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SYSTEM RELIABILITY OF SLOPES BY RFEM

Jinsong Huanag?, D. V. GrIFrFITHS? and GORDON A. FENTON'?

ABSTRACT

In a probabilistic slope stability analysis, the failure probability associated with the most critical slip surface (the one
with the minimum reliability index) is known to be smaller than that for the system that comprises all potential slip sur-
faces. The first order reliability method (FORM) targets the minimum reliability index related to the eritical slip sur-
face, and thus cannot be used to predict the system reliability of slopes, except when all possible slip surfaces are per-
fectly correlated. It is shown in this paper that the random finite element method (RFEM), which uses elastoplastic
finite elements combined with random field theory in a Monte-Carlo framework can accurately predict the system

probability of failure (p¢) of slopes.
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INTRODUCTION
The probability of failure of a system is computed as:

pi=P(g(X)=0)= S S(X)dx (M

g(X)=0

where f(X) is the joint probability density function
(PDF) of the input variables X and g is the limit state
function which defines safe or unsafe performance. Limit
states could relate to strength failure, serviceability
failure, or anything else that describes unsatisfactory per-
formance. The limit state function is customarily defined
as

g(X)=0— Safe

2
&(X)<0— Failure @

By assuming the limit state function follows a normal dis-
tribution, the generalized reliability index §,, is common-
ly used as an alternative measure of safety. It is defined as

By=2"'(1=pr) ©)

where @(-) represents the cumulative density function
(CDF) of the standard normal distribution.

The direct integration of Eq. (1) is usually impossible
since many geotechnical problems do not have exact ana-
lytical solutions to the deterministic problem (e.g., the
slope stability problem). There are several probabilistic
methods, for example, the first-order second-moment
(FOSM) and the first order reliability method (FORM),

i
- ditto.

iit)

which obtain an approximation to the minimum reliabil-
ity index (fmin) first and then obtain the p; by

2i=1—=P(fuin) “)

The FOSM method (e.g., Hassan and Wolff, 1999;
Bhattacharya et al., 2003) and the FORM (e.g., Low
1996; Low et al., 1998; Xu and Low, 2006) are widely
used in reliability analyses of slope problems. In FOSM,
the mean and variance of the limit state function are ap-
proximated by a first-order Taylor series expansion about
the mean values of the input random parameters that are
characterized by their first two moments. A serious prob-
lem with FOSM is that the reliability index it delivers de-
pends on how the limit state function is formulated, thus
two people solving the same problem could obtain quite
different results. FORM, on the other hand, is not affect-
ed by the formulation of the limit state function and com-
putes a reliability index as the shortest distance (in stan-
dard deviations) from the equivalent mean-value point to
the limit state surface, from which the probability of
failure can be obtained from Eq. (4). By definition,
FORM targets the minimum reliability index related to
the critical slip surface, which may lead to an unrealistic
estimation of system slope reliability. This is because
there are many potential slip surfaces, each of which has
a finite probability of failure associated with it.

Probabilistic slope stability analysis must be treated as
a system reliability problem. Upper and lower bounds of
system reliability have been described by Cornell (1967)
and Ditlevsen (1979). As pointed out by Cornell (1967), a
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system’s reliability is that of all potential slip surfaces,
and the failure probability of a system will be larger than
that for any single slip surface. The difference depends on
the correlation between the failure probabilities of the
different slip surfaces, for which no general formulation
is available. It is, therefore, somewhat surprising that
procedures for system reliability studies have rarely been
developed for slopes. The only exceptions are the papers
by Oka and Wu (1990) and Chowdhury and Xu (1995)
which presented system reliability analysis for a particu-
lar slope in which the factors of safety (FS) of several slip
surfaces were poorly correlated. The importance of sys-
tem reliability of slopes was also noted by Mostyn and Li
(1993) and Shinoda (2007).

This paper will use RFEM and FORM to study a two-
layer slope reliability problem. The RFEM, first used in a
slope stability application by Griffiths and Fenton (2000,
2004), was further developed herein to introduce a second
random field enabling the probabilistic analysis of a slope
consisting of two soil layers with different random prop-
erties. RFEM uses elastoplastic finite elements combined
with the random field theory in a Monte-Carlo frame-
work. The probability of failure is directly obtained by
dividing the number of simulations which failed by the
total number of simulations. It will be shown that the
RFEM offers the only general way of predicting the sys-
tem reliability of slopes. Most FORM applications de-
scribed in the literature do not consider spatial variabil-
ity, but some investigators have combined the FORM
with Limit Equilibrium Methods (LEM) and random
field theory (e.g., Babu and Mukesh, 2004; Low et al.,
2007). The inherent nature of LEM, however, is that it
leads to a critical failure surface, which in 2-d analysis ap-
pears as a line which could be non-circular. The influence
of the random field is only taken into account along the
line and is, therefore, effectively one-dimensional. A fur-
ther disadvantage of FORM is that with no explicit limit
state function, FORM must rely on the development of a
response surface method (RSM) (e.g., Melchers, 1999;
Xu and Low, 2006) involving curve fitting a function in-
volving hundreds if not thousands of random variables.
Not only is this impractical, but the authors are unable to
find any literature where this has been attempted. Most
FORM applications do not consider spatial correlation
and those that do consider it, do so in 1-d version along a
failure surface. The focus of this paper is to compare the
more accepted version of FORM with RFEM in their
abilities to generate unbiased estimates of failure
probability of two-layer slopes consisting of different ran-
dom soils.

The paper first investigates the influence of foundation
strength on the FS of two-layer slopes. The FORM is then
used to study the p; of slopes showing that p; does not
change if including a foundation does not change the FS.
Finally, the RFEM is used to study the influence of a ran-
dom foundation on p;. The results show that the system
probability of failure of the two-layer slope is higher than
the probability of failure of the embankment only, even
if the strength of the foundation is high enough that no

changes are made to FS.

DETERMINISTIC ANALYSES

The method and program of Griffiths and Lane (1999)
was used to analyze the slopes in this section.

Undrained (¢.=0) Slopes

An a=26.6° (2:1 slope) undrained (¢,=0) slope is con-
sidered with the slope profile shown in Fig. 1(a). The
slope has height H=10.0 m, soil unit weight y, (or y)=
20.0 kN/m?, shear strength c¢,;=30.6 kPa (expressed in a
dimensionless form given by Cu =cu/(Ysaf)=0.153).
The FS of the slope was found to be 1.25. The deformed
mesh at failure is shown in Fig. 1(b).

Another two-layer slope with a similar geometry but
including a foundation with depth ratio D=2 as shown
in Fig. 2(a) is further considered. The foundation was as-
sumed to be undrained soil of the same unit weight y., (or
£)=20.0 kN/m’® but with a different shear strength, given
by c,2=45.8 kPa (C.»,=0.229). The FS of the two-layer
slope was found to be also 1.25. The deformed mesh at
failure is shown in Fig. 2(b). As shown by Griffiths and
Lane (1999) for this case, if C,3/Cui= 1.5, the foundation
strength has no influence on the FS. This is confirmed by
varying Cup2/Cy in the range of {0.25,0.5, ..., 2.5} and
fixing C,;=0.153. The results are shown in Fig. 3. A
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Fig. 2. Undrained two-layer slope
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Fig. 3. Influence of C,2/C.; on the FS of undrained two-layer slopes
(C1=0.153)
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Fig. 4. Drained slope without foundation
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Fig. 5. Drained two-layer slope

deep-seated base mechanism is observed when C./Cy
< 1.5, whereas a shallow ““toe’’ mechanism is seen when
Cw/Cy=1.5. The result corresponding to the approxi-
mate transition point at C2/C, = 1.5 shows an ambigu-
ous situation in which both mechanisms are trying to
form at the same time, as shown in Fig. 2(b).

Drained Slopes

An o=26.6° (2:1 slope) drained slope is now consi-
dered with the slope profile shown in Fig. 4(a). The slope
has height A= 10.0 m, soil unit weight y=20.0 kN/m?,
and shear strength parameter ¢f =7.0 kPa (expressed in
the dimensionless form Ci=c{/(yH)=0.035) and tan ¢;
=0.364. The FS of the slope was found to be 1.20. The
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Fig, 6. Influence of C;/Ci=tan ¢{/tan ¢{ on the FS of drained two-
layer slopes (Ci{ =0.035 and tan ¢j =0,364)

deformed mesh at failure is shown in Fig. 4(b).

Another two-layer slope with a similar geometry but
with a foundation depth ratio of D=1.5, as shown in Fig.
5(a), is further considered. The foundation was assumed
to have the same strength as the embankment. (C{ =Cj =
0.035, tan ¢{ =tan ¢4 =0.364 and y=20.0 kN/m’) lead-
ing to F§=1.20. The deformed mesh at failure is shown
in Fig. 5(b). The foundation makes no change to the
slope FS if the shear strengths ratio C3/Cj =tan ¢5/tan
@i is greater than one. This is confirmed by changing C3/
Ci =tan ¢j/tan ¢{ in the range of {0.25,0.5,...,2.5}
and fixed C{ =0.035 and tan ¢{ =0.364, as shown in Fig.
6.

PROBABILISTIC DESCRIPTIONS OF STRENGTH
PARAMETERS

In this study, the shear strength parameters Cy;, Cls,
Ci, Cs, tan ¢ and tan ¢4 are assumed to be random vari-
ables characterized statistically by lognormal distribu-
tions (i.e., the logarithms to the base e of the properties
are normally distributed). The lognormal distribution
will be applied at the point level. The lognormal distribu-
tion is one of many possible choices (e.g., Fenton and
Griffiths, 2008), however, it offers the advantage of sim-
plicity, in that it is arrived by a simple nonlinear transfor-
mation of the classical normal (Gaussian) distribution.
Lognormal distributions guarantee that the random vari-
able is always positive, and have been advocated and used
by several other investigators in addition to the current
authors, as a reasonable model for soil properties (e.g.,
Parkin et al., 1988; Parkin and Robinson, 1992; Nour et
al., 2002; Massih et al., 2008). The RFEM methodology
has been described in detail in other publications (e.g.,
Fenton and Griffiths, 2008), so only a brief description
will be repeated here for the random variable C,,. An
identical procedure is applied to C., Ci, C3, tan ¢{ and
tan ¢4. Typical ranges of v¢, and », as reported for exam-
ple by Lee et al. (1983), Lacasse and Nadim (1996) and
Lumb (1974) are 0.05~0.5 and 0.02 ~ 0.56, respectively.
This paper assumes a coefficient of variation of 0.3 for all
random variables first and then increases it to 0.7 to in-
vestigate its influences. Some investigators (e.g., Rack-
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witz, 2000) have suggested that the correlation between ¢’
and ¢’ is around —0.5. Since a negative correlation be-
tween ¢’ and ¢’ means a low ¢’ comes with a high ¢’ and
vice verse, it leads to lower p; estimates than zero and
positive correlations (e.g., Griffiths et al., 2009). For sim-
plicity, no correlation between ¢’ and ¢’ was considered
in this paper.

The lognormally distributed undrained shear strength
C.; has two parameters: the mean p¢, and the standard
deviation o¢,. The variability of C,; can conveniently be
expressed by the dimensionless coefficient of variation,
defined as

_Oc,
Hc,

The parameters of the normal distribution (of the
logarithm of C,;) can be obtained from the standard devi-
ation and mean of C, as follows (e.g., Fenton and
Griffiths, 2008):

Umc,.=4,'ln {1+92c.,,} (6)

1
Hinc, =10 e, — 3 T, (7

®)

Ve,

Inverting Eqs. (6) and (7) gives the mean and standard
deviation of Cy;:

1
He, = exp (umcﬁi O cﬂ) (8)

.=ty = {exXP (Tinc,) — 1 ©)

FIRST ORDER RELIABILITY METHOD

The FORM is a process which can be used to estimate
the probability of the failure of systems involving multi-
ple random variables with given probability density func-
tions, in relation to a ‘limit state’’ function that
separates the failure domain from the safe domain. Xu
and Low (2006) used FORM combined with the finite ele-
ment method to estimate the probability of failure of
slopes. The conventional FORM based on the Hasofer-
Lind reliability index (Hasofer and Lind, 1974), B, ob-
tains the reliability index, which is related to the mini-
mum distance, in standard deviation units, between the
mean values and the limit state surface. The conceptual
and implementation barriers surrounding the use of Sy
for correlated normals and the FORM for correlated
non-normals can largely be overcome, as was shown by
Low and Tang (1997, 2004). Calculating the reliability in-
dex involves an iterative optimization process, in which
the minimum value of a matrix calculation is found, sub-
ject to the constraint that the values are on the limit state
surface. Commonly used software packages (e.g., Excel
and Matlab) are easily adapted to perform the optimiza-
tion (see e.g., www.mines.edu/ ~vgriffit/FORM}. Once
the reliability index f (the distance between the means
and the closest failure point in standard deviation units)
has been determined, the method assumes a ““first order’’

limit state function tangent to the # contour, and the
probability of failure, p¢ follows from

pr=1=9®(f)

If dealing with two random variables, the ‘“first order’’
assumption results in a straight line limit state function,
in which case p; is the volume under the bi-variate
probability density function on the failure side of the
line. A similar concept applies to cases involving multiple
random variables.

An advantage of the Hasofer-Lind index S for cor-
related normal variates and the FORM index § for cor-
related non-normal variates is that the result it gives is not
affected by the way the limit state function is set up. For
example, the limit state function could be defined as the
resistance minus the load, the factor of safety minus one,
the logarithm of the factor of safety or some other al-
gebraic combination, without influencing the computed
value of By or §.

The limit state function can sometimes be determined
directly from theory, or for more complex systems, RSM
needs to be used. The basic idea of the RSM is to approxi-
mate the limit state boundary by an explicit function of
the random variables and to improve the approximation
via iterations. For complex systems in which, for example
the number of random variables exceeds thirty, RSM
lacks robustness and accuracy, in which case the Monte
Carlo Simulation is considered the most reasonable
method.

At a detailed level, the determination of £ in FORM is
an iterative process (as explained by Haldar and Ma-
hadevan, 2000; for example). An alternative interpreta-
tion involving an equivalent hyperellipsoid was given in
Low and Tang (2004) and Low (2005) as follows:

e )(l_ﬂfl ¥ -1 )(l_nufl
ﬁ—rggg 4/{ o }[R] o

i=1,2,...

(10)

»n o (11)

where X; is the i random variable, 4" is the equivalent
normal mean of the i'"" random variable, o' is the equiva-
lent normal standard deviation of the /" random varia-
ble, {(X;—£¥)/at'} is the vector of n random variables
reduced to standard normal space and [R] is the correla-
tion matrix.

For most slope stability analyses, no analytical equa-
tion exists which can serve as a limit state function. The
Response Surface Method has been introduced in this
study. This can be accomplished, for example, by fitting a
curve to the results from several finite element analyses
using the strength reduction method (e.g., Griffiths and
Lane, 1999).

For example, a two-layer undrained slope with a foun-
dation has two (n=2) random variables C, (embank-
ment) and C,; (foundation). A quadratic surface without
cross-terms with five (2rn+ 1=3) constants of the form
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FS(InC,,,InCp)=a;+a;In C,,+a31In Cypy

+ a4(ln Cul)z + as(ln Cul)z (]2)

could be used to approximate the factor of safety func-
tion.

The limit state function could then be defined as the
factor of safety function minus one, thus

g(ln Cyy, In C)=FS(In Cyy, In Cp) —1 (13)

In order to find the five constants in Eq. (12), five finite
element analyses were run, For each random variable, its
equivalent normal mean value, 4 and two other values
ul+ma” were sampled while fixing the other random
variable at its equivalent normal mean value. Some inves-
tigators (e.g., Xu and Low, 2006; Griffiths et al., 2007)
have related the two other sampling points to some factor
of the standard deviation, given by m. A popular choice
is m=1, which will be used later in this section. For cases
involving a high standard deviation, the use of m=1
leads to some sampling points being far from the central
sampling point and thus, the limit state function may not
always be defined with accuracy in the zone of interest
(i.e., near the tentative design point). For slope reliability
analysis, however, limit state functions for slopes have
been shown to be quite linear in the space of cohesion and
friction angle (e.g., Mostyn and Li, 1993; Low et al.,
1998), so p; is rather insensitive to the choice of m.
Since the design point is not known in advance, the
limit state function is initially derived at the equivalent
normal mean which gives a first approximation of the de-
sign point. This design point can be far from the optimal
one and may lead to incorrect results. The current work
uses the following iteration procedure (e.g., Tandjiria et
al., 2000), which leads to the limit state function being
approximated at the design point.
1) Derive the limit state function at the equivalent nor-
mal mean values.
2) Use FORM to obtain the design point and hence p;.
3) Update the limit state function using the design
point just found.
4) Return to step 2) until two successive values of p;
are smaller than a prescribed tolerance.
The factor of safety at the design point should equal
one at convergence,

Undrained (¢, =0) Slopes

For an undrained slope without a foundation, there is
only one random variable, so p; is simply equal to the
probability that the shear strength parameter C,; will be
less than Cy gs=1, Where C,; rs- is the value that results in
FS=1. Quantitatively, this equals the area beneath the
probability density function corresponding to Cus<
Cuirs=1. For the slope shown in Fig. 1(a), Curs=1=0.122
and Cuips=125=0.153, so if we let yc,=0.153 and o, =
0.046 (v, =0.3), Egs. (6) and (7) give that the mean and
standard deviation of the underlying normal distribution
are Uyc,=—1.920 and gy, =0.294 respectively. The
probability of failure is therefore given by:
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pr=p[Cu|<0.122]=¢( )=0.266 (14)

For the undrained two-layer slope (¢,=0) as shown in
Fig. 2(a), the previously described FORM method (ignor-
ing spatial variability) was used to calculate p;. By chang-
ing uc,/Ue, in the range of {0.25, 0.5, .. ., 2.5} and fixed
Ue,=0.153 and vg,=wvc,=0.3, the influence of the
strength of the foundation on the p; was investigated,
with the results shown in Fig. 7.

Dragined (C' —tan ¢*) Slopes

For the drained slope without foundation as shown in
Fig. 4(a), the shear strength parameters Cj and tan ¢{ are
assumed to be random variables and the same method
that was used previously for the undrained slope (¢,=0)
with a foundation was used to calculate the p;. For g =
0.035, than¢; =0.364 and ve; = vyan 4, = 0.3, the p; was found
to be 0.285.

For the drained two-layer slope shown in Fig. 5(a), the
shear strength parameters Ci, Cj, tan ¢{ and tan ¢ are
assumed to be random variables. The following quadratic
surface without cross-terms is used to approximate the
factor of safety function.
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FS(In Ci, In C5, In (tan ¢{), In (tan ¢31))
=g +a,In C{+a:In Ci +a4ln (tan ¢{} +as In (tan ¢3)
+ag(ln C{P+ a+(In C3)* + ax(In (tan ¢1))?

+ay(In (tan ¢5))° (15)
By changing tcy/te; = Hian g3/ than o; N the range of {0.25,
0.5, Pl 25} and ﬁxing Mc‘»=0.035, ﬂlm¢g=0.364 and

Ve =Uc = Vian gy = Vungy = 0.3, the previously described
procedure was used once more to calculate the p;. The
results are shown in Fig. 8. For the case when pq/uc, =
Huan s/ than s = 1.0, the two-layer slope can be treated as
one-layer slope modeled with statistical strength
parameters fe; = 0.035, tan g = 0.364 and v = vian g = 0.3.
If a limit state function similar to Eq. (12) was used, the
corresponding pr was found to be 0.262.

RANDOM FINITE ELEMENT METHOD

In this section, the results of full nonlinear RFEM ana-
lyses with Monte-Carlo simulations are compared with
results from FORM.

The RFEM involves the generation and mapping of a
random field of properties onto a finite element mesh.
The current on-line RFEM codes have implemented only
normal, lognormal and bounded distributions (Fenton
and Griffiths, 2008). There is no restriction, however, on
the type of distribution that could be modeled by the
RFEM, but a normal transformation is available (e.g.,
Fig. 5 in Low and Tang, 2007). Since the random field in
RFEM is generated in the underlying normal space, it is
easy to map this normal distribution to some other distri-
bution types. Full account is taken of local averaging and
variance reduction (Fenton and Vanmarcke, 1990) over
each element, and an exponentially decaying (Markov)
spatial correlation function is incorporated. The random
field is initially generated and properties are assigned to
the elements. A typical elastoplastic finite element analy-
sis follows (see e.g., Griffiths and Lane, 1999). Failure of
any particular simulation was determined on the basis of
two criteria: 1) Failure of the algorithm to converge wi-
thin a user-specified iteration ceiling (typically set to 500),
or 2) The observation of a sudden increase in nodal dis-
placements due to the inability of the algorithm to find a
stress distribution that satisfies both Mohr-Coulomb’s
failure criterion and global equilibrium with the gravity
loads. The convergence criterion was based on a compari-
son of successive self-equilibrating ‘‘bodyload’’ vectors.
If the absolute change from one iteration to the next of all
the components of the ‘“‘bodyload’’ vector, non-dimen-
sionalized with respect to the component of largest abso-
lute magnitude, falls below a tolerance level of 0.0001,
converge is said to have occurred, and the slope is deemed
not to have failed (see Smith and Griffiths, 2004, for
more details). During the Monte-Carlo simulations, the
location of the failure surface is itself a random process.
While this is a worthy topic for further investigation, the
authors’ experience from inspecting individual simula-
tions that lead to failure is that the kinematics of the

problem tend to favor global mechanisms. The analysis is
repeated numerous times using Monte-Carlo simulations.
Each realization of the Monte-Carlo process involves the
same mean, standard deviation and spatial correlation
length of soil properties, however the spatial distribution
of properties varies from one realization to the next. Fol-
lowing a ‘‘sufficient’”” number of realizations, the p; can
be easily estimated by dividing the number of failures by
the total number of simulations. By increasing gradually
the number of realizations, it was determined that 2000
realizations of the Monte-Carlo process for each para-
metric group were sufficient to give reliable and
reproducible estimates of p;. The analysis has the option
of including cross correlation between properties and
anisotropic spatial correlation lengths (e.g., the spatial
correlation length in a naturally occurring stratum of soil
is often higher in the horizontal direction). Since the ac-
tual undrained shear strength field is lognormally dis-
tributed, its logarithm yields an “‘underlying’” normally
distributed (or Gaussian) field. The spatial correlation
length is measured with respect to this underlying field.
The spatial correlation length (e.g., finc,) describes the
distance over which the spatially random values will tend
to be significantly correlated in the underlying Gaussian
field. Thus, a large value of 8,¢, will imply a smoothly
varying field, while a small value will imply a ragged field.
In this work, an exponentially decaying (Markovian)
correlation function is used of the form, for example:

Py =e is (16)

where p(z) is the correlation coefficient between proper-
ties assigned to two points in the random field separated
by an absolute distance 7.

In the current study, the spatial correlation length has
been non-dimensionalized by dividing it by the height of
the embankment A and will be expressed in the form, for
example:

Bc,=bhe./H a7

In order to study the p; of layered slopes, the RFEM
was further developed to have the ability to simulate mul-
tiple random fields. Figure 9 shows a two-layer slope
where each layer is modeled with the same mean and stan-
dard deviation, but different spatial correlation lengths.
A relatively low spatial correlation length of @o,=0.2
was assigned to the embankment and a relatively high
spatial correlation length of ®c,=2.0 to the foundation.
A ten times difference was chosen to show different spa-
tial correlation lengths. The figure depicts the variations
of ¢y and ¢y, and has been scaled in such a way that dark
and light regions depict ‘‘strong’’ and ‘‘weak’’ soil, re-
spectively.

The input parameters relating to the mean, standard
deviation and spatial correlation length are assumed to be
defined at the *‘point’’ level. While statistics at this reso-
lution are obviously impossible to measure in practice,
they represent a fundamental baseline of the inherent soil
variability which can be corrected through local averag-
ing to take account of the sample size. In the context of
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Fig. 9. Undrained cohesion portrayal of different spatial correlation
length in the embankment and foundation in RFEM analysis (zc,
=pc,=0.153, ve, = v, =0.3, Oc¢,=0.2 and O, =2.0)

the RFEM approach, each finite element is assigned a
constant property. The ““sample’’ is represented by the
size of each finite element used to discretize the slope. If
the point distribution is normal, local averaging results in
a reduced variance but the mean is unaffected. In a log-
normal distribution, however, both the mean and the
standard deviation are reduced by local averaging. Fol-
lowing local averaging, the adjusted statistics (uc,,, ge,.)
represent the mean and standard deviation of the lognor-
mal field that is actually mapped onto the finite element
mesh. Further details of RFEM can be found in Griffiths
and Fenton (2004) and Fenton and Griffiths (2008).

Undrained (¢.=0) Slopes

By changing uc,/uc, in the range of {0.25,0.5, ...,
2.5} and fixing g, =0.153, vg,=ve,=0.3 and O, =
O, =0.5, the RFEM was used to calculate the p; of the
undrained two-layer slopes as shown in Fig. 2(a). The
results are shown in Fig, 10. Also plotted in Fig. 10is the
“‘embankment only’’ result p;=0.071 which is for the
slope shown in Fig. I(a) by treating C,, as a random vari-
able with statistical strength parameters uc, =0.153, ve,
=0.3 and @mc“:o.s.

The foundation strength has little influence on the p; of
two-layer slopes if uc,/tic, > 1.50 for both the RFEM and
FORM (ignoring spatial variability). The results when
Uec,/tic,=1.50 are the most interesting in that two
mechanisms are trying to form at the same time, as can be
seen in Fig. 2(b). The RFEM successfully gave a higher p;
of 0.118 for the two-layer slope than the p; of 0.071 in the
“‘embankment only’’ case which has one mechanism as
shown in Fig. 1(b). In other words, the RFEM accurately
predicts the system probability of failure, but FORM (ig-
noring spatial variability) only catches the failure
mechanism with the highest p;. This phenomenon was
further investigated by varying @y, ¢, = @ ¢, in the range
of {0.125,0.25, ..., 32.0} while fixing zic,=0.153, v,
=v¢,=0.3 and puc,/uc,=1.5. The results are shown in
Fig. 11. It can be seen that the maximum difference be-
tween pr of the two-layer slope (system probability of
failure) and the p; of “‘embankment only’’ occurs at
1.0 Ohe,=Ohne,<2.0,. When @ne,=6nhc,=1.0, the
system p; is 40% higher than the p; of “‘embankment
only’’. It is noted that the pr of the two-layer slope (sys-
tem probability of failure) and the p; of ‘‘embankment
only’’ tend to be the same when spatial correlation
lengths tend to infinite. The result indicates that if the
mean strength of the foundation is much higher than that
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1.0+ —o— FORM 1.0
1 — & — Deternunistic /5 |
0.8 0.8
1 / FORM Foog
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Fig. 10. Influence of uc,/uc, on the p; of undrained slopes by RFEM
(#c,=0.153, ve,=ve,=0.3 and Oy, = O, =0.5)
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Fig. 11. Influence of spatial correlation length on the p; of undrained
slopes by RFEM (uc,=0.153, vc, =ve,=0.3 and e, /pc, = 1.5)
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of the embankment (u¢,/tc,=1.5 in this case), the
variability of the strength of foundation has little in-
fluence on the system reliability when spatial correlation
lengths tend to infinity.

Drained (C' —tan ¢’) Slopes

By changing tic;/tc; = Htan 63/ than ¢; In the range of {0.23,
0.5,...,2.5} while fixing ste=0.035, pume=0.364, v
=V = Viangy = Yiang; =0.3 and @g = @C; = Oun gy = OQan gy =
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0.5, the RFEM was used to calculate the p; of the drained
two-layer slope shown in Fig. 5(a) with the results being
shown in Fig. 12. Also plotted in Fig. 12 is the ‘‘embank-
ment only’’ result py=0.071, which is for the slope shown
in Fig. 4(a) after treating C{ and tan ¢{ as random varia-
bles with the same statistical parameters.

The foundation strength has little influence on the p; of
the two-layer slopes if fei/te; = s 63/ tian > 1.0 for both
RFEM and FORM. When pq/ic;= tangs/ than s =1.0.
The RFEM successfully gave a higher p; of 0.105 for the
two-layer slope than the p; of 0.071 of the ‘‘embankment
only”’ which has one mechanism as shown in Fig. 4(b). In
other words, RFEM accurately predicts the system
probability of failure, but FORM (ignoring spatial
variability) only catches the failure mechanism with the
highest p;. A great benefit of the RFEM is that the shape
and location of the failure surface is not determined a
priori and is able to ‘“‘seek out’ the most critical path
through the heterogeneous soil mass (e.g., Griffiths et al.,
2006). This merit enables the RFEM to catch every failure
in a suite of Monte-Carlo simulations. By ignoring spa-
tial correlation, FORM assumes all slip surfaces are per-
fect correlated (Oka and Wu, 1990; Chowdhury and Xu,
1995) and thus can catch only the smallest reliability in-
dex. This phenomenon was further investigated by
varying @c = Oc; = Oun s = Oun g; in the range of {0.125,
0.25,...,32.0} while fixing uc=0.035, thany=0.364,

o= Ve = Vian g5 = Veengy = 0.3 and, with the results shown
in Fig. 13. Also plotted in Fig. 13 are the results after
treating the slope as a one-layer slope modeled by one
random field with statistical parameters pc;=0.035, ftian g
=0.364, Vo=V =0.3 and @g=Buy=0.5. The p;
results from the one-layer slopes are always higher than
the p; of “‘embankment only,”” but always lower than the
pr of the two-layer slopes. The result indicates that if the
statistical strength of the foundation is the same as the
embankment, the variability of the strength of founda-
tion has significant influence on the system reliability. In-
troducing the second random field of the same statistical

0.30 4 -—
0.25 4
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: —«— RFEM, foundation included, two layers
By —»— RFEM. difference between “foundation included,
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0.00 P11 R e e e
02 4 6 8 10 12 14 16 18202224”6283032
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Fig. 13. Influence of spatial correlation length on the p; of drained

slopes by RFEM (¢, = 0.035, ftyun 4 =0.364, 06;= 06; = Duano; = Duan gy
=0.3 and gc;/to; = Hisn 65/ Hians; = 1.0)

strength parameters for the foundations will increase the
system probability of failure even when spatial correla-
tion lengths tend to infinity for drained slopes.

It was also noted that FORM (assuming an infinite spa-
tial correlation) gave a reverse trend compared to RFEM
in which the p; of the two-layer slope is the lowest and the
pr of the “‘embankment only’’ is the highest. The p; of a
one-layer slope with a foundation takes an intermediate
value. It should be mentioned that a one-layer slope and
“‘embankment only’’ both have only two random varia-
bles with same statistical properties. FORM combined
with RSM should give the same p; in both cases with no
difference due to numerical rounding. For two-layer
slopes, since more variances were introduced by including
the foundation, FORM combined with RSM should give
a higher system p;. However, FORM failed to catch the
influence of the variability of the strengths of the founda-
tion on the system reliability.

Numerical Results When v=0.7

All previous results used »=0.3. In this section we have
increased the variance to »=0.7. Figures 14 and 15 show
results of undrained slopes and Figs. 16 and 17 show
results of drained slopes.

For results of undrained slopes using the RFEM, a
comparison of Figs. 14 to 10 indicates that in terms of the
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Fig. 14. Influence of uc /pc, on the p; of undrained slopes by RFEM
(e, =0.153, ve,=ve,=0.7 and Oy c, = Onc,=0.5)
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Fig. 15. Influence of spatial correlation length on the p; of undrained

slopes by RFEM (uc,=0.153, vc, =ve,=0.7 and yc, /e, =1.5)
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strength ratio, the p; of the two-layer slope ceases to be
higher than the p; of ““embankment only’’, which in-
creases from uc,/tie,=1.5 when v =0.3 to uc,/tic,=2.0
when »=0.7. For results of drained slopes using the
RFEM, a comparison of Figs. 16 to 12 indicates that the
pr of the two-layer slope is always higher than the p; of
‘“‘embankment only’” when v=0.7.

A comparison of the results of the REFM in Figs. 15 to
11 and Figs. 17 to 13 shows that the difference between py
of two-layer slopes (system probability of failure) and the
ps of “embankment only’’ increases as ¢ increases.

When FORM was used, including the foundation made
no substantial difference to p; in any case when v=0.7.
The results confirmed again that FORM failed to catch
the influence of the variability of the foundation on the
systern reliability.

It should be mentioned that the p; when using the
RFEM decreased as spatial correlation lengths increased
when v=0.7, but the p; increased as spatial correlation
lengths increased when »=0.3. This phenomenon has
been well explained by Griffiths and Fenton (2004).

CONCLUDING REMARKS

This paper used the probabilistic method (FORM) and
the simulation method (RFEM) to study the probability
of the failure of slopes. Numerical results showed that the
RFEM can accurately predict the system probability of
failure of slopes in the framework of Monte-Carlo simu-
lations. However, FORM, which targets the minimum re-
liability index related to a particular slip surface, cannot
give accurate information regarding the system reliability
of slopes.
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NOTATION

ci: drained cohesion of the embankment
ci: drained cohesion of the foundation
cyi: undrained cohesion of the embankment
Cy: undrained cohesion of the foundation
C{: dimensionless drained cohesion of the em-
bankment
C4: dimensionless drained cohesion of the founda-
tion
C.1: dimensionless undrained cohesion of the em-
bankment
C.»: dimensionless undrained cohesion of the foun-
dation
dimensionless undrained cohesion when FS=
1.0
dimensionless undrained cohesion when FS=
1.25
D; foundation depth ratio
f: joint probability density function
g: limit state function
FS§: factor of safety
H: slope height
m: constant used for sampling limit state function
n: number of random variables
pr: probability of failure
[R]: correlation matrix
X: random variables
Xi: the i"™ random variable
o slope angle
B: FORM reliability index
B the generalized reliability index
: the Hasofer-Lind reliability index
: the minimum reliability index
y: soil unit weight
Vsart Saturated soil unit weight
: spatial correlation length of undrained cohe-
sion of the embankment
@: dimensionless spatial correlation length
... dimensionless spatial correlation length of un-
drained cohesion of the embankment

Currs=1:

Cuirs=1.25!
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dimensionless spatial correlation length of un-
drained cohesion of the foundation
dimensionless spatial correlation length of
drained cohesion of the embankment
dimensionless spatial correlation length of
drained cohesion of the foundation
dimensionless spatial correlation length of
drained tangent friction angle of the embank-
ment

dimensionless spatial correlation length of
drained tangent friction angle of the founda-
tion

mean dimensionless undrained cohesion of the
embankment

mean dimensionless undrained cohesion of the
foundation

mean dimensionless undrained cohesion after
local averaging of the embankment

mean dimensionless drained cohesion of the
embankment

mean dimensionless drained cohesion of the
foundation

equivalent normal mean of dimensionless un-
drained cohesion of the embankment
equivalent normal mean of the /" random
variable

mean drained tangent friction angle of the em-
bankment

mean drained tangent friction angle of the
foundation

: coefficient of variation
: coefficient of variation of dimensionless un-

drained cohesion of the embankment
coefficient of variation of dimensionless un-
drained cohesion of the foundation
coefficient of variation of dimensionless
drained cohesion of the embankment
coefficient of variation of dimensionless
drained cohesion of the foundation
coefficient of variation of tangent drained fric-
tion angle of the embankment

coefficient of variation of tangent drained fric-
tion angle of the foundation

: cross correlation coefficient
: correlation coefficient between properties as-

signed to two points

: standard deviation of dimensionless undrained

cohesion of the embankment

: standard deviation of dimensionless undrained

wla®

cohesion after local averaging of the embank-
ment

equivalent normal standard deviation of un-
drained cohesion of the embankment

N. equivalent normal standard deviation of the i

random variable

: absolute distance between two points in a ran-

dom field

: undrained friction angle
{: drained friction angle of the embankment

¢4: drained friction angle of the foundation
@(-): the cumulative standard normal distribution
function.
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