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Abstract: Two well-known return mapping algorithms, the closest point projection method (CPPM) and the cutting plane algorithm
(CPA), have been analyzed in detail in relation to two classical failure problems in geomechanics, namely, bearing capacity and slope
stability. The stability and efficiency of the algorithms have been investigated in relation to two types of stiffness operators, namely, the
consistent elastoplastic modulus and the continuum elastoplastic modulus, and two types of stresses prediction strategies, namely, path
independent (based on stresses at previous step) and path dependent (based on stresses at the previous iteration). The numerical experi-
ments show that CPPM working with a consistent elastoplastic modulus and a path independent strategy gives the best performance. It
was also observed, however, that the CPA with a continuum elastoplastic modulus and path dependent strategy was quite stable and
efficient. This latter observation has implications for advanced constitutive modeling since CPA with a continuum elastoplastic modulus
avoids the need for evaluation of the second derivatives of the plastic potential function, making it easier to deal with complicated yield

surfaces.
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Introduction

Iterations for finite-element analysis of material nonlinear can be,
in general, separated into two levels. The first (local) level is tied
to the constitutive equations where, for a given strain increment,
the algorithm iterates in stress and internal variable space until a
convergence criterion is met. The second (global) level involves
iterations to achieve a balance of internal stresses with external
loads. The techniques for integration of the constitutive equations
at the local level directly control the accuracy and stability of the
overall numerical solution. Generally speaking, these techniques
fall into two categories, namely, explicit (forward Euler) and im-
plicit (backward Euler). Explicit schemes (Nayak and Zienk-
iewicz 1972; Zienkiewicz et al. 1969: Owen and Hinton 1980)
were widely employed until Simo and Taylor (1985) proposed the
implicit closest point projection method (CPPM) which is a type
of “return mapping” algorithm. The return mapping involves first
integrating the elastic equations with total strain increments to
obtain an elastic predictor. The elastically predicted stresses are
then relaxed onto a suitably updated yield surface by correcting,
iteratively, the plastic strain increments. The radial return method
proposed by Krieg and Krieg (1977) is easily shown to be a
special case of CPPM for von Mises plasticity.

Simo and Taylor (1985) showed that the CPPM with a consis-
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tent elastoplastic modulus (also referred to as the algorithmic
stiffness; Jirasek and BaZant 2001) achieves an asymptotic global
quadratic convergence rate when using the full Newton—-Raphson
method. The concept of consistent linearization was introduced
by Hughes and Pister (1978) and consistent elastoplastic modulus
was derived for viscoplasticity by Hughes and Taylor (1978). To
construct the consistent elastoplastic modulus, the change of the
stress evaluated by a special return mapping algorithm corre-
sponding to an infinitesimal change of total strain increment is
considered. It is different from the continuum elastoplastic modu-
lus which is obtained by differentiation of the constitutive law.

The accuracy and stability of return mapping algorithms has
been examined by Ortiz and Popov (1985). The asymptotic qua-
dratic rate of convergence of CPPM makes the approach attrac-
tive, however there are three significant drawbacks. First, there is
a practical difficulty in computation of the consistent tangent ma-
trix when the return is nonradial. Second, the gradients of the
plastic flow direction (second derivatives) are required leading to
extra computing effort. Third, convergence of the local iterations
can be a major issue for complex models (for instance, with
highly nonlinear coupling between hardening or softening param-
eters). The third drawback is also found with relatively simple
models (i.e., perfectly plastic models) at the Gauss points when
stresses occur in zones of high curvature of the yield surface. In
these cases the plastic corrector can have difficultics in returning
to the yield surface. Numerical results reported in De Souza Neto
et al. (1994), Bicani¢ and Pearce (1996), and Péréz-Foguet et al.
(2001) illustrate some of these difficulties. Caddemi and Martin
(1991) show that a line search algorithm must be included to
ensure global convergence when CPPM is combined with the full
Newton-Raphson method.

In order to improve convergence, Crisfield (1991) proposed a
line search technique for the global iterations and Ammero and
Pérez-Foguet (2002); Pérez-Foguet and Armero (2002), and Jer-
emi¢ (2001) even used a line search technique for the local itera-
tions. For the Mohr-Coulomb failure surface, which is widely
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used in geomechanics, a closed-form return formula in principal
stress can be employed, as described by Borja et al. (2003), Lars-
son and Runesson (1996), and Clausen et al. (2006). de Borst
(1987) gave explicit return expressions using Koiter’s method
(Koiter 1953) along with a region indicator to deal with the sin-
gular yield points of the Mohr-Coulomb model. Crisfield (1997)
employed a similar approach involving a two-vector return
procedure. Huang and Griffiths (2008) compared five previously
published algorithms for return mapping to Mohr-Coulomb in a
finite-element analysis of bearing capacity.

A quite different return mapping approach that has received
attention in the literature is the cutting plane algorithm (CPA)
presented in Simo and Ortiz (1985) and Ortiz and Simo (1986).
The method is based on a steepest descent strategy which avoids
the need for an implicit treatment of the governing equations, The
resulting scheme involves an explicit iterative process, thus ex-
hibiting improved convergence properties. However, the lack of
consistent linearization (Simo and Hughes 1998) in CPA methods
limits their use in practical finite-element implementations em-
ploying a Newton-Raphson solution strategy. Simo (1998) re-
ported that when using CPA, in contrast to CPPM, significant
errors can result from the application of large load steps although
no explanation was provided. In this paper, we will show that this
problem with CPA can be overcome by the use of a path depen-
dent strategy.

The effectiveness of two global stiffness operators, namely a
consistent elastoplastic modulus and a continuum elastoplastic
modulus working with the CPPM and CPA, along with two types
of stress predictors, namely path dependent and path independent,
are investigated in this paper. Numerical results of two classical
geomechanics problems of bearing capacity and slope stability
will show that the CPA working with a continuum elastoplastic
modulus and stresses that are path dependent (based on previous
iteration) is quite stable and efficient. The significant error ob-
served by Simo (1998) for large load steps of CPA is found only
when stresses are path independent (based on previous step). Fur-
thermore, CPA with a continuum elastoplastic modulus avoids the
need for evaluation of the second derivatives of the plastic poten-
tal function, making it easier to deal with complicated yield sur-
faces.

Review of Standard Elastoplasticity

For simplification, we will restrict this paper to small strain, as-
sociated perfect plasticity.

The starting point for any small-strain elastoplastic relation is
the fundamental split of the strain rate {¢} into an elastic compo-
nent {£°} and a plastic component {£”}

{e}={e}+{e"} (1)

Based on this decomposition, the elastic stress-strain relationship
can be rewritten as

{o}=[D*1({&} - {&”}) (2)

where [D¢] is the elastic stress-strain matrix.
Plastic strain rates for associated plasticity are assumed to fol-
low the relations

{#h=Na), {a)= {‘j—F} 6)

where F is the yield and plastic potential function; X is the con-
sistency parameter, which represents the magnitude of the plastic
flow and X =0; {a} is the flow direction, which is obtained upon
differentiation of the plastic potential function with respect to
stress. The use of an associated flow rule ensures that the plastic
strain-increments are vectors perpendicular to the potential sur-
face.
Loading-unloading conditions can be stated as

A=0, F=<0, AF=0 (4)

which are sometimes referred to Kuhn-Tucker conditions. The
first of these indicates that the consistency parameter is non-
negative while the second indicates that the stress states must lie
on or within the yield surface. The last condition assures that the
stresses lie on the yield surface during plastic loading.

From the loading-unloading conditions, it is easy to state the
consistency condition as

NAF=0, ifF=0 (5)
hence, if A # 0, then AF=0, that is to say

{a}{o}=0
{a}[D*){&} - {&"D) =0
{a\TD°1{é} - Ma}) =0

; _ lal'[DNe)
{a}[D*}{a}
Note that {a} is dependent on the stress state which is dependent

on \ through Eq. (3), so Eq. (6) is a nonlinear equation.
Substituting Eq. (6) into the first of Egs. (3), we have

(6)

o 1 1D)8}
= e &
Substituting Eq. (7) into Eq. (2)
{o}=[D" K¢} (8)
where [D®7] is the continuum elastoplastic modulus given by
[D°}{aHa}"[D]
ep] =[] — o Aener 1Y 4
= DY ®

Closest Point Projection Method

Iteration Procedure

In the CPPM method, the increments of plastic strain calculated at
the end of the step and the yield condition is enforced at the end
of the step, thus the integration scheme is written as

{8n+l}={sra}+{A8} (10)
{8ﬁ+l} ={£ﬂ}+ A}\n-#l{arwl} (11)
{Crm-l} = 1'.De]({£n+l} - {81;4.]}) (12)
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Fm-l:F({o-uH}):G (13)

Given the set ({g,},{e}},{Ae}) at step n, because {a,,,} is depen-
dent on AR, equations from Egs. (10)—(13) are a set of nonlin-
ear algebraic equations in ({o,,},{€2, }).

The strain {g,,,} is obtained from the solution of the system of
equations at step n+ 1. If the stresses are predicted based on the
previous load step, it is understood that {g,.;} is the total strain
after the last iteration of the implicit solution scheme.

First note that from Eq. (11), the plastic strain increment is
given by

{A5ﬁ+l = {Eﬁﬂ - {85} = A)\m-l{afnl} (14}
Substituting this expression into Eq. (12) gives

{oi}=[D](epi} - {0} - {Ash,,})
=[D1(epart = {ef} = ANper{an})
=[D)({ea} +{Ae} —{ef} ~ ANy {aue))
= [D*J{ea} - {elh) + [D°HAe} - AN, [DNa,}
= {(5:1311} — AN,y [D* a0} (15)

trial

where {o),,7}={c,}+[D?}{Ae} is the trial stress of the elastic pre-
dictor and —AN,,,;[D?]{a,.,} is the plastic corrector which returns
or projects the trial stress onto the yield surface along a direction
specified by the plastic flow direction at the endpoint. The elastic-
predictor phase is driven by the increment in total strain while the
plastic-corrector phase is driven by the plasticity parameter
AN,4;. Thus, during the elastic-predictor stage, the plastic strain
remains fixed, and during the plastic-corrector stage, the total
strain is fixed. If the normality rule is enforced at the end of the
step, we have

{AG?H-I} =i [Dc]{Asﬁi—l} == A}\n+lU—)e]{ar!+l} (16)

The solution of the set of nonlinear Egs. (10)—(13) based on the
concept of closest point projection is typically obtained by a
Newton procedure involving a systematic linearization. This re-
sults in a plastic corrector returning stresses to the yield surface.
During the plastic-corrector stage of the algorithm, the total strain
is constant and linearization is with respect to the increment A\
of the plasticity parameter.

As an example, in order to linearize an equation, g{A\N)=0,
using the Newton procedure with AN =0, at the kth iteration we
would write

dg (k)
g“‘u(m) BAW=0 ANEN=A\®La®  (17)

where 0% is the increment in AX at the kth iteration. For the
sake of clarity, we will usually omit the load subscript n+1; thus,
unless indicated otherwise, all quantities are evaluated at step n
+1.

We write the plastic updates and yield condition in the form of
Eq. (18), suitable for Newton iteration, thus defining {r} as

{rt=—{eP} +{ef} + ANa}=0

F=F{o})=0 (18)

linearization of these equations gives

{r®}+ [DTHA0™} + ANB{ AW} + 5AP{W) =0
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F® 4 {a®T(As®} =0 (19)
where

aa®

Jda

{Aa®hy = [ ]{Ag‘“} (20)

Eqs. (19) are a set of two equations which can be solved for
{Ac®} and 8\®. Substituting Eq. (20) into the first of Egs. (19)

{Ao_rk)} . [R(k}]{r(k)} _ ah(*)[R”"]{afﬂ} (21)
where

[R{k]? - [[U + Al\(k)[De]{ﬂcﬁz]ilq[De} (22)
- ] 7o

and substituting Eq.(21) into the second of Egs. (19) and solving
for 8A% we get

IO o G T -
T TR a®) )
Thus, the update of the plastic strain and the plasticity parameter
is

(64} = {6} + {AePW} = (o) - [ D] {40}

AN 2 A\ 4 AW (24)

With the increments as given in Egs. (21) and (23), the Newton
procedure is continued until convergence to the updated yield
surface is achieved to within a sufficient tolerance.

It can be seen from Eq. (10) that CPPM is inherently path
independent. If the stresses are predicted based on the previous
iteration we have

{o® D)= {o®} + [DNfAe) (25)

“n+1

where / is the global iteration counter, {c¥} is the convergent
value of stress at the local iteration, and {Ae:ffiI} is the strain
increment predicted using a global stiffness operator such as the
consistent or continuum elastoplastic modulus.

The complete stress update algorithm (Belytschko et al, 2000)
is given in Appendix I Stress return terms corresponding to
CPPM is shown in Fig. 1.

Review of Consistent Elastoplastic Moduli

The consistent elastoplastic modulus for the CPPM is defined as

do
(%)= (—) (26)
de n+l
To derive an expression for the consistent elastoplastic modulus,
we write Egs. (10)-(13) in incremental form (again dropping the
subscripts n+1) as

{do} =[D*]({ds} - {de"}) (27
{deP} = d(AN){a} + AN{da) (28)
dF ={a}"{dc}=0 (29)
where
{da}= [Z—j]{du} (30)
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Fig. 1. Stress return corresponding to CPPM
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Fig. 2. Stress return corresponding to CPA

Substituting Eq. (28) into Eq. (27), using Eq. (30) and solving for

{du}, we obtain

{do}=[R}de} - d(AN)[R]{a} 31

where

-1
[R]= [[m M[Dﬂ[j—i” [ (32)

Substituting Eq. (31) into the incremental consistency condition

[Eq. (29)] and solving for d(AX) gives

dAN) = {a}"TR){ds}

@R} ol

Substituting this result into Eq. {(31) we obtain

{do}=[DF}{de} (34)

where [D®°] is the consistent elastoplastic modulus given by

1 RHGHATR]
= ety 3

Cutting Plane Algorithm

Using the same return mapping procedure as with CPPM, CPA is
carried out by first integrating the elastic equations with total
strain increments to obtain an elastic predictor. Then the elasti-
cally predicted stresses are relaxed onto a suitably updated yield
surface by correcting iteratively the plastic strain increments. Fol-
lowing the same steps as used in Eq. (16), we get

{Ac®} = {g®*V} — {oW} = - [D) AP}

(36)
where k is the iteration counter.

If the normality rule is enforced at the beginning of the itera
tion as in

{Asp(fd} = A)\U‘){a(k}}

(37
substitution of Eq. (37) into Eq.(36) then gives

{Ag(k)} —_— A)\(fc)[De]{a(k)} (38)

At every iteration, if the yield function F is linearized around the
current values of stress {c®}, we get

FrHl o phog {alk)}T({leH)}“ {a®) (39)

and substitution of Eq. (38) into Eq.(39), noting that F**!=0 gives

A)\(k) = i_. (40)
{a®}TDYa)

It can be seen from Eq. (40) that CPA bypasses the need to com-
pute the second derivatives as required by CPPM, However, the
lack of consistent linearization (Simo and Hughes 1998) in CPA
methods limits their use in practical finite-element implementa-
tions employing a Newton—Raphson solution strategy.

The complete stress update algorithm is given in Appendix II
Stress return terms corresponding to CPA is shown in Fig, 2.

Numerical Example Using CPPM

The stress update algorithm described in Appendix I is imple-
mented in Program 6.5 from the open source finite-element codes
of Smith and Griffiths (2004). Both the consistent and continuum
elastoplastic modulus are considered. In order to demonstrate the
different convergence rate for these two approaches under the full
Newton-Raphson method, a footing problem has been analyzed
as shown in Fig, 3. The mesh consists of 32 eight-noded elements.
A denser mesh with 128 elements has been investigated and the
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Fig. 3. Mesh of a strip footing

failure load along with the iteration number did not change sig-
nificantly. To avoid overly stiff response, “reduced” 4 Gauss-
points integration was used. Xia and Masud (2006) applied the
stabilized mixed method (Masud and Xia 2005) to a three-surface
elastoplastic cap model and got stable results in the full range of
deformation for a similar footing problem. The analysis is of the
“Prandtl problem,” namely the bearing capacity of a flexible strip
footing at the surface of a layer of uniform weightless “undrained
clay.” The footing supports a uniform stress g, which is increased
incrementally to failure. The plane strain mesh, with the out-of-
plane stress included, consists of an elastic-perfectly plastic soil
with a von Mises failure criterion. It should be mentioned that the
trial stress can be returned to the yield surface exactly (with no
iterations) for the von Mises model used in this section. The three
parameter model consists of the undrained shear strength c,
=100 kN/m?, the elastic modulus E=1x 10° kN/m?, and Pois-
son’s ratio v=0.3. Theoretically, bearing failure in this problem
occurs when g reaches the “Prandtl load” given by

qun = (2 + W)Ca {4 1}

The uniform stress g versus centerline displacement by all the
methods is plotted in Fig. 4. (In order to get a more meaningful
plot, the large displacement given in the last step using a consis-
tent elastoplastic modulus is omitted.) It is seen that the displace-
ments are increasing rapidly when the load reaches 520 kN/m?,
indicating that bearing failure is taking place at a value very close
to the “Prandtl load” of 514 kN/m?, Fig. 5 shows the deformed
mesh and displacement vectors at failure.

The number of iterations to achieve convergence for each load
increment is shown in the first two columns of Table 1. The con-
sistent elastoplastic modulus converges faster than the continuum
one. Actually, it achieves an asymptotic quadratic convergent rate
which has been recognized by Simo and Taylor (1985) and others
{e.g., Keavey 2002; Asensio and Moreno 2003). It is noted that,
in the algorithm described in Appendix I, the variables are up-
dated from the converged values at the end of the previous load
step. This avoids nonphysical effects such as spurious elastic un-
loading which can occur when path-dependent plasticity equa-
tions are driven by nonconverged values of the plastic strain.
Conventionally, corrector iterations are cast in a form in which
the increment is based on the difference between the current and
previous iteration. It is interesting to note that when stresses are
predicted based on the previous iteration, the continuum elasto-
plastic modulus needs fewer iterations than the consistent one. In
order to demonstrate this phenomenon, the same problem was
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Fig. 4. Pressure versus centerline displacement

reanalyzed using the same algorithm except with the stresses pre-
dicted based on the previous iteration. The uniform stress g versus
centerline displacement using this path dependent approach are
also shown in Fig. 4 and seen to be indistinguishable from the
earlier results using path independent strategy. The number of
iterations to achieve convergence for each load increment is
shown in the last two columns of Table 1.

It can be seen in Table 1 that the continuum elastoplastic
modulus needs fewer iterations than the consistent one if stresses
are predicted based on the values of previous iteration, Although
these stresses do not satisfy the global equilibrium equations, they
still satisfy the constitutive laws. The reason why the continuum
approach needs fewer iterations is that the stresses of the previous
iteration are a better guess than those of previous load step.

HEE

A_n -
i\&_‘/’ﬁ
i i
N = T

Fig. 5. Deformed mesh and displacement vectors at failure
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Table 1. Number of Iterations Required by Each Method

Table 3. Algorithm Speed

Consistent  Continuum  Consistent ~ Continuum
Loads previous previous previous previous
Step  (kN/m?) step step iteration iteration
1 200.0 2 2 2 2
2 300.0 3 6 5 4
3 350.0 3 8 6 4
4 400.0 3 10 7 4
5 450.0 3 11 8 4
6 480.0 3 12 7 6
7 500.0 3 10 7 5
8 510.0 3 6 6 5
9 515.0 3 5 6 4
10 520.0 6 50 16 16

As pointed out by Caddemi and Martin (1991), a line search
algorithm must be included to ensure convergence when CPPM is
implemented with the full Newton—Raphson method. In this clas-
sical footing problem, CPPM with stresses predictions based on
the previous step diverged if the load increment applied at the first
step reached 460 kN/m?. With the inclusion of a line search tech-
nique, however, satisfactory convergence was observed with a
single step as large as 519 kN/m?2

The other three algorithms described (the methods in the last
three column of Table 1) can converge in response to large load
steps, even when a single step approaches the ultimate value. In
order to compare the influence of load step size, the same prob-
lem was analyzed using (a) a single step of 450 kN/m? and (b)
five steps of 200, 100, 50, 50, 50 (kN/m?) as shown in Table 1.
The results are shown in Table 2 where it is seen that the consis-
tent elastoplastic modulus with a path independent strategy had
the fastest convergence rate and the continuum elastoplastic
modulus with a path independent strategy, the slowest.

The ratio of the difference r between the centerline displace-
ment obtained by the two loading procedures (a) and (b) is de-
fined as

d,-d,

b

r=100 X % (42)

where d, and 4, are the centerline displacements obtained using
the two loading procedures (a) and (b), respectively, All four al-
gorithms gave the same ultimate loads and reasonable r values.
The biggest difference was observed for the Continuum method
based on the previous step (path independent) however even this
discrepancy was less than 1.5%.

The stability of the continuum elastoplastic modulus combined
a path-dependent strategy is useful when loading is conveniently
applied in a single step. As for the continuum elastoplastic modu-

Table 2. Results Using Different Steps under Load of 450 kN/m?

Consistent Continuum Consistent Continuum
previous previous previous previous

Results step step iteration iteration
Iteration 5 26 9 7
number
(1 step)
d, -0.03350 -0.03350 -0.03328 -0.03263
d -0.03321 -0.03305 -0.03321 -0.03304
r% 0.87 1.36 0.21 1.24

Previous step Previous iteration

Consistent Algorithm 1 > Algorithm 2
A\ Ay
Continuum Algorithm 3 =3 Algorithm 4

lus, it can be seen from Table 1 that the path-dependent strategy
needs fewer iterations than the path-independent strategy. This is
a good choice when no consistent elastoplastic modulus is avail-
able. The number of iterations to convergence for all the algo-
rithms described previously has been summarized in Table 3.

Numerical Example for CPA

Bearing Capacity Problem

The stress update algorithm described in Appendix II is imple-
mented in Program 6.5 from the open source finite-element codes
of Smith and Griffiths (2004). Two types of global stiffness op-
erators using the full Newton—-Raphson method, the consistent
elastoplastic modulus, and the continuum elastoplastic modulus,
are considered. Although the CPA has no formal consistent elas-
toplastic modulus, Eq. (35) has been used leading to a pseudo-
consistent approach signified by “Consistent” in the results
presented later in this section. Two types of stress prediction
based on the previous step and the previous iteration are also
investigated. A bearing capacity problem is considered as in the
previous section, however this time the soil is assumed to be
frictional with a Mohr-Coulomb failure criterion. The Mohr—
Coulomb failure criterion was rounded at the comers (e.g., Smith
and Griffiths 2004) to avoid singularities. Several iterations were
needed to return the stresses to the yield surface when trial
stresses were located at the comner regions, otherwise stress up-
dating can be carried out in one iteration. The parameters for
Mohr-Coulomb are ¢=20° and ¢=15 kN/m?. The dilation angle
P is set to 20° implying as associated flow rule. The elastic pa-
rameters are £=1X 10° kN/m? and v=0.3. Theoretically, bearing
failure in this problem occurs when ¢ reaches the load given by

qun= CNc {43)

where the bearing capacity factor N, is given as (Prandtl 1921)

Nc=[tan2(45+ %)e"‘”‘“’—l]cotr}) (44)

For this particular case, N,=14.83 and g,,=222.45 kN/m?.

The number of iterations to achieve convergence for each load
increment is shown in Table 4. It can be seen that the “consistent”
elastoplastic modulus working with path independent strategy di-
verged at the first load step. The other three combinations per-
formed better and had almost the same convergence speed. It is
interesting to note, as shown in Table 5, that if the load is applied
in a large step, say approaching the bearing value, the continuum
clastoplastic modulus working with path independent strategy has
the slowest convergence properties, needing almost four times
more iterations than the other two path dependent strategies, The
rate of difference r defined in Eq. (42) between the centerline
displacement obtained by (a) one single step or (b) nine steps of
50, 50, 30, 30, 20, 20, 10, 10, 5 kN/m? to reach 225 kN/m? is
also shown in Table 5. It is interesting to note that the continuum
elastoplastic modulus working with stresses based on the previous
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Table 4. Number of Iterations Required by Each Method

“Consistent” Continuum  “Consistent”  Continuum
previous previous previous previous
Step Loads step step iteration iteration
1 50.0 Diverged 2 2 2
2 100.0 6 7 @
3 130.0 5 6 6
4 160.0 5 7 7
5 180.0 5 6 5
6 200.0 5 8 7
7 210.0 4 6 6
8 220.0 6 6 6
9 225.0 8 7 8
10 230.0 50 50 50

step has the largest r. This may be the phenomenon Simo (1998)
encountered. Nevertheless, all three algorithms that can converge
gave the same ultimate loads as shown in Table 4.

The uniform stress g versus centerline displacement of three
converged algorithms is plotted in Fig. 6. It is seen that the dis-
placements increase rapidly when the load reaches 225 kN/m?,
indicating that bearing failure is taking place at a value very close
to the theoretical solution of gq,;,=222.45 kN/m?.

Slope Stability Problem

When no consistent elastoplastic modulus is available, a path de-
pendent strategy working with the continuum elastoplastic modu-
lus needs fewer iterations than a path independent strategy when

Table 5. Results Using Different Steps under Load of 225 kN/m?

“Consistent” Continuum “Consistent” Continuum
previous previous previous previous
Results step step iteration iteration
Iteration number  Diverged 39 10 11
(1 step)
d, -0.01312 -0.01185 -0.01178
d,, -0.01194 -0.01180 -0.01176
r% 9.88 042 0.17
0.0000 —a— consistent,previous iteration
@ - continuum,previous iteration
. —#&— continuum,previous step
-0.0025 \
-0.0050 \\
T ]
o "
‘,E‘g -0.0075 | \\
0 -0.0100 - \‘
] a
-0.0125 }
00150 ~frmp—r——r—=—t —
0 20 40 &0 30 100 120 140 160 180 200 220 240

Load

Fig. 6. Pressure versus centerline displacement
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Fig. 7. Mesh of a slope

load is applied in a single step. Moreover, a path dependent strat-
egy gives almost the same results when different load steps are
used. Based on these observations, the following example was
analyzed by CPA working with a path dependent strategy and the
continuum elastoplastic modulus. The stress update algorithm de-
scribed in Appendix II is implemented in Program 6.3 from the
open source finite-element codes of Smith and Griffiths (2004).
The problem to be analyzed is a plane strain with out-of-plane
stress included slope of Mohr-Coulomb material subjected to
gravity loading. The factor of safety (FS) of the slope is to be
assessed, and this quantity is defined as the proportion by which
tan ¢ and ¢ must be reduced in order to cause failure under grav-
ity loading which will be applied in a single increment. A trial
strength reduction factor loop gradually weakens the soil until the
algorithm fails to converge. Each entry of this loop implements a
different strength reduction factor (SRF). The factored soil
strength parameters that go into the elastoplastic analysis are ob-
tained from

¢ = arctan(tan ¢/SRF}

cy=c/SRF (45)

Several (usually increasing) values of the SRF factor are at-
tempted until the algorithm fails to converge. The smallest value
of SRF to cause failure is then interpreted as the factor of safety
FS. For a detailed description of the algorithm, the reader is re-
ferred to Griffiths and Lane (1999).

The mesh of a homogeneous 2:1 slope is displayed in Fig. 7
with ¢=20° and ¢=15 kN/m?. The dilation angle  is set to 20°
and the unit weight is given as y=20 kN/m?. The boundary con-
ditions are rollers on the left and right vertical boundaries, and
full fixity at the base. The elastic parameters are given nominal
values of E=1x 10° kN/m? and v=0.3 since they have little in-
fluence on the computed factor of safety. The convergence toler-
ance and iteration ceiling are set to 0.001 and 50, respectively. Six
trial strength reduction factors are input, ranging from 1.0 to 1.6.

Fig. 8 gives the strength reduction factor versus the maximum
nodal displacement at convergence. It can be seen that when
SRF=1.6, the displacements increase rapidly indicating a factor
of safety of about 1.6. Bishop and Morgenstern’s charts (1960)
give a factor of safety of 1.593 for the slope under consideration.
Fig. 9 shows the deformed mesh and displacement vectors corre-
sponding to slope failure. The mechanism of failure is clearly
shown to be of the “toe” type.

To compare the efficiency of the two types of stress predictor,
the problem was analyzed using the same program except with
stresses prediction based on the previous load step. The results
show that global iteration could not converge under SRF=1.4
even when the iteration ceiling was set to 3000. In this extreme
case of loading applied in a single increment, it is perhaps not
surprising that the path independent strategy fails, since the
stresses upon which the predictions are based are all zero corre-
sponding to an initially weightless slope.
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Fig. 8. Maximum displacement versus strength reduction factor

Conclusion

The stability and efficiency of the CPPM and CPA return algo-
rithms have been investigated in this paper. The algorithms have
been combined with two types of stiffness operators, namely con-
sistent and continuum elastoplastic moduli and two types of stress
prediction strategies, based on stress values obtained at the previ-
ous step and stress values obtained at the previous iteration. Nu-
merical examples show that CPPM working with a consistent
elastoplastic modulus and a path independent strategy converges
fastest. The significant errors for large load steps of CPA are
found only when stresses are predicted based on previous steps.
CPA working with a continuum elastoplastic modulus and path
dependent strategy is quite stable and efficient. Moreover, both
CPA itself and the continuum elastoplastic modulus avoid the
need for second derivatives to be evaluated of the potential func-
tion making it easier to deal with complicated constitutive mod-
els. As for the two different stress predictors, a path dependent
strategy uses a better guess to the true solution, but special care
should be taken to avoid spurious elastic unloading.
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Fig. 9. Deformed mesh and displacement vectors at failure

Appendix |. CPPM lteration Procedure

1. Initialization: set initial values of plastic strain to converged
values at end of previous load step, zero the incremental
plasticity parameter, and evaluate the elastic trial stress

k=0: {e?D)={ef}, AND=0,
{09} =[D ]} - {2}
2. Check yield condition and convergence at kth iteration
Fo = F{{u(“l}), {r(k)}
If F¥<TOL, and |[{r¥'}]| < TOL,, converged else go to 3.
3. Compute increment in plasticity parameter

da® | |-
[R¥]= [[1] + AM‘“[DEJ[@” [D]

N 6 _ [qW TR (0}
(@Y TRP]{a®}
4. Obtain stress increments
{80} = - [RYKr®) - sNUIRVKa®}
5. Update plastic strain
{sp(kﬂj} = {Bpik)} & {Aapikj} = {Ep(kJ} — [Dej“’{Ag“‘)}

ANED = ANB) 4 5\ 0
{o®*D = {¢ W] + {Ac®)}

k=k+1, goto2

Appendix Il. CPA Iteration Procedure

1. Initialization: set initial values of plastic strain to converged
values at end of previous load step, zero the incremental
plasticity parameter, and evaluate the elastic trial stress

k=0: {#P)={ef}, AN@ =g,
{o) = [Ddepmi} - ("D
2. Check yield condition and convergence at kth iteration
FO = F({g®1)

If F¥ < TOL,, converged else go to 3.
3. Compute increment in plasticity parameter

7
4. Obtain stress increments

{Ac®} = — ANO[DYa®)
5. Update plastic strain

{gPr ) = [Pl {Aﬁp(kj} = {Ep(k)} = [De]'l{Au’“‘]}

AW

{01} = (oW} + {a0¥)

k=k+1, goto2
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Notation

The following symbols are used in this paper:
{a} = gradient of yield function or plastic potential
function respect to stresses;
¢ = cohesion;
[D?] = elastic stress-strain tensor;
[De] = continuum elastoplastic modulus;
{DeP?} = consistent elastoplastic modulus;
E = Young’s modulus;
F = yield function;
k = iteration counter;
N, = bearing capacity factor;
n = load step counter;
g = bearing capacity;
{Ag} = total strain increment;

{e} = strain;
{&} = strain rate;
{&°} = elastic component of strain rate;

{éP} = plastic component of strain rate;

A = consistency parameter;
v == Poisson’s ratio;
{g} = stress;
{a} = stress rate;
{g"al}y = trial stress;
¢ = friction angle; and
Y = dilation angle.
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