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Abstract: The paper investigates the probability of failure of slopes using both traditional and more advanced probabilistic analysis tools.
The advanced method, called the random finite-element method, uses elastoplasticity in a finite-element model combined with random
field theory in a Monte-Carlo framework. The traditional method, called the first-order reliability method, computes a reliability index
which is the shortest distance (in units of directional equivalent standard deviations) from the equivalent mean-value point to the limit
state surface and estimates the probability of failure from the reliability index. Numerical results show that simplified probabilistic
analyses in which spatial variability of soil properties is not properly accounted for, can lead to unconservative estimates of the probability
of failure if the coefficient of variation of the shear strength parameters exceeds a critical value. The influences of slope inclination, factor
of safety (based on mean strength values), and cross correlation between strength parameters on this critical value have been investigated
by parametric studies in this paper. The results indicate when probabilistic approaches, which do not model spatial variation, may lead to

unconservative estimates of slope failure probability and when more advanced probabilistic methods are warranted.
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Introduction

Slope stability analysis is a branch of geotechnical engineering
that is highly amenable to probabilistic treatment, and has re-
ceived considerable attention in the literature. The earliest papers
appeared in the 1970s [e.g., Matsuo and Kuroda (1974); Alonso
(1976); Tang et al. (1976); and Vanmarcke (1977)] and have con-
tinued steadily [e.g., D’ Andrea and Sangrey (1982); Chowdhury
and Tang (1987); Li and Lumb (1987); Oka and Wu (1990);
Mostyn and Li (1993); Lacasse (1994); Christian et al. (1994);
Chowdhury and Xu (1995); Wolff (1996); Christian (1996);
Lacasse and Nadim (1996); Low (1996); Low and Tang
(1997a,b); Low et al. (1998); Hassan and Wolff (1999); Whitman
(2000); Duncan (2000); El-Ramly et al. (2002); Low (2003);
Bhattacharya et al. (2003); Griffiths and Fenton (2004); Babu and
Mukesh (2004); Xu and Low (2006); Low et al. (2007); Cho
(2007); and Shinoda (2007)]. In spite of this activity, the geotech-
nical profession is slow to adopt the probabilistic approaches to
geotechnical design, especially in traditional problems such as
slopes and foundations. In particular, while the importance of
spatial correlation (or autocorrelation) and local averaging of sta-
tistical geotechnical properties have long been recognized by
some investigators [e.g., Mostyn and Soo (1992)], it is still regu-
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larly omitted from many probabilistic slope stability analyses.
Griffiths and Fenton (2004) studied slope stabilities using random
finite-element method (RFEM), which combines elastoplastic
finite-element analysis with random fields generated using the
local average subdivision method (Fenton and Vanmarcke 1990).
The results indicated that traditional probabilistic analyses, in
which spatial variability is ignored by implicitly assuming perfect
correlation, can lead to unconservative estimates of the probabil-
ity of failure. This paper thoroughly investigates this observation
by assessing the influence of the spatial correlation length and
coefficient of variation of strength parameters on slope stability
across a wide range of parametric variations. Numerical results
show that for a given value of the spatial correlation length, there
is a critical value of the coefficient of variation of strength param-
eters, above which FORM, if spatial variation is not modeled,
underestimates the probability of failure and is therefore uncon-
servative. The influences of slope inclination, factor of safety (FS)
(based on mean strength values), and cross correlation between
strength parameters on the critical value of the coefficient of
variation, have been investigated by parametric studies, indicating
when more advanced probabilistic methods are warranted.

In spite of the fact that most traditional limit equilibrium meth-
ods (LEMs) existing in literature do not consider spatial variabil-
ity, some investigators have combined the LEM with random field
theory [e.g., Li and Lumb (1987); Mostyn and Soo (1992); Low
and Tang (1997a,b); El-Ramly et al. (2002); Low (2003); Babu
and Mukesh (2004); Low et al. (2007); Cho (2007); and Theory
manual of slope/W 2007 version (2007)]. However, the inherent
nature of LEM is that it leads to a critical failure surface, which in
2-D analysis appears as a line which could be noncircular. The
influence of the random field is only taken into account along the
line and is therefore one-dimensional. All results obtained by the
previously mentioned implementations indicate that increasing
the spatial correlation length leads to an increased probability of
failure irrespective of the variance of the shear strength param-
eters. Some of the results presented in the current paper however,
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Fig. 1. Slope profile

indicate that both the spatial correlation length and the input vari-
ances can affect the probability of failure.

Both undrained ¢,=0 and drained ¢’,tan ¢’ slopes are con-
sidered with the slope profile shown in Fig. 1. In this study, the
slope has height H=10.0 m, foundation depth ratio D=2, and soil
unit weight, v, (or v)=20.0 kN/m?, which are all held constant.
For undrained slopes, the shear strength ¢, is assumed to be a
random variable and expressed in a dimensionless form given by
C,=c,/(ys ). For drained slopes, both the shear strength ¢’,
expressed in the dimensionless form C'=¢'/(yH) and the tangent
of the friction angle, tan ¢', are assumed to be random variables.
Three different slope angles o are considered: a=18.4° (3:1
slope), @=26.6° (2:1 slope), and @=45° (1:1 slope).

Probabilistic Descriptions of Strength Parameters

In this study, the shear strength parameters C,, C’, and tan ¢’ are
assumed to be random variables characterized statistically by log-
normal distributions (i.e., the logarithms of the properties are nor-
mally distributed). The lognormal distribution will be applied at
the point level. The lognormal distribution is one of many pos-
sible choices [e.g., Fenton and Griffiths (2008)], however, it of-
fers the advantage of simplicity, in that it is arrived by a simple
nonlinear transformation of the classical normal (Gaussian) dis-
tribution. Lognormal distributions guarantee that the random vari-
able is always positive and, in addition to the current writers, it
has been advocated and used by several other investigators as a
reasonable model for physical soil properties [e.g., Parkin et al.
(1988); Parkin and Robinson (1992); Nour et al. (2002); and
Massih et al. (2008)]. The RFEM methodology has been de-
scribed in detail in other publications [e.g., Fenton and Griffiths
(2008)] so only a brief description will be repeated here for the
random variable C,. An identical procedure is applied to C" and
tan &',

The lognormally distributed undrained shear strength C, has
three parameters; the mean ¢ the standard deviation o¢ , and
the spatial correlation length. The variability of C, can conve-
niently be expressed by the dimensionless coefﬁment of variation
defined as

Oc
ve == (1)
M

u

The parameters of the normal distribution (of the logarithm of C,)
can be obtained from the standard deviation and mean of C, as
follows:

Ommc, = yIn 1+ v%u (2)

Fig. 2. Influence of the spatial correlation length in RFEM analysis

1
Bipc, =10 pe - Eclzn o 3

Inverting Egs. (2) and (3) gives the mean and standard deviation
of C,

1
e, = eXp( e, + 5012,1 c“) (4)

oc,= }.Lcu\icxp(crlzn c, )—1 (5)

A third parameter, the spatial correlation length 8, ¢, Will also be
considered in this study. Since the actual undrained shear strength
field is lognormally distributed, its logarithm yields an “underly-
ing” normally distributed {(or Gaussian) field. The spatial correla-
tion length is measured with respect to this underlying field, that
is, with respect to In C,. In particular, the spatial correlation
length (8, » ) describes the distance over which the spatially ran-
dom values will tend to be significantly correlated in the under-
lying Gaussian field. Thus, a large value of 6, will imply a
smoothly varying field while a small value will i;nply a ragged
field.

In this work, an exponentially decaying (Markovian) correla-
tion function is used of the form

p(r) = 2 0nc) ©

where p(t)=correlation coefficient between properties assigned
to two points in the random field separated by an absolute dis-
tance T.

In the current study, the spatial correlation length has been
nondimensionalized by dividing it by the height of the embank-
ment A and will be expressed in the form

Oc, =0 c/H (7

Figs. 2(a and b) show typical failure mechanisms corresponding
to different spatial correlation lengths. Fig. 2(a) shows a relatively
low spatial correlation length of ®, =0.2 and Fig. 2(b) shows a
relatively high spatial correlation lebflgth of @, =2. The figures
depict the variation in In C, and have been scaled in such a way
that the dark and light regions depict “strong” and “weak’ soils,
respectively. Black represents the strongest element and white is
the weakest in the particular realization. It should be emphasized
that both these shear strength distributions come from the same
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lognormal distribution (same mean and standard deviation) and it
is only the spatial correlation length that is different. A great
benefit of RFEM is that the shape and location of the failure
surface is not determined a priori and the algorithm is able to
“seek out” the most critical path through the heterogeneous soil
mass [e.g., Griffiths et al. (2006)].

The input parameters relating to the mean, standard deviation,
and spatial correlation length are assumed to be defined at the
“point” level. While statistics at this resolution are obviously im-
possible to measure in practice, they represent a fundamental
baseline of the inherent soil variability which can be corrected
through local averaging to take account of the sample size. In the
context of the RFEM approach, each finite element is assigned a
constant property. The “sample” is represented by the size of each
finite element used to discretize the slope. If the point distribution
is normal, local averaging results in a reduced variance but the
mean is unaffected. In a lognormal distribution, however, both
the mean and the standard deviation are reduced by local averag-
ing. Following local averaging, the adjusted statistics e,
o¢,, represent the mean and standard deviation of the lognormal
field that is actually mapped onto the finite-element mesh. Further
details can be found in Griffiths and Fenton (2004).

In the limit as @c — 0, local averaging removes all variance
(0¢,—0) and the mean tends to the median, thus

P, , — mediang = exp(puy C“)

e

W (8)

1,
=exp| In we - 7%mc, | =

Traditional Probabilistic Methods

Undrained Slope

In this paper, the term “traditional probabilistic methods™ refer
to the probabilistic methods (whether using Monte Carlo simula-
tion or FORM) which do not explicitly take account of the spatial
correlation length, hence, slopes are assumed to be uniform (spa-
tially constant properties) with C, selected randomly from a
lognormal distribution. The traditional probabilistic methods
imply a spatial correlation length ®Cu=°° so no local averaging is
applicable.

Since there is only one random variable in an undrained
analysis, the probability of failure (py) is simply equal to the
probability that the shear strength parameter C, will be less than
C,ps=1. where C, s is the value that results in a FS equal to
unity. Quantitatively, this equals the area beneath the probability
density function corresponding to C,<C, ps.;. For example,
for a=26.6°, C,ps1=0.17 and C,gs_;=0.25 (from Taylor’s
charts or 11m1t equilibrium) so if we let pe,=0.25 and oc,
=0. 125(vc =0.5), Egs. (2) and (3) give that the mean and stan-
dard deviation of the underlying normal distribution are p, ¢ =
—-1.489 and oy, - =0.472, respectively. The probability of failffre
is therefore giveﬁ by

In0.17 - K

pr=plC, < 0.17]=f1>( ) =0281  (9)

Ty [
where @+ =cumulative standard normal distribution function.

In order to investigate the influence of FS on p; and for pc
=Cups=125=0.21, pe, =Cypso147=0.25, and pe =Cy pso170=0.29,
the probability of failure corresponding to ditferent vc can be

Table 1. p; Corresponding to Different v¢, for an Undrained Slope

Vi be =Cups=125 “‘Cu:cu,FszlAT Mca=Cu,F5=1.7o
0.1 0.014 0.0 0.0
0.2 0.152 0.032 0.004
0.3 0.270 0.122 0.048
0.4 0.350 0.209 0.118
0.5 0.407 0.281 0.187
0.6 0.450 0.338 0.248
0.7 0.485 0.384 0.300
0.8 0514 0.422 0.343
0.9 0.538 0.454 0.381
1.0 0.559 0.481 0.412
1.1 0.577 0.505 0.440
12 0.593 0.525 0.464
1:3 0.607 0.544 0.485
1.4 0.620 0.560 0.504
L35 0.632 0.574 0.521

easily obtained and are listed in Table 1. For the purposes of our
parametric studies, it was necessary to push the v~ up as high as
1.5 in some cases in order to find the critical value at which the
traditional method ceases to be conservative.

While considering the influence of the slope inclination, it may
be noted that in an undrained slope, the slope inclination makes
no difference to p, if FS (based on the mean) is the same in all
cases. Thus, the p, values shown in Table 1 apply to any slope
inclination.

FORM and the Hasofer-Lind Reliability Index

The first-order reliability method (FORM) is a process which can
be used to estimate the probability of failure of systems involving
multiple random variables with given probability density func-
tions, in relation to a “limit state” function that separates the
failure domain from the safe domain. Xu and Low (2006) used
FORM combined with the finite-element method to estimate the
probability of failure of slopes. The conventional FORM based on
the Hasofer-Lind reliability index (Hasofer and Lind 1974), By,
assumes that the mean values of random variables lie on the safe
side of the limit state function. The method then obtains the reli-
ability index, which is related to the minimum distance, in direc-
tional standard deviation units, between the mean values and
the limit state surface. The conceptual and implementation barri-
ers surrounding the use of By for correlated normals and the
FORM for correlated non-normals can largely be overcome,
as shown by Low and Tang (1997ab, 2004). Calculation of
the reliability index involves an iterative optimization process, in
which the minimum value of a matrix calculation is found,
subject to the constraint that the values are on the limit state
surface. Commonly used software packages (e.g., Excel and
Matlab) are easily adopted to perform the optimization (see e.g.,
www.mines.eduw/~vgriffitFORM). Once the reliability index (the
distance between the means and the closest failure point) has been
determined, the method assumes a “first-order” limit state func-
tion tangent to the B contour and the probability of failure p;,
follows from:

pr=1-®(p) (10)

It should be noted that the reliability index is given a negative
value if p;>50% [e.g., Low (2005)].
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If dealing with two random variables, the first-order assump-
tion results in a straight line limit state function, in which case Py
is the volume under the bivariate probability density function on
the failure side of the line. A similar concept applies to cases
involving multiple random variables.

Each reliability analysis requires a limit state function, which
defines safe or unsafe performance. Limit states could relate to
strength failure, serviceability failure, or anything else that de-
scribes unsatisfactory performance. The limit state function, g, is
customarily defined

8(X1,X5, ..., Xy) = 0 — Safe

g(X,X,, ..., Xy) <0 — Failure (11)

where X;,X,, ..., Xy=input random variables. An advantage of
the Hasofer-Lind index Py, for correlated normal variates and the
FORM index B for correlated non-normal variates is that the re-
sult it gives is not affected by the form of the limit state function.
For example, the limit state function could be defined as the re-
sistance minus the load, the FS minus one, the logarithm of the
FS, or some other algebraic combination without influencing the
computed value of By or B.

The limit state function can sometimes be determined directly
from theory or for more complex systems, the response surface
method [e.g., Melchers (1999)] needs to be used. The basic idea
of the response surface method is to approximate the limit state
boundary by an explicit function of the random variables and to
improve the approximation via iterations

In detail, the determination of 3 in FORM is an iterative pro-
cess [as explained by Haldar and Mahadevan (2000), for ex-
ample]. An alternative interpretation involving an equivalent
hyperellipsoid was given in Low and Tang (2004) and Low
(2005) as follows:

K=l |7 | B
B:min\/{l—;":} R“{—NM!— i=1,2,...,n (12)
g=0 T a;

where X;=ith random variable, p'=equivalent normal mean of
the ith random variable, 0¥ =equivalent normal standard devia-
tion of the ith random variable, {(X,~p")/c"}=vector of n
random variables reduced to standard normal space, and R
=correlation matrix.

Drained Slope

For slopes of ¢’ —tan ¢’ soils, no analytical equation exists which
can serve as a limit state function. The response surface method
[e.g., Xu and Low (2006)] has been introduced in this study. This
can be accomplished, for example, by fitting a curve to the results
from several finite-element analyses using the strength reduction
method [e.g., Griffiths and Lane (1999))]. This method involves
applying gravity loads to the finite-element mesh and systemati-
cally weakening the soil until a sufficient number of elements
have yielded to allow the formation of a failure mechanism.

For example, with two (n=2) random variables, a quadratic
surface without cross terms with five (2n+1=5) constants of the
form

FS(In C’,In(tan &')) =a, + a, In C' + a5 In(tan ¢')
+a(ln C') + as(In(tan $"))*> (13)

could be used to approximate the FS function.

Table 2. Strength Parameters of the Five Slopes

FS=1.25 FS=1.47 FS=1.70
Siope Mgt etan ¢ [ Motan ¢+ s Metan &’
2l 15.00 0.21
20 15.73 0.23 18.50 0.27 21.40 031
141 26.00 0.36

The limit state function could then be defined as the FS func-
tion minus one, thus

g(In C',In(tan &')) = FS(In C’,In(tan ¢')) - 1 (14)

In order to find the five constants in Eq. (13), five finite-element
analyses were run. For each random variable, its equivalent nor-
mal mean value puﬂv and two other values }_Ljv ok mU‘iV were sampled
while fixing the other random variable at its equivalent normal
mean value. Some investigators [e.g., Xu and Low (2006) and
Griffiths et al. (2007)] have related the two other sampling points
to some factor of the standard deviation given by m. A popular
choice is m=1 which will be used later in this section. For cases
involving high v, the use of m=1 leads to some sampling points
being far from the central sampling point and thus, the perfor-
mance function may not always be defined with accuracy in the
zone of interest (i.e., near the tentative design point). For slope
reliability analysis, however, the limit state functions for slopes
have been shown to be quite linear in the space of cohesion and
friction angle [e.g., Mostyn and Li (1993) and Low et al. (1998)]
$0 py is rather insensitive to the choice of m.

Since the design point is not known in advance, the limit state
function is initially derived at the equivalent normal mean which
gives a first approximation of the design point. This design point
can be far from the optimal one and may lead to incorrect results.
The current work uses the following iteration procedure [e.g.,
Tandjiria and Low (2000)], which leads to the limit state function
being approximated at the design point.

1. Derive the limit state function at the equivalent normal mean
values.

2. Use FORM to obtain the design point and hence py.

3. Update the limit state function using the design point just
found.

4. Use FORM to update the design point and hence py.

5. Repeat 3—4 until convergence when two successive values of
Dy is smaller than a prescribed tolerance.

The FS at the design point should equal to one at convergence.

In order to investigate the influence of slope inclination and
the FS (based on the mean) on the critical value of coefficient of
variation, five slopes have been analyzed using FORM. The mean
values that would result in the target FS values for different slope
inclinations are shown in Table 2. The investigation will consider
a 2:1 slope with three different FS values and a FS=1.47 slope
with three different slope inclinations.

In the present work, C' and tan ¢' are assumed to be lognor-
mally distributed. The mean value of C' can be retrieved from the
values in Table 2 as pe=p/ (yH).

Since B is defined in the normal space, transformations of
Egs. (2) and (3) need to be applied and the optimization will
be performed in normal space. The five sample points in the
normal space will be (W, ¢/, Bin(an 61))s (Bin 0" + 01 ¢fsPingtan 67>
(p‘ln ¢’ = Om ¢ Mn(tan ¢'))= (p-'ln ¢ sMn(tan ¢") + Oln(tan d;’))o and
(}-'-'ln ¢’ sPnftan ¢') ~ O ln(tan ¢’))

Since these sample points depend on the input coefficient of
variation, five deterministic analyses need to be performed for
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Table 3. Coefficients of the Limit State Function for v=0.5

Slope a; a; as ay as

2:1, FS=1.25 5.3045 1.6132 1.1186 0.2017 0.1793
2:1, F§=1.47 5.1821 1.5026 1.1212 0.1793 0.1793
2:1, F§=1.70 5.1765 1.5019 1.1204 0.1793 0.1793
3:1, FS=1.47 5.9713 1.5081 1.5442 0.1793 0.2465
1:1, FS=1.47 4.7636 1.8096 0.7733 0.2465 0.1344

each v. In the present study, for the sake of simplicity, the coef-
ficients of variation relating to cohesion and friction are assumed
to be equal, thus

U=UC’=Utan¢’ (15)

It may be noted that since the five deterministic analyses must be
performed in the real space, actual properties were retrieved by
raising e (the base of the natural logarithm) to the five sample
points mentioned above. The coefficients of the limit state func-
tion for the case when v=0.5 used in Egs. (13) and (14) are
shown in Table 3.

Some investigators [e.g., Rackwitz (2000)] believe that the
cross correlation p between In C’ and In(tan ¢') is negative, how-
ever, this is still a controversial area in need of a more realistic
data. Since a positive cross correlation coefficient (p) between
In C' and In(tan ¢') gives higher values of p; and is therefore
conservative, p is initially assigned a value of 0.5, although other
values in the range —0.5<<p<C0.5 are considered later in this
paper.

For the case of v=0.5, the limit state functions for the 2:1
slope with three different FS values (based on the mean) are
shown in the standard normal space along with contours of (3 in
Fig. 3. Also shown in Fig. 3 are the three contours of @ that just
touch the three limit state functions corresponding to FS=1.25,
FS=1.47, and FS=1.70, indicating reliability indices of 0.2750,
0.6892, and 1.0396, respectively. The corresponding p; are thus
determined using Eq. (10) to be 0.392, 0.245, and 0.149, It should

]

Nomalized In{tang’)

=}
(o]

05

o

2 i L
-1 05 0 0.5 1 1
Nomalized InC*

[N]

Fig. 3. Limit state functions for a 2:1 slope and [ contours in stan-
dard normal space (v=0.5, p=0.5)

0.8

a4t o

L
0.12 0.14 016

Fig. 4. Limit state functions for a 2:1 slope and tangent B contours in
real space (v=0.5, p=0.5)

be noted that in this standard normal plotting space, the contours
of B are functions only of p while the limit state function lines are
functions of FS and v. The corresponding plot in real space is
shown in Fig. 4. In this plotting space, the contours of (§ are now
functions of FS, v, and p while the limit states remain functions
of FS and v. The proximity of the limit state functions to each
other in the real space is striking. Two of the lines are almost
identical.

Fig. 5 shows the influence of v on the limit state function in
the standard normal space for the case of FS=1.47. It can be seen

Normalized In(tang’ )

2 -18 -1 05 0 0.5 1 15 2
Nomalized inC*

Fig. 5. Influence of v on the limit state function for a 2:1 slope with
FS=1.47 (based on the means) in standard normal space (p=0.5)
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Normalized Inftang’ )

g I
2 -1.5 -1 05 0 0.5 1 15 2
Nomalized InC*

Fig. 6. Influence of slope inclination on the limit state functions for
a slope with FS=1.47 (based on the means) in standard normal space
(v=0.3, p=0.5)

that larger values of v result in the limit state function being
closer to the mean value, indicating lower B and higher p, values.

The limit state functions in standard normal space for three
different slope inclinations are shown in Fig. 6 for the case when
FS=1.47. The $=0.6892 contour is exactly tangent to the 2:1
limit state line but almost tangent to the other two lines, empha-
sizing again that the slope inclination makes little difference to p;
for slopes with the same FS (based on the mean). Table 4 sum-
marizes the computed p; for all cases considered.

The influence of p on slope probability of failure has also been
investigated in this paper. Results shown in Table 5 indicate that
when the mean values are on the safe side of the limit state
function p,<<0.5 positive p is conservative because it gives higher
probabilities of failure than negative p. If the equivalent normal

Table 4. p; Corresponding to Different v, FS, and Slope Inclinations

ES=125 FS=147 FS=1.70 FS=1.47 FS5=147
v (2:1 slope) (2:1 slope) (2:1 slope) (3:1 slope) (1:1 slope)
0.1 0.007 0.000 0.000 0.000 0.000
0.2 0.124 0.015 0.001 0.018 0.017
0.3 0.231 0.091 0.029 0.085 0.091
0.4 0.331 0.167 0.089 0.166 0.169
0.5 0.392 0.245 0.149 0.247 0.248
0.6 0.438 0.319 0.216 0.318 0.321
0.7 0.479 0.363 0.274 0.363 0.365
0.8 0.513 0.409 0.322 0410 0.408
0.9 0.546 0.441 0.360 0.441 0.442
1.0 0.571 0.475 0.399 0.475 0.475
1.1 0.585 0.509 0.430 0.500 0.509
1.2 0.608 0.527 0.462 0.527 0.527
1.3 0.622 0.549 0.479 0.548 0.548
14 0.639 0.569 0.508 0.568 0.568
L5 0.650 0.588 0.523 0.586 0.587

Table 5. p; Corresponding to Different p and v with FS=1.47 for
a 2:1 Slope

v p=0.5 p=0.0 p=-0.5
0.1 0.000 0.000 0.000
0.2 0.015 0.004 0.000
0.3 0.091 0.051 0.010
0.4 0.167 0.118 0.047
0.5 0.245 0.199 0.116
0.6 0.319 0.282 0.208
0.7 0.363 0.334 0.272
0.8 0.409 0.389 0.345
0.9 0.441 0.428 0.399
1.0 0.475 0.469 0.457
177 0.509 0.512 0.516
1.2 0.527 0.533 0.547
1.3 0.549 0.560 0.584
1.4 0.569 0.584 0.618
L5 0.588 0.607 0.649

mean values lie in the unsafe side of the limit state function
py=>0.5, however, the opposite is true, with positive p giving
lower probabilities of failure. The explanation lies in the fact that
irrespective of the location of the equivalent normal mean values
relative to the limit state function, positive p always results in the
B contours touching the limit state function at lower absolute
values of B than when p is negative. Since B is interpreted as
being positive when p,<<0.5 and negative when p,>0.5, Eq. (10)
will lead to a lower p, when p is positive since the resulting ( will
be less negative than when p is negative.

Figs. 7 and 8 show the influence of p when v=0.5 and
v=1.5. The mean values lie in the safe region when v=0.5 and
the unsafe region when v=1.5.

05

Nomalized Inftang’)
o]

Unsafe region

" .
2 -15 -1 05 0 0.5 1 15
Normmalized InC*

L]

Fig. 7. Influence of p on p; for a 2:1 slope with FS=1.47 (based on
the means) in standard normal space when p,<0.5 and v=0.5 (g is
performance function)
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Fig. 8. Influence of p on p; for a 2:1 slope with FS=1.47 (based on
the means) in standard normal space when p,>0.5 and v=1.5 (g is
performance function)

Random Finite-Element Method

In this section, the results of full nonlinear RFEM analyses with
Monte Carlo simulations are compared with results from FORM.

The RFEM involves the generation and mapping of a random
field of properties onto a finite-element mesh. The current online
RFEM codes have implemented only normal, lognormal, and
bounded distributions (Fenton and Griffiths 2008). There is no
restriction however on the type of distribution that could be mod-
eled by RFEM, provided that a normal transformation is available
[e.g., Fig. 5 in Low and Tang (2007)]. Since the random field in
RFEM is generated in the underlying normal space, it is easy to
map this normal distribution to some other distribution types. Full
account is taken of the local averaging and variance reduction
(Fenton and Vanmarcke 1990) over each element and an expo-
nentially decaying (Markov) spatial correlation function is incor-
porated. The random field is initially generated and properties are
assigned to the elements. After application of gravity loads, if the
algorithm is unable to converge within a user-defined iteration
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== @=0).25
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00 -
00 01 02 03 04 05 06 07 08 09 10
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Fig. 9. RFEM results giving p; of a 3:1 undrained slope with FS
=1.47 (based on the mean)
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Fig. 10. RFEM results giving p; of a 2:1 undrained slope with FS
=1.47 (based on the mean)

ceiling [see, e.g., Griffiths and Lane (1999)], the implication is
that no stress distribution can be found that is simultaneously able
to satisfy both the Mohr-Coulomb failure criterion and global
equilibrium. If the algorithm is unable to satisfy these criteria,
failure is said to have occurred. The analysis is repeated numer-
ous times using Monte Carlo simulations. Each realization of the
Monte Carlo process involves the same mean, standard deviation,
and spatial correlation length of soil properties, however, the spa-
tial distribution of properties varies from one realization to the
next. Following a “sufficient” number of realizations, the p, can
be easily estimated by dividing the number of failures by the total
number of simulations. The analysis has the option of including
cross correlation between properties and anisotropic spatial cor-
relation lengths (e.g., the spatial correlation length in a naturally
occurring stratum of soil is often higher in the horizontal direc-
tion). Further details of RFEM can be found in Griffiths and Fen-
ton (2004) and Fenton and Griffiths (2008).

A typical mesh is shown in Fig. 2, which has 910 finite ele-
ments, and thus contains 910 random variables for an undrained
$,=0 slope and 1,820 for a drained ¢’, ¢’ slope. The 2,000 simu-
lations were used in most cases while 5,000 simulations were
used for high spatial correlation lengths (® = 1.0) and high input
coefficients of variation (v = 1.0). The aim of this paper is to find
Ui and the minimum corresponding value of p observed in the
parametric studies was about 10%. If the maximum error of pyis
0.01 at a confidence level 90%, the required number of realization
is 2,435 [see, e.g., Fenton and Griffiths (2008)]. It can therefore
be said that 2,000 simulations is nearly adequate to achieve this
target error bound. The CPU time depends on pyand runs to about

——®=0 03125
‘ ——©=0.0625
104 ——@=0125

Py

o0 01 02 03 04 05 06 07 08 09 10

e,

Fig. 11. RFEM results giving p; of a 1:1 undrained slope with FS
=1.47 (based on the mean)
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Fig. 12. v vs ®c“ for different inclinations of an undrained slope
with FS=1.47 (based on the mean)

10 min if p;=0 and 2h if p;=1 (every simulation hits the iteration
ceiling) on a T7700@2.4GHz laptop for 2,000 simulations.

Undrained ¢ ,=0 Slope

The value of p. was fixed at C, g4, while v, was varied
in the range vcu=0.l,0.2,...,1.0 and @, was vared in the
range @ ={1/32,1/16, ... ,4}. Figs. 9-11 show the probability
of failure estimated by RFEM for the three slopes compared
with the ®C“=OD result obtained by FORM or Monte Carlo simu-
lations.

It can be seen that ignoring spatial variation underestimates the
probability of failure when v, is relatively high and overesti-
mates the probability of failure when v is relatively low. The
intersections of the ®Cu=00 line with other lines gives the v,
at which the @, = approach (i.e.,, no spatial variation) ceases
to be conservative. A plot of vy versus ®. is shown in Fig. 12.
It can be seen that ignoring spatial variation will underestimate
the probability of failure at lower values of vy, for steeper slopes
than for flatter slopes. In the case of steeper slopes, v, could
be as low as 0.27. Typical ranges of v , as reported for example
by Lee et al. (1983), Lacasse and Nadim (1996), and Lumb
(1974), are 0.05-0.5. It may be noted that from Fig. 12, ignoring
spatial variation will always underestimate p, for a 1:1 slope
when O, >0.5.

If spaﬁal variation is ignored, the slope inclination made no
difference to p; if FS (based on the mean) is the same in all cases
but using RFEM, the p; of a steeper slope was higher than that of
flatter slope. The reason for this is that RFEM allows the failure
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Fig. 13. v vs O for different FS values (based on the mean) for
a 2:1 undrained slope
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Fig. 14. RFEM results giving py of a 3:1 drained slope with FS
=1.47 (based on the means) p=0.5

mechanism to seek out the most critical path through the hetero-
geneous soil mass. For flatter undrained slopes, the failure mecha-
nism is nearly always deep and passes through the foundation
soils. For steeper slopes, the failure mechanism has more choices
and may go through the toe or pass through the deeper foundation
soils, leading to a higher py.

In order to investigate the influence of the FS on a single
slope, similar computations were carried out for 2:1 slopes with
He,=Cyrs=125 and pe =C, sy 7. Results in Fig. 13 show that
ign!z)ring spatial variation will underestimate the probability of
failure at lower values of vy for low FS slopes than high FS
slopes, where FS is based on the mean.

It should be noted that the vy corresponding to ®¢ =0.0 in
each case was obtained analytically from Eq. (8). The v in these
cases is the value that causes the median to equal C, gs.1p.

Drained C' -tan ¢' Slope

The spatial correlation lengths of C” and tan ¢’ are assumed to be
the same. That is

O=0p =0, (16)

and all other parameters are varied in the same range as in the
previous section. Figs. 14—-16 show the probability of failure com-
puted by RFEM for the three slopes with the ®=co results ob-
tained by FORM or Monte Carlo simulations.

It can be seen from Figs. 1416 that the slope inclination has
little influence on the p, and that ignoring the spatial variation
underestimates the probability of failure when v is relatively high
and overestimates the probability of failure when v is relatively
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Fig. 15. RFEM results giving p, of a 2:1 drained slope with FS
=1.47 (based on the means) p=0.5
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Fig. 16. RFEM results giving p, of a 1:1 drained slope with FS
=1.47 (based on the means) p=0.5

low. The intersections of the @=cc line with other lines give the
Ui above which the ® =2 approach (i.e., ignoring spatial varia-
tion) ceases to be conservative. The v, versus @ relationship is
plotted in Fig. 17, which demonstrates that the v_; is almost
independent of the slope inclination. This is different from the
undrained slope where v, was lower for steeper slopes. The
RFEM results are less sensitive to slope inclination and more like
those given by ignoring spatial variation for drained (¢’,d’)
slopes than undrained slopes because the failure mechanism for
nearly all slope inclinations tends to pass through the toe.

In order to investigate the influence of the FS (based on the
means), similar computations were carried out for 2:1 slopes with
FS=1.25 and FS=1.70. Results in Fig. 18 show that v_;, is lower
for low FS slopes (based on the mean). This is a similar trend to
that observed in undrained slopes.

Finally, the influence of the cross correlation between In C’
and In(tan ¢') was investigated, for 2:1 slopes by performing
additional RFEM runs with p=0 and p=-0.5. Results in Fig. 19
show that v is lower when In C’ and In(tan ¢’} are positively
correlated than when they are negatively correlated. It should
be noted that RFEM always gave the highest p, when p=0.5 and
the lowest p, when p=—0.5 irrespective of whether p;>0.5 or
p#<<0.5. Ignoring spatial variation, however, gave the opposite
trend for p,=>0.5 and py<<0.5 as described previously.

The range of vy reported, for example by Lee et al. (1983),
Lacasse and Nadim (1996), and Lumb (1974), is 0.02-0.56
(the corresponding range of Utan ¢+ Would be 0.03-0.74 when

~#—3:1 slope
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e

Fig. 17. v vs © for different slope inclinations for a drained slope
with FS=1.47 (based on the means) p=0.5
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Fig. 18. v, vs O for different FS values (based on the means) for a
2:1 drained slope p=0.5

¢’ =30°). It was observed that v, was higher when p was nega-
tive than when it was positive, as shown in Fig. 19. Some inves-
tigators [e.g., Rackwitz (2000)] have suggested that p=-0.5.
The minimum v obtained in this paper (based on tan ¢') is 0.56
for the 2:1 drained slope with FS=1.25 and a positive p=0.5.
Lower v values will be observed in steeper slopes and/or slopes
with lower FS.

It should be noted that the v, corresponding to @=0.0 can be
obtained analytically. As shown in Eq. (8), in the limit as ® —0,
local averaging removes all variance and the mean tends to the
Median, thus

Kc’
Kera= 7 (17)
1+ Uerit
Hotan [0}
i = e (18)
T+u,

cr

where the subscript A denotes a local average. In this case, the
slope will be uniform with the strength parameters set equal to
their median as given by Egs. (17) and (18) everywhere. The
value of v, that would give FS=1.0 can be obtained by substi-
tuting Eqs. (17) and (18) into Eq. (13)

——p=-0.5

vC}’H’

0.0 1.0 2.0 3.0 4.0
(G

Fig. 19. v vs © for different p values for a 2:1 drained slope with
FS=1.47 (based on the means)
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FS(ID Hecras ln(p‘tan q;'A))
a+a ln( a5 )+ ln( W by )
- —_— a > e s §
1 ’ V1+ Ufm ’ v1+ Ugri!

2 2
+a (ln(ﬁ.uc—’>) +a (]n(—m)) =0
) \1 + Ugrit ’ \1 + Uzrit
(19)

The five coefficients a;,a,,...,as depend on v so an iterative
process has been used to solve Eq. (19). The solution gives the
value of v below which p,=0 and above which ps=1.

Concluding Remarks

The paper has investigated the probability of slope failure using

FEM combined with FORM without spatial variation and more

advanced (RFEM) probabilistic analysis tools. The term RFEM

denotes FEM combined with Monte Carlo simulation with spatial
variation are properly taken into account. The RFEM enables the
failure mechanism to seek out the weakest path through the het-
erogeneous soil mass which can lead to higher probabilities of
failure than would be predicted by ignoring spatial variation. The
numerical studies have shown that ignoring spatial variation will
lead to unconservative estimates of the probability of slope failure
if the coefficient of variation of the input shear strength param-
eters exceeds a critical value v ;. The lower the value of v, the
more likely it is that ignoring spatial variation will underestimate
the probability of failure for typical ranges of soil variability. The
paper has presented graphs to indicate the magnitude of vy, for
different parametric combinations, from which the readers can
decide whether ignoring spatial variation (i.e., assuming perfect
spatial correlation) is appropriate and conservative for use with
their specific soil parameters. The lognormal distribution, as used
in this study, is believed to be a reasonable model of soil strength
although a thorough comparison of distribution types in the con-
text of RFEM is a topic for future research.

In summary

1. vy is lower for slopes with low factors of safety (based on
the mean) than for slopes with high factors of safety.

2. vy 18 lower for steeper slopes than less steep slopes under
undrained &,=0 conditions. Slope steepness was found to
have little influence on v, in drained ¢’, ¢’ slopes.

3. vy is lower if the strength parameters ¢’ and tan ¢’ are
positively correlated than if they are negatively correlated.
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Notation

The following symbols are used in this paper:
C, = dimensionless undrained cohesion;
= dimensionless undrained cohesion when FS
=1.0;

Cu,FS:l

CyFrs=125
Cps=147

Cyrs=170

CI

o
Cu
Uc

uA

O L

dimensionless undrained cohesion when FS
=1.25;

dimensionless undrained cohesion when FS
=147,

dimensionless undrained cohesion when FS
=70

dimensionless drained cohesion;

undrained cohesion;

drained cohesion;

foundation depth ratio;

factor of safety

slope height;

constant used for sampling limit state function;
number of random variables;

probability of failure;

correlation matrix;

coefficient of variation;

coefficient of variation of dimensionless
drained cohesion;

coefficient of variation of dimensionless
undrained cohesion;

critical coefficient of variation;

coefficient of variation of tangent drained
friction angle;

random variable;

slope angle;

FORM reliability index;

the Hasofer-Lind reliability index;

soil unit weight;

saturated soil unit weight;

dimensionless spatial correlation length;
dimensionless spatial correlation length of
undrained cohesion;

dimensionless spatial correlation length of
drained cohesion;

dimensionless spatial correlation length of
drained tangent friction angle;

spatial correlation length of undrained cohesion;
mean dimensionless undrained cohesion after
local averaging;

mean dimensionless drained cohesion after
local averaging;

equivalent normal mean of undrained cohesion;

equivalent normal mean of the ith random
variable:

mean tangent drained friction angle after local
averaging;

cross correlation coefficient;

correlation coefficient between properties
assigned to two points;

standard deviation of dimensionless undrained
cohesion;

standard deviation of dimensionless undrained
cohesion after local averaging;

equivalent normal standard deviation of
undrained cohesion;

equivalent normal standard deviation of the ith
random variable;

absolute distance between two points in a
random field;

cumulative standard normal distribution
function;
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b,
d)!

undrained friction angle; and
drained friction angle.
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