 36 in Eq.
(88) and (89) are both undefined. The singularities are due to
undefined derivatives, not the intersection of yield functions.
There are no numerical intersections of yield surfaces in return
mapping algorithms, although the intersections actually exist. The
gaps between any two yield surfaces as shown in Fig. 4 indicate
this type of singularity.

The local rounding technique (e.g., Smith and Griffiths 1988;
Abbo and Sloan 1995) must be used to avoid this type of singu-
larity. The local rounding obviously leads to errors, but more
seriously, it can cause the yield surface to be highly curved so that
the CPPM and CPA may have convergence difficulties. Crisfield’s
two vector return algorithm (Crisfield 1997) can improve the con-
vergence characteristics of CPPM in these cases; however, it still
involves local rounding when the predicted stress is located at
corner regions.

Numerical Example

To demonstrate the equivalence of CPPM and CPA for piecewise
linear yield criteria, five methods that utilize return mapping are
implemented for both associated and nonassociated Mohr—
Coulomb within the program structure described in the text by
Smith and Griffiths (2004). The first method is a standard CPA in
general stress space. Local rounding at the corners uses the
method described by Smith and Griffiths (1988). The second
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Table 1. Brief Summarization of the Five Methods

Return mapping Working Brief
Method Reference method space description
1 Smith and Griffiths (1988) CPA General stress Local rounding
2 Crisfield (1997) CPPM General stress Two vector return and local rounding
3 de Borst (1987) CPA/CPPM Principal stress Direct integration
4 Larsson and Runesson (1996) CPPM Principal stress Tensor algebra
5 Clausen et al. (2006) CPPM Principal stress Geometrical arguments

method is due to Crisfield (1997) and again involves local round-
ing with a two vector return strategy based on Koiter’s theorem
(Koiter 1953). The third method uses the CPA in principal stress
space as described by de Borst (1987). The fourth method as
described by Larsson and Runesson (1996) uses the CPPM in
principal stress space elaborated by tensor algebra. The fifth
method also uses the CPPM in principal stress space as described
by Clausen (2006) and Clausen et al. (2004, 2005, 2006) but
based on geometrical considerations. The five methods used in
this paper are summarized in Table 1. It should be mentioned that
the standard CPPM in general stress space was attempted by the
writers but serious numerical difficulties were encountered for
local stress returning. This phenomenon was also observed by
several other investigators (e.g., Crisfield 1987; de Souza Neto
et al. 1994; Bitani¢ and Pearce 1996; Péréz-Foguet et al. 2001).
To compare these five methods, a classical footing bearing
capacity problem has been analyzed. Both associated and nonas-
sociated flows are considered in order to demonstrate equivalence
between CPPM and CPA for piecewise linear yield criteria, two
global iterative methods, namely, the modified and full Newton—
Raphson methods, were used, together with two global stiffness
operators, namely, the continuum and consistent elastoplastic
moduli. The modified Newton—Raphson method in this paper uses
the elastic global stiffness, which remains constant during itera-
tions and will be referred to as the constant stiffness method.
Fig. 5 shows a mesh involving 32 elements with a flexible
strip footing at the surface of a layer of uniform weightless soil.
The footing supports a uniform stress g, which is increased incre-
mentally to failure. The mesh consists of eight-noded quadrilat-
eral elements with “reduced” four Gauss-points integration. The
elastoplastic soil is described by plane strain Mohr—Coulomb
plasticity with &=20° and c=15 kN/m?. The dilation angle ¢ is
set equal to & for associated plastic flow and set to zero for
nonassociated plastic flow. The elastic parameters are E=1

£
TIT

BN N NN N N A N
g

4 777 7 I

I 12m |

~

Fig. 5. Mesh of a strip footing

% 10° kN/m? and v=0.3 or 0.26. Different Poisson’s ratios were
implemented to invoke corner solutions at some Gauss points.
Theoretically, bearing failure in this problem occurs when g
reaches the load given by

G = N (90)

where N =bearing capacity factor for soil cohesion (Prandtl
1921)

N.=(N,-1)cotd (91)

where

N,= tan2(45 + %)e“ . (92)

For this particular case, N,=14.83 and ¢,;,=222.45 kN/m?.

The displacement control can improve the convergence as the
global stiffness matrix is not singular at collapse. The load control
approach is used because the current algorithm has evolved from
slope stability analysis (e.g., Griffiths and Lane 1999), which is
strictly load controlled. The convergence of the numerical process
to the nonlinear solution is monitored by the condition

F,-R

PRl -
[Fe

where TOL=convergence tolerance, which is set to 0.0001;

F..=total loads applied; and R;,=internal reaction vector evalu-

ated by
R, = f f odxdy (94)

The uniform stress g is increased incrementally in 10 load steps to
failure. The increments were adjusted manually to be smaller as
failure is approaching. Failure is considered to have occurred
when the iteration number hits the ceiling as in Tables 2—11 with-
out convergence. The iteration numbers shown in Tables 2—11 are
for global force balancing iterations. No substepping scheme was
used.

The uniform stress g versus centerline displacements is plotted
in Fig. 6. It is seen that g, for associated plastic flow is between
225 and 230 kN/m?; g, for nonassociated plastic flow is between
220 and 225 kN/m?, Methods 2—-5, and Method 1 with no corner
solutions (v=0.30), give the same g, Method 1 encountered
convergence difficulties when the comer solution were encoun-
tered (v=0.26) and gave lower g, as will be described. Fig. 7
shows the deformed mesh and displacement vectors at failure. It
is clear that the associated case demonstrates much greater plastic
volume change.

The numerical results of all five methods are listed in Tables
2-11. It should be mentioned that corner solutions were encoun-
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Table 2. Number of Iterations for Method 1

v=0.3 v=0.26

Step q Continuum Constant Continuum Constant
1 50 2 2 2 2
2 100 6 32 6 38
3 130 5 61 6 79
4 160 5 67 16 79
5 180 5 717 19 83
6 200 5 117 26 127
7 210 < 128 23 132
8 220 6 185 42 239
9 225 8 480 500° 5,000
10 230 50° 3,000° — —

Note: CPA with local rounding in general stress space; associated plastic
flow.

*Failure occurs when the iteration number hits the ceiling.

tered at some Gauss points when v=0.26 while no corner solu-
tions were found when v=0.30 in this special problem for both
associated and nonassociated flow rules.

In the case where no corner solutions were encountered (v
=0.30) and associated flow, all five implementations gave exactly
the same answers with both the continuum or constant stiffness
methods as shown in Tables 2, 4, 6, 8, and 10. Of those methods

Table 3. Number of Tterations for Method 1

v=03 v=0.26

Step q Continuum Constant Continuum Constant
1 50 2 2 2 2
g 100 7 32 8 41
3 130 7 62 10 65
4 160 7 72 13 83
5 180 7 76 17 83
6 200 8 115 28 137
7 210 6 168 36 181
8 220 67 4289 500° 5,000"
9 225 500% 5,000° — e

Note: CPA with local rounding in general stress space; nonassociated
plastic flow.

*Failure occurs when the iteration number hits the ceiling.

Table 4. Number of Iterations for Method 2

that used a consistent stiffness method, Methods 2 and 4 gave
identical results (Tables 4 and 8), but Method 5 gave slightly
different results (Table 10) in terms of iterations. When consider-
ing nonassociated flow with v=0.30, Methods 1, 2, 3, and 5 with
continuum or constant stiffness gave identical results while
Method 4 differed slightly in terms of iterations. All the methods
(2, 4, and 5) gave very similar results when the consistent stiff-
ness method was used.

Similar results can be observed from Tables 2 to 11 when
corner solutions were encountered (v=0.26). One exception is
that the CPA in general stress apace (Method 1) exhibited conver-
gence difficulties for both associated and nonassociated flow rules
due to the local rounding.

It can be concluded from the results listed in Tables 2—11 that
CPPM and CPA are equivalent for piecewise linear yield criteria.
The slight differences in terms of iterations between the results of
these five methods are due to different program implementations
and numerical rounding.

The numerical results also show that for Mohr-Coulomb, nu-
merical difficulties can be encountered if the stresses are returned
in general stress space and a local rounding is used to avoid a
singularity of the gradients of the yield/plastic potential functions
(e.g., Methods 1 and 2). The writers, consequently, recommend
returning the stresses in principal stress space for Mohr—Coulomb
criteria.

Conclusion

This paper has shown that CPPM and CPA are exactly equivalent
for piecewise linear yield criteria under conditions of both asso-
ciated and nonassociated plastic flow. Closed-form expressions
have been provided allowing stress return to be achieved in a
single iteration. Numerical results in the analysis of bearing ca-
pacity using five different implementations of stress return to the
Mohr-Coulomb criterion confirmed the above conclusion, which
can readily be extended to cases involving linear isotropic hard-
ening or softening.

A final observation relates to the well-known singularities that
occur at the corners of the Mohr-Coulomb surface when comput-
ing invariants use general stress terms. It was shown that return
algorithms in terms of principal stresses avoid many of these
problems.

v=03 v=026
Step q Consistent Continuum Constant Consistent Continuum Constant
1 50 2 2 2 2 2 2
2 100 4 6 32 4 6 38
3 130 < 5 61 4 6 79
4 160 3 S 67 3 6 74
5 180 3 5 77 3 5 81
6 200 ] 5 117 4 3 125
7 210 3 4 128 2 4 78
8 220 4 6 185 3 5 197
9 2235 <4 8 480 4 9 72
10 230 507 50° 3,000° 50° 50° 3,000%

Note: Crisfield (1997) two vector return in general stress space, CPPM; associated plastic flow.

*Failure occurs when the iteration number hits the ceiling.
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Table 5. Number of Iterations for Method 2

v=0.3 v=0.26
Step q Consistent Continuum Constant Consistent Continuum Constant
1 50 2 2 2 2 2 2
2 100 4 7 32 5 8 41
3 130 4 7 62 B 10 65
4 160 3 7 72 6 8 82
5 180 3 7 76 5] 84
6 200 3 8 115 3 8 121
7 210 4 6 168 4 159
8 220 9 67 4289 8 78 4789
9 225 Diverge 500 5,000 Diverge 500° 5,000

Note: Crisfield (1997) two vector return in general stress space, CPPM; nonassociated plastic flow.

*Failure occurs when the iteration number hits the ceiling.

Table 6. Number of Iterations for Method 3

v=0.3 =026
Step q Continuum Constant Continuum Constant
1 50 2 2 2 2
2 100 6 32 6 38
3 130 5 61 6 79
4 160 5 67 6 74
5 180 ] 77 7 80
6 200 S 117 5 122
7 210 4 128 4 133
8 220 6 185 5 190
9 225 8 480 9 502
10 230 50° 3,000* 50° 3,000%
Note: CPA in principal stress space; associated plastic flow.
*Failure occurs when the iteration number hits the ceiling.
Table 7. Number of Iterations for Method 3

v=0.3 v=0.26
Step q Continuum Constant Continuum Constant
1 50 2 2 D, 2
2 100 7 32 8 41
3 130 7 62 10 65
4 160 7 72 8 81
) 180 7 76 7 84
6 200 8 115 8 127
7 210 6 168 6 182
8 220 67 4,289 74 4,747
9 225 500* 5,000* 500° 5,000°

Note: CPA in principal stress space; nonassociated plastic flow.

“Failure occurs when the iteration number hits the ceiling.

The five programs used in this paper can be obtained from the
corresponding writer.

Acknowledgments

The writers gratefully acknowledge the support of the National
Science Foundation under Grant No. CMS-0408150.

Notation

The following symbols are used in this paper:
a gradient of yield function respects to stresses;
¢ = cohesion;
D¢ = elastic stress—strain tensor;
D = continuum elastoplastic modulus;
D®¢ = consistent elastoplastic modulus;
E = Young’s modulus;
F.. = external forces;
f = yield function;
g = plastic potential function;
I, = first invariant of stress;
J3 = third deviatoric stress invariant;

k = iteration counter;
Mg = implicit function of X;
N, = bearing capacity factor for soil cohesion;
n = load step counter;
q = flow direction;
g = uniform stress;
g, = bearing capacity;
R,, = internal reaction;

r = plastic strain residual;
s = stress invariant, perpendicular distance of the
m plane from the origin;
Se,8y,8, = deviatoric stress;
¢ = fictitious time quantity, stress invariant,
perpendicular distance of stress point from the
space diagonal;
a = weighting factor 0=a =1,
6 = stress invariant, Lode angle;
Ae = total strain increment;
€ — strain;
€ = strain rate;
= elastic component of strain rate;
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Table 8. Number of Iterations for Method 4

v=0.3 v=0.26
Step q Consistent Continuum Constant Consistent Continuum Constant
1 50 2 2 2 2 2 2
2 100 4 6 32 4 6 38
3 130 & 5 61 4 6 79
4 160 3 5 67 3 6 74
5 180 3 5 77 3 5 80
6 200 3 9 117 3 5 122
7 210 3 4 128 2 4 133
8 220 4 6 185 3 5 190
9 225 4 8 480 4 9 502
10 230 50° 50° 3,000 50° 50° 3,000%
Note: Larsson and Runesson (1996) CPPM in principal stress space; associated plastic flow.
“Failure occurs when the iteration number hits the ceiling.
Table 9. Number of Iterations for Method 4

v=0.3 v=0.26
Step q Consistent Continuum Constant Consistent Continuum Constant
1 50 2 2 2 2 2 2
2 100 4 6 31 4 7 40
3 130 4 7 61 4 9 66
4 160 ! 8 69 3 9 80
8 180 3 7 76 3 7l 81
6 200 3 8 113 3 9 127
7 210 4 6 150 3 6 163
8 220 8 52 3,156 8 62 3,517
9 225 50° 500° 5,000* 50° 500* 5,000
Note: Larsson and Runesson (1996) CPPM in principal stress space; nonassociated plastic flow.
“Failure occurs when the iteration number hits the ceiling.
Table 10. Number of Iterations for Method 5

v=0.3 v=0.26
Step q Consistent Continuum Constant Consistent Continuum Constant
1 50 2 2 2 2 2 2
2 100 5 6 32 5 6 38
3 130 4 5 61 4 6 79
4 160 4 5 67 4 6 74
5 180 4 3 77 4 5 80
6 200 4 5 117 4 D 122
7 210 3 <& 128 3 4 133
8 220 4 6 185 4 5 190
9 225 6 8 480 6 9 502
10 230 50° 50° 3,000° 50* 50" 3,000
Note: Clausen et al. (2006) CPPM in principal stress space; associated plastic flow.
"Failure occurs when the iteration number hits the ceiling.
Table 11. Number of Iterations for Method 5

v=0.3 v=0.26
Step q Consistent Continuum Constant Consistent Continuum Constant
1 50 2 2 2 2 2 2
< 100 4 o 32 5 8 41
3 130 4 7 62 3 10 65
4 160 4 7 72 4 8 81
5 180 3 7 76 3 7 84
6 200 4 8 115 4 8 127
7 210 4 6 168 4 6 182
8 220 11 67 4,289 11 74 4,747
9 225 Diverge 500 5,000% Diverge 500% 5,000*

Note: Clausen et al. (2006) CPPM in principal stress space; nonassociated plastic flow.
“Failure occurs when the iteration number hits the ceiling.
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Fig. 7. (a) Deformed mesh (associated plastic flow); (b) deformed
mesh (nonassociated plastic flow); (¢) displacement vectors at failure
(associated plastic flow); and (d) displacement vectors at failure (non-
associated plastic flow)

€’ = plastic component of strain rate;

consistency parameter;,
Poisson’s ratio;

stress;

normal stress:

stress rate;

stress invariant;

01,0,,03 = principal stresses;

al,0h,0% = trial returned principal stresses;

Q& g q < >
Il

o, = mean normal stress;
Omax = Maximum principal stress;
Oy = minimum principal stress;

o = t{rjal stress;

T = shear stress;

¢ = friction angle; and

U = dilation angle.
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