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TECHNICAL NOTE

One-dimensional consolidation theories for layered soil and coupled and
uncoupled solutions by the finite-element method

J. HUANG™* and D. V. GRIFFITHS"

One-dimensional consolidation theories for layered soil
have been re-examined. Coupled (settlement and excess
pore pressure), uncoupled (excess pore pressure only) and
the classical Terzaghi equation are solved by the finite-
element method. By accounting only for changes in the
coefficient of consolidation (c,), the classical Terzaghi
approach is unable to satisfy the flow continuity condi-
tions at the interface between layers.
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On a réexaminé des théories de consolidations unidimen-
sionnelles (1-D) pour sols stratifiés. On résout les équa-
tions couplées (tassement et excés de pression
interstitielle), non couplées (excés de pression interstitielle
seulement) et I’équation classique de Terzaghi avec la
méthode aux éléments finis (FE). En ne tenant compte
que des changements dans le coefficient de consolidation
(¢v), Péquation de Terzaghi ne permet pas de satisfaire
les conditions de continuité de débit a Pinterface entre
les couches.

INTRODUCTION

Gray (1945) first discussed the nature of the consolidation
of two contiguous layers of unlike compressible soils. The
general analytical solution for the one-dimensional (1D)
consolidation of a layered system has been developed by
Schiffman & Stein (1970). Desai & Saxena (1977) analysed
the consolidation behaviour of layered anisotropic founda-
tions. Abid & Pyrah (1988) presented some guidelines for
using the finite-element (FE) method to predict 1D consoli-
dation behaviour using both diffusion and coupled ap-
proaches. Lee er al. (1992) developed a more efficient
analytical solution technique, which showed that the effects
of the permeability and coefficient of volume compressibil-
ity of soil on the consolidation of layered systems are
different and cannot be embodied into a single coefficient
of consolidation. The compressibility of the soil layer m,
also plays an important role in the rate of consolidation.
Xie & Pan (1995) further developed an analytical solution
for a layered system under time-dependent loading. Pyrah
(1996) showed that the 1D consolidation behaviour of
layered soils consisting of two layers with the same value
of the ¢y, but different & and m, were quite different. Zhu
& Yin (1999) gave more analytical solutions for different
loading cases.

In the present work coupled, uncoupled and the Terzaghi
ID consolidation theories have been re-examined using the
FE method and it is shown that the Terzaghi FE solutions
do not satisfy the flow continuity conditions at the interfaces
between soil layers. Numerical results show that applying
the Terzaghi FE solution to a layered system can lead to
incorrect results. It is also shown that the average degree of
consolidation, as defined by settlement and excess pore
pressure, are different for layered systems.
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UNCOUPLED AND COUPLED 1D CONSOLIDATION
THEORIES

Consider a thin strip of soil within a layered saturated soil
undergoing consolidation. At any time ¢ by equilibrium

p=u+g’ ()

where ¢ and u are, respectively, the effective stress and the
excess pore pressure at any given depth = and p is the total
load on top of the soil layers.

For the sake of simplicity, p is assumed to be constant.
By taking a derivative of equation (1) with respect to time
and depth

o0 + - =0 (2)
ot ot
du do’
e =t o 0 (3)
Assuming ‘small strains’
, 1 Os

where s is the settlement at any given depth :.
From equations (3) and (4)

Oz Gz \mydz) (3)
The net flow rate from Darcy law is
d [k Ou
0= (%) ©

where y,. is the unit weight of water,
The rate of volume change of soil is

av 9 ds
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by continuity
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Equations (5) and (8) are the coupled governing equations
of 1D consolidation (Griffiths, 1994).
From equations (2), (4) and (8)

d ( k Ou du
Rl FELS i) 9
0z (yw 82) ™ ©)

Equation (9) is the uncoupled governing equation of 1D
consolidation with excess pore pressure u as the only
dependent variable (e.g. Schiffman & Arya, 1977; Verruijt,
1995).

If m, and k/y, are constant throughout the soil layer, the
settlement variable s can be eliminated from equations (5)
and (8) to give the classical Terzaghi consolidation equation

Fu  Ou
Cv—— = —
Yoz ot
where ¢, the coefficient of consolidation, is defined as
k

m\r'y“'

(10)

(11
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and m, and k are the coefficient of volume compressibility
and the soil permeability and y,, is the unit weight of water.

LAYERED 1D CONSOLIDATION THEORY

Let u; be the excess pore pressure at any given depth z at
any given time f. The governing equations of the layered
system can be expressed as

Fu; _ dui

u dz2 — ar’
where c¢,; is the coefficient of consolidation of the ith layer.

The boundary conditions are

i=12,...,n (12)

7 =) 4 %le = 0 (impermeable) or u; = 0 (drained)
z=H: %ﬁ = 0 (impermeable) or u, = 0 (drained)
) (13)
The interface flow continuity conditions are
k,-%—k,-ﬂ% =1,2,...,n-1 (14)

The initial conditions at ¢ = 0, assumed in this case to be
uniform with depth, are given by

u; = Up (15)

The analytical solutions of equation (12), with the above
conditions, have been developed by Schiffman & Stein
(1970), Lee et al. (1992), Xie & Pan (1995) and Zhu & Yin
(1999) among others.

COUPLED AND UNCOUPLED FE SOLUTIONS
Solution of the uncoupled equation
If the FE method is used, equation (9) can be written in
an uncoupled form as (Schiffman & Arya, 1977)
1 @ Ou du
— ke =y — (16)
vodz 0z ot
It is noted that equation (16) does not use the coefficient of
consolidation ¢y.
After solution by the Galerkin weighted residual process,
equation (16) leads to the element matrix form

(ke]{u} + [mm]{%} = {0} (17)

where [k.] and [my,] are the fluid conductivity and ‘mass’
matrices respectively.

There are many ways of integrating this set of ordinary
differential equations (e.g. Smith & Griffiths, 2004). If linear
interpolations and fixed time steps are used, equation (17)
can be written at two consecutive time steps “0" and ‘1” as
follows

[kc]{“}o + [mm]{%l;}o = {0} (18)

[k]{u}, + [m“‘]{%}l = {0} (19)

A third equation advances the solution from ‘0° to ‘1" using
a weighted average of the gradients at the beginning and the
end of the time interval, thus

{u}, = {u}0+Af((1 —H){%}”+Q{{::}]> (20)

where 0 < 8 < 1.

Elimination of {du/d¢}, and {du/d¢}, from equations
(18) to (20) leads to the following recurrence equation after
assembly between time steps ‘0" and ‘17

(Mm] + 0AMKD{u}ty = ([Mi] — (1 — ALK D{u},
21

The above solution gives the distribution of excess pore
pressure. The corresponding settlement distribution can be
obtained at every time step from

rD—z
5= J my(p — u)dz (22)

Applying the above FE solution to Terzaghi equation (10)
for layered systems will give the wrong excess pore pressure
distribution. The solution is unable explicitly to model
changes in the permeability %, and is therefore unable to
enforce the interface flow continuity conditions given by
equation (14). A numerical example is given in the Appen-
dix to show that combining the permeability and coefficient
of volume compressibility into a single coefficient of con-
solidation will give wrong excess pore pressure distributions.

Solution of the coupled equations
After solution by the Galerkin weighted residual method,
equations (5) and (8) lead to the element matrix form

(Kl{s} + [c]{u} = {f}

(23)
[c]T{g-ﬁ} ~ [kJ{u} = {0}

where [kp] and [k.] are the solid stiffness and fluid con-
ductivity matrices. The matrix [¢] is the connectivity matrix.
{f} is the total force applied.

If {Af} is the change in load between successive times,
the incremental form of the first part of equation (23) is

[kml{As} + [c]{Au} = {Af} (24)

where {As} and {Au} are the resulting changes in displace-
ment and excess pore pressure respectively. Linear interpola-
tion in time using the ‘@-method’ yields
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{As}:.f_\r((l w){jj} +9{$}1) (25)

and the second part of equation (23) can be written at the
two time levels to give expressions for the derivatives which
can then be eliminated to give the following incremental
recurrence equations (e.g. Sandhu & Wilson, 1969; Griffiths,
1994)

6 b () = {adia ) o

At each time step, all that remains is to update the depen-
dent variables using

{sh = {s}, + {As}
{u}, = {u}y + {Au}

If applying equation (23) to a layered system, the FE
solution not only enforces the excess pore pressure continu-
ity, but also the interface flow continuity conditions (14),
because the second line of equation (23) is derived from the
flow continuity condition.

(27)

AVERAGE DEGREE OF CONSOLIDATION OF A
LAYERED SYSTEM

The average degree of consolidation can be expressed in
terms of either excess pore pressure or settlement.

If the initial (uniform) excess pore pressure is given by g
and the maximum drainage path by D, the average degree of
consolidation defined by excess pore pressure is

B = | 1JD " iz (28)
" D Jy ug

and defined by settlement

S
Uavs = S

u

(29)

where s, is the long-term (ultimate) settlement and s, is the
settlement at time /.
For layered systems, equations (28) and (29) become

mp 0 Z [:1‘ Lll {30)

Ug

H Jed n Z;
E m”»J (up — u;)dz Z My [ udz
=i-1

i=1 i =1
Uisis =

Zi i=

" = ]
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(3D

where A; is the thickness of ith layer.
If my; is constant throughout the layers

Z himyitig = Dmyug (32)
i=1

Z mv,-f udz = my Z J_ u;dz (33)
Zi-1 Zi-1

i=1 i=1

Upp and Uy, will be exactly the same (e.g. Xie & Pan,
1995).

NUMERICAL EXAMPLES

Two 1D consolidation FE programs using two-node ‘rod’
elements were developed in the same style as program 9-3 in
the text written by Smith & Griffiths (2004) (see Appendix
for link to downloadable version of this program). The
coupled program was based on equations (5) and (8) and was
called 8-1_c. The uncoupled program was based on equation
(16) and was called 81_uc. Program 8-1 from the same
source was used for solving the Terzaghi equation (10). The
results obtained by the uncoupled program were omitted since
they are the same as the coupled ones. In all the following
analyses, the time interpolation parameter @ = (-5.

The example used by Schiffman & Stein (1970) was
reanalysed. The soil profile shown in Fig. 1 consists of four
compressible layers with double-drainage and properties
shown in Table 1. An instantaneous applied load (u) of unit
magnitude was applied and maintained constant with time.
The thickness of the ith layer is given by /4. A time step of
At =1 day was used.

The calculated results for a set of excess pore pressure at
different times after loading are shown in Fig. 2. It can be
seen that the coupled results are essentially the same as
those presented by Schiffman & Stein (1970). Also plotted
in Fig. 2 are the results which were obtained by Terzaghi’s
ID equation (10) and the ¢,; values listed in Table 1. The
results are quite different from the coupled ones except at
the earliest time of # = 740 days.

Figure 3 plots the average degree of consolidation as a
function of time. It can be seen that the coupled approach
predicts faster consolidation with respect both to settlement
and excess pore pressure than the Terzaghi approach.

CONCLUDING REMARKS

The paper has examined the differences between coupled,
uncoupled and Terzaghi 1D consolidation modelling by the
FE method in layered systems. Results show that applying the
Terzaghi FE equation to a layered system can lead to incor-
rect results because interface flow continuity conditions are
violated. Coupled analyses show that the average degree of
consolidation is different depending on whether it is defined
by settlement or excess pore pressure for a layered system.
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Fig. 1. Four-layer system

Table 1. Geotechnical data of the four-layer system (Schiffman
& Stein, 1970)

i layer hi:m ki mv/s . kPa~? ¢ mi/s

1 3-05 | 2:78 x 1077 641 X 10~ 4-42 % 107%
2 610 | 825 %1077 4-08 3< 10773 2:06 % 10-7
3 914 | [-17x 1077 | 2.04 x 10°° 585 x 1078
4 610 | 294 x 1077 4-08 X 1079 7-35 x 1078
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Fig. 2. Excess pore pressure isochrones
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Fig. 3. Coupled and Terzaghi results of the four-layer system

When the uncoupled (excess pore pressure only) approach is
used, equation (22) must be used to obtain the average degree
of consolidation as defined by settlement, the only exception
is when m, is constant throughout the soil layers.

ACKNOWLEDGEMENT

The authors wish to acknowledge the support of NSF
grant CMS-0408150 on ‘Advanced probabilistic analysis of
stability problems in geotechnical engineering’.

APPENDIX
Demonstration of contrasting global FE matrices obtained
Sfrom equations (10) and (16) for a two-layered system with
the same c,

A two-layer system is modelled by two ‘rod’ elements as
shown in Fig. 4 with parameters given in Table 2. Note that
the elements have the same ¢, but different k/y and m..

= 7195 days
(coupled FE)

t= 2930 days
{coupled FE)

f = 740 days
{coupled FE)

t = 7195 days
(Schiffman & Stein)

t = 2930 days
(Schiffman & Stein)

t = 740 days
(Schiffman & Stein)

t = 7195 days
(Terzaghi FE)

t = 2930 days
(Terzaghi FE)

t = 740 days
(Terzaghi FE)

Node 1 ‘ )

Element 1

ode2 ()

Element 2

Node 3 ‘ ,

Fig. 4. A two-layer system

Table 2. Parameters of a two-layer system

Element

Length

kv

iy

1

1
1

10
1
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For the classical Terzaghi consolidation equation (equation
(10)), the element fluid conductivity matrices are given as

[ML—W&=[_}_” (34)
and the ‘mass’ matrices as
6
Dnm]1==hnm]2::[i§2 }§3} (35)

After assembly, the global fluid conductivity and ‘mass’
matrices are

1 -1 0
Kl=|-1 2 -1 (36)
0 =1 1
1/3 1/6 0
M,]= |1/6 2/3 1/6 (37)
0 1/6 1/3

For the uncoupled equation (16), the element fluid con-
ductivity matrices are given as

10 —10
k=]l 1o 68)
[mb:[j *” (39)
and the element ‘mass’ matrices as
10/3 10/6
|1/3 1/6

After assembly, the global fluid conductivity and ‘mass’
matrices are

10 —10 0
K]=|-10 11 -1 (42)
0 -1 1
10/3 10/6 0
[Mu] = | 10/6 11/3 1/6 (43)
0 1/6 1/3

Clearly equations (10) and (16) lead to different FE formula-
tions and will therefore deliver different excess pore pressure
distributions. The formulation given by equation (16) is the
correct one for layered soils and the authors’ program called
p90_u.f95 can be downloaded from www.mines.edu/
~vgriffit/4th_ed/source/chap09.

NOTATION
¢y coefficient of consolidation
¢ws coefficient of consolidation determined by ‘log time
method’
cvoy  coefficient of consolidation determined by ‘root time
method’

{f} total force applied
D maximum drainage path
h; thickness of ith layer
i layer number
k  permeability
[k;] fluid conductivity matrices
[my]  ‘mass’ matrices
m.  coefficient of volume compressibility
n  number of layers
total load on top of the soil layers
s settlement
s, settlement at time ¢
sy long-term (ultimate) settlement
T dimensionless ‘time factor’
t time
U average degree of consolidation
Uwp average degree of consolidation defined by excess pore
pressure
Uys average degree of consolidation defined by settlement
i eXCess pore pressure
up initial (uniform) excess pore pressure
z depth
Yy unit weight of water
time interpolation parameter, 0 << § < |
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