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Abstract: The paper discusses finite element models for predicting the elastic settlement of a strip footing on a variable soil. The paper
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Introduction

A key objective of a probabilistic geotechnical analysis is to
answer the following question: given statistical data (means,
standard deviations, spatial correlation lengths, and cross correla-
tions) relating to geotechnical input parameters (e.g. strength
parameters ¢’, tan ¢’, seepage parameters k, and settlement
parameters E) what is the probability of (usually undesirable)
events occurring (e.g. bearing failure, excessive seepage, and
excessive settlement)?

The finite element method offers great potential for tackling
the probabilistic question posed in the first paragraph and has
tended to be used in one of two modes: firstly under the general
heading of the stochastic finite element methods (SFEMs) (e.g.,
Baecher and Ingra 1981; Vanmarcke and Grigoriu 1983; Ghanem
and Spanos 1991; Haldar and Mahadevan 2000; and Sudret and
Der Kiureghian 2002), where the finite element method has been
combined with a truncated Taylor series, and secondly the random
finite element method (RFEM), as developed by the authors (e.g.,
Griffiths and Fenton 1993; Fenton and Griffiths 1993), in which
random fields are combined with the finite element method
through Monte Carlo simulations.

Both methods lead to estimates of the mean and standard de-
viation of output events although the more general Monte Carlo
approach has the advantage of generating the entire distribution of
output events or of estimating probabilities directly by counting
the number of times the event occurs as a proportion of the total
number of simulations. In order to make probabilistic statements
from the SFEM approach, the mean, and standard deviation must
be combined with the assumption of a probability density func-
tion (e.g. Gaussian).

The Taylor series approach frequently involves truncation after
the first order terms, leading to the well established first order
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second moment (FOSM) method. The method can estimate means
and variances (or second moments) of functions of random vari-
ables, and has been described by numerous investigators in rela-
tion to geotechnical analysis (e.g., Harr 1987; Duncan 2000; and
Baecher and Christian 2003).

In this paper we take a problem of elastic foundation settle-
ment, and compare the approximate FOSM method as imple-
mented in SFEM, with a general approach to the same problem
using RFEM. Issues of relative accuracy and efficiency will be
discussed.

Problem Statement

Assuming consistent units throughout, the problem considered in
this paper as shown in Fig. | is of a smooth rigid strip footing of
width B=1.0 subjected to a centrally applied vertical force
P=1.0. The soil domain has a depth H#=2.0 and the boundary
conditions assume plane strain, with perfectly rough conditions at
the bottom of the layer. The stiffness of the soil layer is defined by
Young’s modulus £, which in the probabilistic analyses will be
assumed to be a lognormally distributed random field with mean
Mg, standard deviation g, and (isotropic) spatial correlation
length 8y, ;. The spatial correlation length 6, » is the distance over
which values of the log of Young’s modulus can be expected to
have significant positive correlation and may be conveniently
nondimensionalized with respect to the footing width as
O =0y, £/ B. Since Young’s modulus is lognormal, the spatial cor-
relation length is defined with respect to the underlying normal
distribution of In E. The definition of correlation length will be
discussed in more detail later in the paper. Poisson’s ratio is con-
stant throughout at v=0.25. The key output parameter in this
study is the vertical footing settlement &. Following some initial
deterministic validations, the paper will focus on estimating the
mean g and standard deviation oy of this settlement by different
finite element-based methods.

Deterministic Analysis

Some initial deterministic analyses were performed by finite ele-
ments to demonstrate the influence of boundary conditions and
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Fig. 1. Footing problem to be considered in this paper

Young’s modulus variability on footing settlement. In order to
make direct comparisons between SFEM and RFEM later in the
paper, a mesh of square four-node elements was used, as shown in
Fig. 2. All runs used the public domain software of Smith and
Griffiths (2004), with the smooth rigid footing modeled by
“tying” the vertical freedoms at the nodes beneath the footing
location.

Boundary Distance

Several runs were performed with uniform properties to assess the
influence of side distance as a function of footing widths via the
parameter A, as shown in Fig. 2. Fig. 3 gives a plot of \ versus
8/H where 8/H is the settlement & of the footing, nondimension-
alized with respect to the depth of the soil layer H. The results
indicate a steep reduction in settlement in the range 0 <A <C1.0,
and reasonably constant settlement values for A > 1.0. The special
case of A=0 corresponds to confined one-dimensional compres-
sion which leads to a settlement given exactly by

8/H=0,(1+v)(1-2v)/E/(l-v)=0.833 (1)

where o,=P/B=1.0=applied vertical stress. The probabilistic
studies described later in this paper used A=1.6, which corre-
sponds to the plane strain mesh shown in Fig. 2, which has 840
square four-node elements and 1,786 degrees of freedom. With
this value of X, the boundaries will have little effect on predicted
settlement.
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Fig. 2. Typical mesh of four-node square elements (840 elements,
1786 degrees of freedom)
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Fig. 3. Influence of side distance AB on settlement ratio 8/H

Influence of Variable Stiffness

A brief study was performed to qualitatively assess the influence
of variable soil stiffness on footing settlement. Fig. 4 shows a
mesh in which Young’s modulus takes two values, E,, and E
that alternate from one element to the next in a checkerboard
fashion, while maintaining the mean value at

We= (Emax + Emin)f’z =1.0 (2)

Poisson’s ratio was fixed at v=0.25 and the rigid footing was
subjected to a unit load as in the previous example. It may be
noted that in this demonstration, a footing of width B=1.1 was
assumed with an odd number of elements to guarantee symmetry.

The results shown in Fig. 5 for six different (£, , Ep,) COmM-
binations indicate that the less-stiff elements have a greater influ-
ence than the stiffer elements on the overall response. The
ordinate is plotted in terms of the displacement magnification
factor compared with what would have been obtained with a uni-
form soil with E_, =F ;,=1.0 throughout.

The greatest magnification obtained was about 1.05 corre-
sponding to the case where E,,,=2.0 and E_;,=0.0. In this ex-
treme case, the white squares in Fig. 4 would correspond to voids
with zero stiffness.

Probabilistic Analysis

The results of the previous section have indicated that variable
soil stiffness leads to greater settlement than would be obtained in
a uniform soil with the mean stiffness throughout. The remainder
of this paper will introduce soil variability into the footing settle-
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Fig. 4. Checkerboard study involving alternating Young’s modulus
values

1630/ JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / NOVEMBER 2009



105
) A
. - E 20
=1.0 = 0.25 Ew—l.s / mx
N R it E. =02 Epg =00
g 100 .
3 B/
R E_ =14
-?j =10 E e =0.6 /
< 401 ] E‘“ﬁ"‘=1'u 7 *
m=10 | | [E_-1s
r'd iy o
= oo |
- E. =08
60 05 10 15 20 26
Ewm‘Enr.‘ae

Fig. 5. Influence of alternating Young’s modulus variability in check-
erboard study

ment problem in a more systematic way by describing the soil
stiffness statistically. In this approach the value of Young’s modu-
Ius assigned to each element in the finite element mesh is treated
as a random variable. We will start with the SFEM and a brief
review of the underlying theory involving multiple random vari-
ables, i.e., random fields.

Review of the FOSM Method for Multiple Random
Variables

Consider a function f(X,,X,,...,X,) of n correlated random vari-

ables with means py, i=1,2,...,n and variances o%, i

i .
=1,2,...,n. To a first order of accuracy the mean of the function
is given by

Mg = E[f(X,X,, -+ X,)] *f(MXIsMXZs ,leﬂ) (3)

and its variance by

n

oF = Var[f(X,, Xy, -+ X,)] = 2 2, (9f19x,)(df/8x;)CovX, X,]

=1 j=1
4)

Cov[X;,X;] is the covariance between X; and X; defined as
Cov[X,. X;]=p;; Ox0x; (5)

where p;; is the correlation coefficient between X; and X..

The first derivatives in Eq. (4) are computed at the mean val-
ues (pxl,pxz, ""”Xn) and can be evaluated numerically or, if a
functional form exists, analytically.

SFEM Using FOSM

We now reconsider the settlement problem as shown in Fig. 6
with a random Young’s modulus. Let Young’s modulus be a log-
normally distributed random field with mean and standard devia-
tion given by pp and o, respectively, and spatial correlation
length 6), ;. In this paper we will assume a Markov correlation
function given by

P i = exp(— 21/0y, g (6)

where ;; denote (absolute) distance between two points i and j in
the random field. For example, from Eq. (6), the log of Young’s
modulus at two points spaced 0y, z apart would have a correlation
coefficient of py, ;= 0.14. Points closer together would have
higher values of py, ; and vice versa.
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Fig. 6. Schematic of mesh with random Young’s modulus assigned to
each element

The random variables in this case are the values of Young’s
modulus assigned to each element in the mesh. For illustrative
purposes Fig. 6 shows a rather coarse mesh, but the case studies
described later will use the mesh shown in Fig. 2.

Based on a conventional elastic finite element analysis with n
elements, the computed settlement of the rigid footing depends on
the Young’s modulus of each element, thus

Szf(El,Ez, ..‘,En) (7)

hence from Eqgs. (3) and (4), the mean settlement is given by

bo=ELAELEy - E]= flag by o) (8)

and the variance by (see e.g., Fenton and Griffiths 2008)

n n

o} = Var[f(Ey,Ey, ... .E)] = 2, >, (38/3E,)(38/4E,)Cov| E,, E}]

i
i=1 j=1

(9)

In order to be consistent with the RFEM to come later, the input
“point” statistics (g, 0z) have been adjusted inside the SFEM
program to account for local averaging over each element. Thus
the actual statistics used in the SFEM analysis are the locally
averaged ones given by ('J‘EA’UF-A)' Local averaging deliver sta-
tistically consistent properties, but has nothing to do the “discreti-
zation error” inherent in any finite element analysis. If we define
the side length of each square finite element in Fig. 6 as o, g,
two-dimensional local averaging, which is applied to the under-
lying normal distribution of In E, is expressed through a variance
reduction factor 0 <<y <C1 defined

’YzU(ZlnE)A"Ulan (10)

where cr,zn EAzlocally averaged value of the variance of In E, ac-
counting for spatial correlation length and element size. The vari-
ance reduction factor can be obtained from the expression

v = (4/0&4)] J' (o —x) (e - y)e'z\"mdxdy (11)
0 Jo

which can be evaluated by numerical integration.

Local averaging of a lognormal distribution of E causes both
the mean and standard deviation to be reduced according to the
following algorithm:

1. Given a lognormally distributed random variable E with
point statistics pz and oz (vy=0g/g), and spatial correla-
tion length 8y, £

2. Compute the underlying normal distribution parameters of
In E from py, g=In p—0.5 In (1+v3) and oy, z= \fln(1+v?“5);

3. Obtain o, and hence compute the variance reduction factor -y
from Eq. (11);
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Fig. 7. Centroidal distance used in calculation of covariance matrix

4. Compute the locally averaged standard deviation from
Oin £),=Oln £\Vy; and

5. Retrieve the locally averaged lognormal parameters from
Wg, =€Xp (T E+O.50'(2ln E)A) and UEA:;.LEA\,exp(cran E)A) —-1.

Essentially, local averaging becomes more significant when o
is large (mesh coarse relative to the spatial correlation length) and
less significant when « is small (mesh refined relative to the spa-
tial correlation length).

The mean settlement from Eq. (8) is easily obtained by a con-
ventional elastic finite element analysis with all E values within
the mesh set to the locally averaged mean. In order to compute
the variance of settlement from Egs. (9) the covariance and the
derivatives must first be found.

Estimation of Covariance

In Eq. (6) we defined the correlation coefficient py, ; between the
log of Young’s modulus assigned to any two elements ¢ and j,
whose centroidal distance is given by 7;;, as shown in Fig. 7. To
estimate the covariance between actual Young’s modulus values
(not log), we need the correlation coefficient p;; which can be
obtained from the transformation (e.g., Vanmarcke 1983; Fenton
and Griffiths 2008)

P = [explpin 507, p) — 11/exp (o7, p) — 1] (12)
This leads to the “Covariance Matrix” needed by Eqg. (9) as

Cij=C0V[Eg=Ej]=pij0'25 (13)

Estimation of Derivatives

In general, derivative terms in Eq. (9) such as ¢8/dE; can be
found using numerical differentiation. In this paper, where all the
elements are square, an analytical approach is available because
the element stiffness matrices can conveniently be expressed in
closed form. Both methods will be briefly reviewed in the follow-
ing sections.

Numerical Differentiation

In this case the derivatives are obtained by “perturbing” the stiff-
ness of each element while anchoring the remaining elements at
their mean value wp. As shown in Fig. 8, in order to estimate
dd/dE, for Element 1, the footing settlement is computed twice;

Settlement = & ‘j:
;
Element 1
P I I Y
M| e | e | B | e
Uy Ly g M M He
3 Settlement = &
ﬂ
Elernent 1
Y I R T
e | M| M 1 e |
m | o | o 1y He | s

Fig. 8. Computation of settlement derivatives by numerical differen-
tiation

once corresponding to an increase in the mean stiffness pp+AE
to give 87, and once corresponding to a decrease in the mean
stiffness pp—AE to give 8]. A central difference approximation
then gives

98/0E, = (8% — 87)/(2AE) (14)

Following a similar numerical differentiation procedure for each
of the elements, a mesh with » elements will therefore require a
total of 2n+ 1 independent elastic analyses in order to estimate the
first order mean and standard deviation from Egs. (8) and (9). The
influence of the choice of increment AE is discussed later in this

paper.

Analytical Differentiation

The numerical differentiation approach is quite general and can
be used in any analysis, however if a functional form of the rela-
tionship between settlement & and the Young’s modulus of each
element E; is available, exact analytical differentiation can be
performed. The global stiffness relationship for the mesh is given
by

[K]{8} = {F} (15)

where [K]=global stiffness matrix; {8}=global displacement vec-
tor; and {F}=global force vector.

Differentiation of Eq. {15) with respect to each random vari-
able £, i=1,2,...,n gives
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(TE[K]){B}+ [K]H—a{ﬁ}: TE,.{F} (16)

where [K] and {8}=evaluated using .y in all elements. For con-
stant loading

17
a_a{F} ={0} (17)
hence,
-41)1 ]
4'1)]
d 1
a—i[k] ~ 24(1 +v)(1 - 2v)

where v;=3-4v; vy=1-4v; and v;=3-2v.

The analyses described by Egs. (15)—(18) involve the solution
of 1,786 simultaneous equations n+1 times, where n is the num-
ber of elements in the mesh. This can be contrasted with the
solution of the same number of simultaneous equations 2n+1
times in the numerical version. Even more importantly, since the
left-hand-side matrix [K] in the analytical version remains un-
changed, it need only be factorized once, followed by n+1 for-
ward and back-substitutions. The numerical version on the other
hand cannot take advantage of factorization since each global
stiffness matrix in Eq. (15) is different. In summary, the analytical
version requires significantly less computational effort than the
numerical version.

0.4
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Fig. 9. Comparison of results obtained by numerical and analytical
differentiations

[KJ(%{S}) e (%[K]){a} (18)

and all the required derivatives can be obtained by solution of a
set of equations (n times). The right-hand-side of Eq. (18) is
obtained by assembling all the element derivative matrices, which
for the square four-node elements with eight degrees of freedom
as used in this study can be obtained in closed form as

-4 3v, -2v; 3 —-2u; -3y,
-3v, -2v; 3 -2vuy 3v, -4
4, 3 =2v; 3w -2v -3
4v; =3v, -4 -3 =2y (19)
4v; -3 —4v 3y,
dv; =3vu, —2u
dv, 3
4u, ]

Comparison of Results Using Numerical and Analytical
Differentiation

Analytical differentiation is “exact” within the limitations of the
finite element discretization, so it offers us the opportunity to
assess the accuracy of the more general, but approximate numeri-
cal differentiation approach. The key parameter to be assessed
here is the magnitude of the “perturbation” AE as used in Eg.
(14). In order to compare numerical and analytical results, AE
will be expressed as

(20)

where m represents the proportion of the standard deviation that
the central difference formula deviates Young’s modulus below
and above the mean.

Fig. 9 shows the standard deviation of the output footing
settlement as a function of the standard deviation of the input
Young’s modulus for two m values. In all cases the mean Young’s
modulus was fixed to pwp=1.0 and the dimensionless correlation
length to Oz=1.0.

The use of m=1.0 as advocated by some investigators [e.g.,
Duncan (2000)], implies AE=o which by any standards repre-
sents a large perturbation. The m=1.0 result consistently gives a
higher settlement variability than obtained by the analytical ap-
proach, although the difference is not that great considering it
makes use of a central difference scheme that encompasses a
range of two standard deviations. Results obtained with lower m
values converged rapidly on the analytical solution. SFEM results
presented in this paper used the analytical approach.

AE=moy

Review of the RFEM

The RFEM involves generating a random field of soil properties
with controlled mean, standard deviation and spatial correlation
length, which is then mapped onto a finite element mesh. A con-
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Fig. 10. Typical realization of an RFEM analysis showing the ran-
dom field of Young’s modulus (darker is stiffer)

ventional elastic finite element analysis using these properties is
then performed to compute the footing settlement, after which the
process is repeated many times using Monte Carlo simulations. In
the Monte Carlo process, the underlying statistics of Young’s
modulus are held constant, however its spatial distribution and
hence the computed settlement of the footing (under a constant
load) is different at each simulation. Following a sufficient num-
ber of simulations, the output settlement becomes statistically
stable and can be analyzed. A study involving RFEM analysis of
single and multiple footings has previously been described by
Paice et al. (1996) and Fenton and Griffiths (2002, 2005). In the
current study 2,000 realizations were used for each parametric
combination, leading in each case to an estimate of the mean and
standard deviation of the footing settlement given by p; and o,
respectively. Tt should be noted that unlike the SFEM approach,
this method gives a histogram of settlement values which can be
fitted, if required, to an appropriate function {(e.g., lognormal) for
probabilistic interpretation. The program used in this study and
many others for performing geotechnical analysis by RFEM is
freely available from the website (hitp://www.mines.edu/~vgriffit/
rfem).

The random field is generated using the local average subdi-
vision (LAS) method (Fenton and Vanmarcke 1990) which takes
full account of local averaging as previously described in Section
5. A convenient aspect of LAS is that the random field is gener-
ated over cells that are the same size as the finite elements, greatly
facilitating the mapping of properties onto elements. A typical
realization of an RFEM analysis is shown in Figure Fig. 10. The
darker zones indicate stiffer soil, and the lighter zones indicate
less-stiff soil.

Comparison and Discussion of SFEM and RFEM
Results

The objective of this section is to compare the mean and standard
deviation of footing settlement as estimated by the SFEM and
RFEM methods (e.g., Herlyck 2005). In all cases the mean
Young’s modulus is held constant at wz=1 while the standard
deviation and spatial correlation length are varied in the range
0<op<1 and 0<<®;<5. In all cases, the mesh of Fig. 2 was
used, and Poisson’s ratio was held constant at v=0.25. For com-
parison purposes later, we will define the deterministic settlement
84.:=0.92 as the footing settlement that would be obtained on
a uniform soil with the stiffness set everywhere to the
mean Lg=1.
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Fig. 11. Variation of (a) mean and (b) standard deviation of footing
settlement versus coefficient of variation of input

In Fig. 11, the coefficient of variation of Young’s modulus,
vg=0g/ g has been varied while fixing the spatial correlation
length at @z=1. Both the mean (p;) and standard deviation (o)
of settlement as shown in Figs. 11(a and b), respectively, are
underestimated by SFEM as compared with RFEM, with the dif-
ference growing consistently with the input coefficient of varia-
tion of Young’s modulus (vg). These results indicate that SFEM
will lead to unconservative (underestimates) of the probability of
the settlement exceeding some allowable design threshold. The
error in SFEM in both the mean and standard deviation plots is
quite similar and reaches about 15% at vy=0.5, which might be
considered an upper-bound on stiffness variability for many soils
(e.g., Lee et al. 1983). Matthies et al. (1997) observed a similar
divergence between Monte Carlo and perturbation methods in a
different application. The consistency of the underestimation in
both settlement mean and standard deviation is further empha-
sized in Fig. 12, where the coefficient of variation (vg=os/ps) of
the predicted settlement by both methods is remarkably similar. In
Fig. 13, the spatial correlation length of Young’s modulus has
been varied in the range 0 << ® ;<5 while fixing its coefficient of
variation to vy=0.3.

The influence of spatial correlation length on footing settle-
ment in random soils using the RFEM has been discussed in
detail in Fenton and Griffiths (2002, 2005). As @;—0, (1) the
mean settlement tends to a value corresponding to a uniform soil
with the stiffness set everywhere to the median Young’s modulus
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Fig. 12. Coefficient of variation of input (vg) and output (vg)

given by exp(jL, ). Since the median of a lognormal distribution
is smaller than the mean by the factor (1+v3)"2, the settlement in
therefore bigger than 8, by this same factor, and (2) the standard
deviation tends to zero, thus

Hsrrem) — Sde(1 +05) "2

(21)
Tsrrem) — 0

In this case pygpemy— 096 and o) — 0, which are the val-
ues given by the RFEM results in Figs. 13(a and b) as @;—0.

Both SFEM and RFEM are in agreement for ®,— 0, however
for higher values of @, the methods give diverging results with
SFEM consistently underestimating both the mean and standard
deviation of settlement as shown in Figs. 13(a and b). Once more
we can conclude that SFEM will lead to unconservative probabi-
listic estimates.

Closer inspection of Fig. 13(a) reveals that as @p— oo, the
SFEM gives a falling mean settlement where pgsrpy)— e
=0.92, which is the deterministic result obtained in a uniform soil
with Young’s modulus set everywhere to the mean value of
Young’s modulus pp=1.0.

The RFEM results are more ragged due to the Monte Carlo
simulations, however there is a clear trend as ®— = of increas-
ing mean settlement. Fenton and Griffiths (2005) showed theo-
retically that due the reciprocal relationship between E and 3, as
Op—

2
PareEm) — Saell + V)
(22)
Os(RFEM) — Ma(RFEM)VE

In this case pymppny— 1.00 and ogrppvn — 0.30, which are the
asymptotes to which the RFEM results in Figs. 13(a and b) are
heading as @p— oo,

Fig. 12 demonstrated that SFEM and RFEM give the same
coefficient of variation of the footing settlement, so the footing
standard deviation asymptote as @zp—o from SFEM is
O5(spEM) — KasramyV g=0.28, as shown in Fig. 13. The SFEM re-
sults underestimate the probability of design failure and are on the
“unsafe” side. This conclusion would have been reached for any
initial choice of @ and vy The lower probability of failure is
clearly due to the lower mean settlements consistently predicted
by SFEM, but fundamentally, the shortcomings of SFEM as com-
pared with RFEM, is that it is unable to directly model the influ-
ence of a spatially variable soil stiffness.
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Fig. 13. Variation of (a) mean and (b) standard deviation of footing
settlement versus spatial correlation length of Young’s modulus

Concluding Remarks

The paper has presented results of finite element analyses of the
settlement of a rigid footing on an elastic soil. First a sensitivity
study demonstrated the influence of side boundary proximity and
then the investigation was expanded to examine the role of vari-
able stiffness on footing settlement. In a simple “checkerboard”
study, it was shown that if stiff and less-stiff elements are distrib-
uted systematically beneath the footing, the less-stiff zones domi-
nate the response and the overall settlement increases. The paper
then compared two probabilistic finite element methodologies for
the stochastic analysis of footing settlement. Results from a
SFEM based on FOSM approximations were compared with re-
sults from a RFEM which involved modeling the soil as a random
field with Monte Carlo simulations.

The SFEM cannot directly model the influence of spatial vari-
ability nor the nonsymmetric lognormal distribution. This short-
coming was particularly highlighted when v, was held constant
and the spatial correlation length ® gradually increased. In this
case the mean settlements by the two methods went in opposite
directions, with SFEM and RFEM predicting decreasing and in-
creasing mean settlement, respectively. The divergence between
the two means, as shown in the simple checkerboard study, is due
to the fact that settlement is dominated by the low stiffness values
in the random fields. The SFEM also consistently underestimated
the standard deviation of footing settlement. In any subsequent
probabilistic study of allowable settlement, the SFEM would in-
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evitably lead to unconservative (underestimates) of the probabil-
ity of design failure.

In conclusion, care must be taken when using the less general
SFEM approach in probabilistic foundation settlement analysis
While SFEM may give reasonable predictions for low input prop-
erty variance, it will always lead to underestimates of the prob-
ability of design failure compared with the RFEM.
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Notation

The following symbols are used in this paper:
B = footing width;

C;; = covariance between points 7 and j in the
random field;
¢’ = cohesion;

E = Young’s modulus;
E: = Young’s modulus in the ith element;
E .« = maximum Young’s modulus;
Ein = minimum Young’s modulus;
{F} = global force vector;
H = depth of soil layer;
i = simple counter;
[K] = global stiffness matrix;
k = permeability;
[k] = element stiffness matrix;
m = perturbation parameter during numerical
differentiation;
n = number of random variables;
P = load on footing;
vy = coefficient of variation of Young’s modulus

(=0p/ wp);

vy = coefficient of variation of Young’s modulus
(=05/ pe);

X; = ith random variable;

a = element size parameter;
v = variance reduction factor;
AE = change in the Young’s modulus during
numerical differentiation;
& = footing settlement;
{8} = global displacement vector,
87 = footing settlement due to an increment of AE
in element i;

8, = footing settlement due to a decrement of AE
in element ¢;
84 = deterministic settlement with the mean

Young’s modulus;
®; = dimensionless spatial correlation length
(:eln E’IB);
01, = spatial correlation length of log of Young’s
modulus;
A = side distance parameter;
pgy = mean of Young’s modulus;
Rg, = locally averaged mean of Young’s modulus;

g, = mean of Young’s modulus in the ith element;
py = mean of a function of random variables;
M g = mean of log of Young's modulus;
Rag), = locally averaged mean of log of Young’s
modulus;
Ly, = mean of the ith random variable;
p,?: = mean of footing settlement;
Msrrev) = mean of footing settlement by RFEM,
Rsseemy — mean of footing settlement by SFEM;
p; = correlation coefficient between X; and X;
Py = correlation coefficient between In X; and
In X &
op = standard deviation of Young’s modulus;
og, = locally averaged standard deviation of
Young’s modulus;
o, = standard deviation of a function of random

variables;
o = standard deviation of log of Young’s modulus;
Op), = locally averaged standard deviation of log of
Young’s modulus;
o, = vertical stress on footing;

oy = standard deviation of the ith random variable;

i

o; = standard deviation of footing settlement;

Osreemy — standard deviation of footing settlement by
RFEM;
Ossrem) = standard deviation of footing settlement by
SFEM;
T; = distance between points i and j in the random
field;
u = Poisson’s ratio;
v;,vy,v3 = functions of Poisson’s ratio; and
¢’ = friction angle.
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