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Observations on the extended Matsuoka—Nakai failure criterion
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SUMMARY

The equivalent Mohr-Coulomb (M-C) friction angle d)’mc (J. Geotech. Eng. 1990; 116(6):986-999) of
the extended Matsuoka-Nakai (E-M-N) criterion has been examined under all possible siress paths. It is
shown that ¢} . depends only on the ratio of cohesion to confining stress ¢’ /% and the frictional angle

¢.., where ¢ is the friction angle measured in triaxial compression (or extension) to which the E-M-N
surface is fitted. It is also shown that ¢y, is independent of ¢’, when ¢ =0 and of aywhen ¢/ =0, with

the former representing an upper bound and the latter a lower bound of ¢/, for any particular stress path.
The closest point projection method has also been implemented successfully with the E-M-N criterion,
and plane strain and axisymmetric element tests performed to verify some theoretical predictions relating
to failure and post-yielding behavior. Finally, a bearing capacity problem was analyzed using both E-M-N
and M-C, highlighting the conservative nature of M-C for different friction angles. Copyright © 2009
John Wiley & Sons, Ltd.

Received 18 September 2008; Revised 17 December 2008; Accepted 31 March 2009

KEY WORDS: failure criterion; Matsuoka—Nakai; Mohr—Coulomb; finite element method; closest point
projection method; elastoplasticity

1. INTRODUCTION

Prediction of failure stresses for frictional/cohesive soils has traditionally been based on the
Mohr-Coulomb (M-C) criterion, which can be written in the form f =0, where

f=3(0)+03)sing— 1 (5] — o)~ c'cos g W

where ¢’ and ¢/ are the cohesion and friction angle, and ¢} and 6’3 are the major and minor
principal effective stresses. A tension-positive sign convention is assumed throughout.
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1890 D. V. GRIFFITHS AND J. HUANG

The M-C criterion has been criticized on the grounds that it takes no account of the intermediate
principal stress ¢. Based on the spatially mobilized plane concept, Matsuoka and Nakai (M-N)
[1] proposed a criterion for cohesionless soil

(005 + 0505+ 0307 (0) + 04+ 0%) B

e Kvn (2)
G’I 0'20'3

where the material constant KN has been shown (e.g. [2]) to be given by
_ 9—sin’ ¢,
 1—sin? ¢,

3)

Kmn

In order to extend the M-N criterion to that for frictional and cohesive material, the normal
stress can be shifted as

o=0 +oy 4)

where 6p=—c’cot ...

When the M-N criterion has been shifted in this way, it is then called the extended Matsuoka—
Nakai (E-M-N) criterion (e.g. [3-5]). The E-M-N criterion reduces to the von-Mises criterion
when g — oo or when ¢, =0.0 for ¢/ #0.

As shown in Figure 1, E-M-N coincides with M-C at all apexes corresponding to triaxial
extension and compression.

Griffiths [2, 6] examined the M-N criterion in relation to the M-C criterion and proposed the
concept of an equivalent friction angle ¢/, . as the angle of friction of the equivalent M-C surface
that would pass through a particular point in stress space under consideration. This approach
enables direct comparisons to be made between different failure criteria using a familiar soil
mechanics parameter. In the same paper a method involving the solution of a cubic equation was
presented for determining ¢}, for the M-N failure surface. This concept is adopted in this current
paper to further investigate the E-M-N criterion.

Mohr-Coulomb ol Extended Matsuoka-Nakai

Figure 1. Mohr—Coulomb and extended Matsuoka—Nakai criteria.
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EXTENDED MATSUOKA-NAKAI FAILURE CRITERION 1891

Furthermore, while examining conical ‘Drucker—Prager’ failure criteria it was shown that
following first yield, the angular stress invariant changes during a post-yielding phase until
maximum dilatancy .. is achieved, where ¥ is a dilation angle, which has an analogous rela-
tionship to the plastic potential surface that ¢, has to the failure surface. A similar phenomenon
with the E-M-N criterion is tested in this paper.

Borja ef al. [7] applied the closest point projection method (CPPM) (e.g. [8,9]) in principal
stress space to the M-N criterion, and Matsuoka and Sun [5] presented the general stress—strain
relations for the E-M-N criterion. To the authors knowledge, however, no work has been reported
involving implicit integration of the E-M-N criterion.

In this paper, the CPPM method is successfully applied to the E-M-N criterion and used to
model plane strain and axisymmetric element tests to verify some theoretical predictions relating
to failure and post-yielding behavior. Finally, a bearing capacity problem is analyzed using both
E-M-N and M-C, highlighting the conservative nature of M-C for different friction angles.

2. EQUIVALENT M-C FRICTION ANGLE OF E-M-N

We start with a brief review of the stress invariants needed to navigate principal stress space.
A stress point in principal stress space can be defined using the invariants (see, e.g. Smith and
Griffiths [10])

(s,t,0) (5)
where
Lo s o
Fi= ﬁ(a_‘_ +ay+o0;) (6)
1 !
t= %[(a; ~0})2 4+ (0}, = 0 + (0}, — 0 )2 + 612, + 612, + 672,12 (7)
and
1 —36J
f= 3 arcsin (—:—(—3) (8)
which is also known as the Lode angle.
The third deviatoric stress invariant is given as
J3=8x5yS5; —5x 132 —s}.rgx —S;»,Ti,- + 2Ty Ty Tox C))

where s, = (20, — 0\, —a.,) /3, etc.

In this notation, s gives the perpendicular distance of the n-plane from the origin, and (¢, §) act
as polar coordinates within that plane. The invariants given in Equations (6) and (7) are convenient
because they represent actual lengths in principal stress space. Equation (2) can be expressed in
(5,7, 0) space as

f=—~2Kmnsin(30)1* + (9 — 3Kpn)t 25 + (2 Kpn — 18)53 =0 (10)
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Principal stresses are easily obtained from these invariants as

s 2 2

7 \[ 7sin (()— ?ﬂ:)

s ‘f

— tsinf (1D
f

2 i fErsn(04)

The angular invariant § from (8) is constrained to vary in the range —30°<70<30°. Note that
since sin(0+2m/3)>>sin 6> sin(0 — 2n/3), Equation (11) ensures that | is the smallest of the three
principal stresses and hence the most compressive.

Bishop [11] defined a more intuitive parameter b, which gives the magnitude of o), relative to
5’1 and o', where )

! P
g =

'
0z

b={(ay—03)/(0] —0d5) (12)
It is easily shown that the angular invariant is related to Bishop’s b as follows:
0 =arctan((1 —2b)/+/3) (13)

As the angular invariant 0 from (8) varies in the range —30°-70-"30°, b varies in the range
1>25>+0. The lower bound (=—30°(or b=1.0) corresponds to a positive principal axis in the
n-plane and triaxial extension conditions, whereas the upper bound @ =30°(or 5#=0.0) corresponds
to a negative principal axis in the n-plane and triaxial compression conditions. All other stress
conditions correspond to the intermediate values of §. For example, plane strain corresponds to a
positive § and 0.5 >b>-0, where in elastic case, parameter b equals Poisson’s ratio,

The present work will show that for a given stress path (f=constant) ¢;,. reaches a lower
bound for cohesionless soils (g5>0, ¢’=0) and an upper bound for unconfined compression of
cohesive soils (o5=0, ¢'>0).

The E-M-N can be obtained by modifying the M-N criterion from Equation (2) to give

(o] +00) (a5 +00) + (a5 +00) (a5 +00) + (0] + 00) (75 +00) (¢} + 05+ 05+ 300)
(0'y +00) (05 +00) (0 +00)

=Kwn (14

where 6p=—c’cot ..
For a given constant b stress path, g5 =ba’| 4+ (1 —b)d; and

& cotd ba| c'eol! ba) c’cotg). c'cotg’ g, c'cotd! Y cotd ¢, bo 30’ cot g’
[(_’1__,*‘)(#+Ifb——,f)+ it NG LS .77,%)*.(;;__,@)(._ﬁ)}(_Hgﬂ_,,k o #a)
73 73 %3 73 ik} 73 73 93 a3 O3 2 oy
((—‘ e ) (Iﬂ ol O ) (1 Wi )
L) 73 o 73 Gt

=Kin (15)
while M-C
O_f 2(:.'
—=Kp+—VK; (16)
T3 g3

where K, =tan?(45+ ¢} /2).
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Substituting Equatlon (16)—(15), it can be seen that the equivalent friction angle ¢, . depends
only on ¢.., b and ¢ i
For the special case of ¢, =0, E-M-N from Equation (15) becomes

o [ o) | a)
—colg, bchoM: + b;—cutd); (T,—cmr,b: —cotd; F—colq‘f::. b +— —3cotg;,
/

- ) =KmN {]7)

.0 ’ 1 .
—cotd, | b— —cold, - —colg,
c &

while M-C can be written as
—=2/K, (18)

Substituting Equation (18)—(17), it can be seen that the equivalent friction angle q’)mc depends
only on ¢, and b.
If ¢'=0, the E-M-N reduces to M-N and can be expressed as

7’ J’l a o)
93 \ 03 a4 O3

7 7 =Kmn (19)
81 (30 g
Aot (b2 1-b
Gg.°\ O3
For M-C, if ¢/ =0:

7
—,:Kp (20)
a3

Substituting Equation (20) into (19), it can be seen that ¢; . only dependent on ¢, and b.

The general procedure to determine ¢, is summarized here:
(1) Given o4, ¢ and ¢;,.
(2) For a particular stress path defined by 0<“b<"1, compute

oh=ba|+(1 —b)d} 2D

(3) Solve Equation (15) for /.
(4) Back figure ¢, using

1 —t' - J e ol el
Proe=— 0 n+2arctan 7 (22)

For the particular case of ¢.=30°, ¢, . has been found using this procedure for a mnge of
stress paths as shown in Figure 2. For all stress paths it can be seen that the (e inCreases as ¢’/ a3
increases. The value of ¢, reaches an upper bound when 03=0(c'/o3=c0) and a lower bound
when ¢’ =0(c’/a3=0). The upper and lower bounds of ¢, for ¢.=10°, 20°, 30° and 40° are
plotted in Figure 3.
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Figure 2. ¢/ verses @ for different values of ¢’/ oy when ¢, =30".
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Figure 3. Upper and lower bounds of ¢r,..

3. STRESS RATIO AT FAILURE

The stress ratio Ry =g/ /a5 (Ry =K, for M-C when ¢’=0 for a soil at failure) is a convenient
measure of cohesionless soil strength, and it is of interest to note the values of R predicted by
M-N criterion.
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Figure 4. Ry predicted by the M-N criterion for different stress paths.

It can be seen from Equation (19) that R depends only on ¢. and b. Equation (19) can be
rearranged as

(b+b*) R+ (2+4b— Knnb —b?) R3 + (Kpnb — b2 —2b+5)Rp +b% —3b+2=0 (23)

For a given stress path and ¢, R £ can be easily obtained by solving Equation (23).
To decide the maximum Ry values and the corresponding Lode angles at which the maximum
occurs, take the partial derivative of Equation (23) with respect to » and let OR 7/cb=0 to give

(1 +2b)R} + (4 — Kmn —2b)R% +(KMN—2b—2)Rs+2b—3=0 (24)
Solving Equations (23) and (24) and select the positive real root

1 1 Kvmn—3

AW 25
2 2V J/Emn+! 25)

bmax ==

1 1 1 —
Ry max = =5+ 5 Koan =K+ 5/ (/K = 3) (/K — D (K — 1) (26)

The results of Ry for ¢, =10°, 20°, 30° and 40° are plotted in Figure 4. Also highlighted in
Figure 4 are Ry pax values and the corresponding Lode angles at which the maximum occurred.
4. SINGLE ELEMENT TEST

An important method for the implementation of failure criteria in boundary-value problems modeled
using the finite element method is the CPPM (e.g. [8,9]). The iteration procedure shown in

Copyright € 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2009; 33:1889—1905
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Figure 5. Single element test.

55.0
50.0 .|| —©— Extended Matsuoka-Nakai
—o— Mohr-Coulomb

45.0 4
40.0 4
350 4
30.0 4
25.0 ]
20.0 -
15.0
100
5.0 - /7

0.0 - ; . , . - .
0.0 2.5x107 5.0x10 7.5x107

<y

-1

Figure 6. Results of axisymmetric single element test.

Appendix A was implemented within the program structure described in the text by Smith and
Griffiths [10]. The authors initially tried returning the stress in general stress space but encountered
numerical convergence difficulties. The explanation for the difficulties lies in the observation that
the M-N criterion is highly curved (e.g. [12, 13]). The algorithm used by the authors returned
the stresses in principal stress space using similar tensor operations as described by Larsson and
Runesson [14]. For the interested reader, the required derivatives are given in Appendix B. The
consistent elastoplastic modulus (e.g. [14]) is given in Appendix C.

A single 8-node plane strain element was loaded as shown in Figure 5. Displacement control
was used with an increment of 1077 m. A non-associated flow rule was assumed (i =0). Young’s
Modulus was fixed at E = 10°kN/m?.

4.1. Axisymmetric ¢'—¢’ soil

The first validation example was of an initially unconfined (¢} = o, = 0, =0) axisymmetric element

of soil with ¢/=15kN/m? and ¢, =20° and Poisson’s ratio v=0.3. The axial stress g} was then
gradually increased to failure.

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2009; 33:1889-1905
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Figure 7. Plane strain single element test for friction soil.

The theoretical failure load acc01 ding to both M-C (Equation (1)) and E-M-N (Equations (2)
and (3)) is o'] = —42 84kN /m and the numerical results were in essentially exact agreement as
shown in Figure 6.

4.2. Plane strain cohesionless (¢', ¢’ =0) soil

The second validation example was of a plane strain element of soil with ¢'=0 and ¢/.=30°,
initially confined isotropically to ¢} = ¢, =0} =— 10kN/m?. Poisson’s ratio was set to 0.4 (corre-
sponding (/=06.6° from Equation (13)), which from the procedure described previously will lead
at first yield to ¢, =34.1°. The axial stress at failure stress by M-C (Equation (1)) is O'] f_

—30.0kN/m?, whereas by the M-N criterion (Equations (2) and (3)) it is Glf =—35.45kN/m?.
The finite element results for this example are in close agreement with the analytical results as
shown in Figure 7. It can be seen that the M-N criterion gave 18% higher compressive strength
than M-C in this case. It should be mentioned that the results obtained by M-N criterion show
small numerical drifting.

4.3. Plane strain c'—¢' soil

The third validation example was once more a plane strain element of soil, but this time with both
cohesion and friction given by ¢/ =15.0kN/m? and ¢..=20°. The sample was initially unconfined
(0] =05 =0%=0) before the application of axial loading. Poisson’s ratio was set to 0.3, which
from Equation (13) leads to an elastic stress path defined by #=13°. From the general procedure
described earlier this stress path leads to first yield at ¢ . =31.0°,

Note that the parameters in this example are the same as in the axisymmetric case considered
previously, hence the M-C criterion predicts the same failure load since o, is ignored. In this case,

however, the E-M-N criterion gives o) = —52.07kN/m? which is 22% higher, The M-C criterion

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2009; 33:1889-1905
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Figure 8. Plane strain single element test for ¢'—¢' soil.

as shown in Figure 8 would require a friction angle some 10.1° higher (>50%%) than E-M-N to
give the same strength.

5. ELASTOPLASTIC BEHAVIOR UNDER PLANE STRAIN CONDITIONS

In studies of conical ‘Drucker—Prager’ failure criteria (e.g. [2]) it was shown that following first
yield, the angular stress invariant changed or ‘drifted” during a post-yielding phase until maximum
dilatancy ¥, was achieved. This phenomenon is tested in this section by considering a plane
strain finite element test implementing M-N with v/=-0.

Consider a single element plane strain test with ¢’=0.0, ¢.=y=40°, E=10°kN/m? and
v=0.05 subjected to an initial isotropic stress of ¢} =¢}=03=—10.0kN/m? prior to increasing
the axial stress to failure. From Equation (13), the Lode angle is given by 8=27.46°, which
corresponds to ¢y, =41.8° (Figure 3) or a stress ratio of R=5.0 (Figure 4). With y =40°, the
stresses then drift to the point of maximum dilation that occurs at 8 =13.44° giving by ¢/, . =44.9"
(Figure 3) or R=>5.81 (Figure 4). The results of the single element test shown in Figure 9 confirm
these predictions and also give results for non-associated flow rules in which ¥ =0° and y =20°,
which have lower ultimate stress ratios than the associated flow rule.

6. NUMERICAL EXAMPLE OF A BOUNDARY-VALUE PROBLEM

A classical footing bearing capacity problem has been analyzed using both E-M-N and M-C.
Figure 10 shows a mesh involving 32 elements with a flexible strip footing at the surface of
a layer of uniform weightless soil. The footing supports a uniform stress ¢, which is increased
incrementally to failure. The mesh consists of 8-noded quadrilateral elements with ‘reduced’
(4 Gauss points) integration. The cohesion is fixed at ¢/ = 15kN/ m? and several friction angles were

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2009; 33:1889-1905
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Figure 9. Ultimate stress ratio of M-N when ¢/ =40°.
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Figure 10. Mesh of a strip footing.

considered in the range 5°<" ¢, <°40°. The dilation angle i was set to zero. The elastic parameters
were E=1x10°kN/m? and v=0.3.
Theoretically, bearing failure in this problem occurs when ¢ reaches the load given by

quit=cN; (27)
where N, is the bearing capacity factor for soil cohesion [15]

Ne=(Nyz—1)cotg., (28)

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2009; 33:1889-1905
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Table 1. Bearing capabilities of a strip footing.

d)i (deg.) Prandt] (kN/m2 ) qdme (kN/m2 ) demn (kN/mz ) (gemn — ¢me ) /gme (%)

5 97 99 119 20
10 125 127 159 25
20 223 221 308 39
30 452 452 706 56
40 1130 1102 2268 106
where
b, '
Ny —tan’ (45 + 7‘) griang, (29)

The results of finite element analyses compared with predictions from the Prandtl formula are
summarized in Table I, where g and gemn are the results of M-C and E-M-N, respectively. It can
be seen that the M-C gave close agreement with Prandtl’s formula; however, the E-M-N generally
predicted much higher bearing values. The difference between the results predicted by M-C and
E-M-N increased with the input friction angle to the point where the E-M-N bearing capacity for
an input of ¢, =40° was more than double the value predicted by M-C.

The higher bearing capacity predicted by E-M-N is to be expected since this criterion predicts
higher strength than M-C for all stress paths (except triaxial compression and extension). Since
the E-M-N criterion is based on carefully conducted ‘true triaxial’ laboratory tests that properly
account for the influence of @, it should be considered a more accurate model of soil strength than
M-C. The M-C criterion remains popular in geomechanics, however, on account of its simplicity
and conservatism, in addition to the fact that it forms the basis of many theoretical results in
classical soil mechanics.

7. CONCLUSIONS

The paper has described detailed comparisons between the E-M-N and M-C failure criteria. The
equivalent friction angle ¢, predicted by the E-M-N criterion with respects to the M-C criterion
was examined theoretically under all possible stress paths. It was shown that the ¢ in the E-M-N
criterion depends only on ¢’/a% and ¢, for a given stress path. It is also shown that ¢ reaches a
lower bound when ¢’ =0 and an upper bound when ¢’ =0. The CPPM was applied successfully to
an elastoplastic finite element algorithm implementing the E-M-N failure criterion. Plane strain and
axisymmetric single clement tests were performed to verify the theoretical predictions including
post-yielding behavior of M-N under plane strain conditions. Finally, a bearing capacity problem
was analyzed using E-M-N and M-C highlighting their different predictions for different input
friction angles. As might be expected, the higher the input friction angle, the greater the differences
between M-C and E-M-N however the difference could be quite significant. For the case of
¢, =40°, which was the highest input friction angle considered in this study, E-M-N predicted
a bearing capacity that was more than double the value predicted by M-C and classical bearing
capacity formulas.
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APPENDIX A: ITERATION PROCEDURE USED IN THE CPPM

In the CPPM, the increments of plastic strain are calculated at the end of the step and the yield
condition is enforced at the end of the step. The integration in elastoplastic solutions is always
taken over the full load step in each iteration. The integration scheme is written as

L. Initialization: Set initial values of plastic strain to converged values at end of previous load
step, zero the incremental plasticity parameter and evaluate the elastic trial stress

k=0: £ =el, A1®=0, o©® =Dy —&")

where DF is the elastic modulus, » is the load step number, &P is the plastic strain
2. Check yield condition and convergence at kth iteration:

0= pghy, @

where r®) = —[De] 1 Ac® — AJ P Aq®) —52® q*) and

g
‘o

y oq®
Ag® = 47 A0

~

(&)

q:

where g is the plastic potential function
If F% <TOL; and ||[r®| <TOL,, converged
else go to 3.

3. Compute increment in plasticity parameter:

A -1
ome | 00
R® = [H-A;L‘“De {ﬁ D°

£ _ TR pk)
FROTRK g6

i) —

where f=3f/do, f is the yield function
4. Obtain stress increments:
Ac® = _RH® B _ 5,00R0 q®)
5. Update plastic strain:
U] _ gp®) 4 AP _ gp(6) _ )= AgH)
AMEFD = Ap60 4 55
st — g 4 AG®)

6. k=k+1,goto 2
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APPENDIX B: DERIVATIVES USED BY CPPM IN PRINCIPAL STRESS SPACE

Stress invariants:
h=o1+02+03

I = 0102+ 02030103

I3 = 010003
Yield function:
I3
f=Kun——1
Iy
9—sin? ¢’
Ky = s
1 —sin” ¢,
Plastic potential function:
I3
g§=Kmung7—1
I
9 —sin’
Kmng = —
1 —sin“y

First-order derivatives:

fz[af of of

~ ] s
dop doy 80'3i|

. 2
o
f :KMN(6203) _i

(-}O'l [;)
0 ag10
«f = KmMN (j) -1
lolos) I

Cg/lay,Cg/0o2 and Og/Co3 are similar to ¢ f /Cay, 0f /0o and € f/Cos

Second-order derivatives:
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2 2
d°g 7103 a1+03
= —2KMNG
~ 2
das I5) Ig)
25 2
cg 0102 g1+a2
— = —2KMNG
oy I I
2 2
&g &g 010203
= A = 2KMNnG—
da10or  dorda I3
ﬁzg E‘zg 01030
2
=——=2KMNG—
dofas  fosla I
2 2
g g 0'20'30:;'
— = ——=2KmMNnG—3
002003 Ca300G7 I;

APPENDIX C: CONSISTENT ELASTOPLASTIC MODULUS

Spectral decomposition:

3
6=> om;
i=I

where a;, i=1,2,3 are principal stresses

where

i Iy _ .
mtzg—[ch(a,-ll)IJr'(r l} and d;=1]][ (oi—0;)
. o;

i J#i
3 o
" =3 ffm;
i=l
where f*=0f/00;
3 "
q'=> g'm;
i=I

where g =0g/la;

‘m; o . o 3 i

50’ :df’_uﬂ'_gai l[“"Hj > (367 —07)0’m; @m;
i ]

i j=1

where [2%[(5,'1(5}1-}—5515]‘;(], Is—1 =%[O’i—kldﬁl —3—0’;10;‘;]
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Consistent elastoplastic modulus:

E = (EE“ - hil: " of :E“’“) ER

a

where

h; =q B
Ef =1-A/B:D°
E“ =[(D°) "' +A/A]™
éq;

3 3
A=) ) ——-m;@m,

i=1j=100;

3
B=3 fi'M;

i=1

_ 6m,-

do
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