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The finite element method (FEM) is a numerical method for approximate solution of partial differential
equations with appropriate boundary conditions. This work describes a methodology for generating the
elastic stiffness matrix of an axisymmetric eight-noded finite element with the help of Computer Algebra
Systems. The approach is described as “semi analytical” because the formulation mimics the steps taken
using Gaussian numerical integration techniques. The semianalytical subroutines developed herein run 50%
faster than the conventional Gaussian integration approach. The routines, which are made publically avail-
able for download,! should help FEM researchers and engineers by providing significant reductions of CPU
times when dealing with large finite element models. ® 2009 Wiley Periodicals, Inc, Numer Methods Partial
Differential Eq 26: 1624—1635, 2010
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l. INTRODUCTION

Usually stiffness matrices integration of quadrilateral finite elements are carried out by using
numerical integration. The explicit integration is only available for very simple elements (rec-
tangles). Okabe [1] was the first researcher who presented explicit formulae to integrate rational
integrals over a convex isoparametric quadrilateral having four nodes. These formulas require the

Correspondence to: M. Cerrolaza, Instituto Nacional de Bioingenieria, Universidad Central de Venezuela, Cindad
Universitaria S/N, Caracas, Venezuela (e-mail: mcerrolal23@ gmail.com)

Contract grant sponsor: Venezuelan Council of Scientific and Humanistic Research (CDCH)

Contract grant sponsor: US National Science Foundation; contract grant number: INT-0106665

Source code of the program described in this paper can be downloaded from the second author’s web site at www.mines.
edu/~vgriffit/analytical

© 2009 Wiley Periodicals, Inc.



SEMI-ANALYTICAL INTEGRATION OF ELASTIC STIFFNESS MATRIX 1625

evaluation of terms of the form ¢ (ef)In{ f (o, 8)]1/ (™ B"), where ¢ and f are rational functions
and m > 0,n > 0. For quadrilateral elements having straight sides, usually encountered in practi-
cal applications, the parameters || and | 8| are small, thus leading to difficulties when evaluating
the logarithmic terms. Babu and Pinter [2], based on the Okabe’s work, presented semianalyt-
ical integration formulas to evaluate integrals over straight-sided quadrilateral elements, thus
improving the accuracy of the results as compared with those obtained with Gaussian integration.
Mizukami [3] worked with parallelograms and presented semianalytical integration formulas to
generate the stiffness matrix. In this type of element, the Jacobian of the coordinate transformation
is a constant function, which simplified the formulas presented by the author. No comparison on
CPU times was carried out. As well, Rathod [4] generalized the results obtained by Mizukami [3]
and Babu and Pinter [2], to present analytical integration formulas for the four-noded isoparamet-
ric finite element. To obtain those formulas, Rathod used basic methods of integration (integration
by parts), thus transforming all the integrals involved to unidimensional integrals, which were
further expressed as a linear combination of four basic integrals. Using the REDUCE [5] com-
puter algebra system, Kikuchi [6] obtained explicit formulas for the integration of a four-noded
finite element. Yagawa et al. [7] combined both analytical and numerical methods to integrate
the stiffness matrix of a four node finite element in plane elasticity. These authors expanded and
grouped the integrand, obtaining a 15% reduction in CPU time when compared against Gaussian
numerical integration. Griffiths [8] presented a semianalytical formula to calculate the stiffness
matrix of a four-noded plane elasticity finite element. This author classified the stiffness matrix
terms into six groups, each one related to specified conditions of their degrees of freedom. The
semianalytical expression was obtained by symbolic manipulation of the Gaussian integration
technique for four points. He used the software MAPLE [9]. The technique lead to a significant
reduction in CPU times. After, Videla et al. [10] generated analytical formulas to integrate the
stiffness matrix of a four-noded plane elasticity finite element. These authors, by using symbolic
manipulation of the partial derivatives of the shape functions, obtained general expressions for
each one of them. The results were codified in Fortran and a reduction of 50% in CPU time was
reported when compared with numerical Gaussian integration.

Lozada et al. [11] generalized Griffiths results and presented semianalytical formulas for the
evaluation of the stiftness matrix of eight-noded finite elements in 2D elasticity. CPU times were
improved about 37% when compared with numerical Gaussian integration. Videla et al. [12] pre-
sented explicit and analytical formulas for the stiffness matrix of eight-noded finite elements in
plane elasticity. These authors reported 50% savings in CPU times, again compared with numerical
integration.

This work extend the formulation obtained by Lozada et al. [11] to the integration of the
eight-noded finite elements for axial symmetry.

Il. FORMULATION

Three-dimensional solids having axial symmetry and loading axially symmetric can be analized
by using 2D models. This work consider the quadrilateral finite element of eight nodes, with two
DOF per node, to be used in axisymmetric problems. The element is depicted in Fig. 1.

By using the coordinate transformation (see Eq. 1), the element is transformed into a square
element, as shown in Fig. 2,

The coordinate transformation between the plane rz and the plane £ is given by

8 8
r=Y NG =) N(Enz ¢))

i=1 i=1
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FIG. 1. Quadrilateral finite element.

where N; is the element shape functions which interpolate both the displacements and element
geometry. For eight-noded elements, the shape functions are:

1 1
M=-70-80-nE+7+1; Hoi=—g (L4 £¥01 ~— + i+ )
1 1
Ny = =71+ HA+ (¢ —n+1); Ne=—21 =81 +nE-n+1)
1 1
Ns=§(1—n)(l—§2); N5=5(1+e;-‘)(1—n2>
1
N, = %(1 + (1l — &%), Nyi= o~ E)(1~ n%) 2)
n
N N, N,
Ng Ne E
N, Ns N,

FIG. 2. Finite element in the Gauss-plane.
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Now, the finite element formulation for axially symmetric problems, is summarized below

e

2
— fjfB‘.TDBjrdadA
A0
= 2:rffoDB,-rdA
A

11
=2n [[r BTG D B,y ety dt an 3
-1
where
dN; N, AN 1—v v v 0
— 0 — 'a— v 1—v vV 0
BF = ar ¥ = P E v v 1—v 0
e W A (1+v)(1-2v)
0z ar 0 0 0 1—2v
2
u={u w}; e={s & & 28.) (C))

Here, J, E, and v are the Jacobian matrix, Young modulus, and Poisson ratio, respectively.

From (3) and (4) we obtain
011 612
;;—ZJTff[ }de:]d as (5)

021

where

y detJ)? N;N; - - . « . .
c;]] — ((ST);;_._ﬁJr( ?‘,N,‘) L Ij) El+det.](ijj+ijj)E2+(Z?",‘N,') S;Eng
i=1"1 ‘ i i=1
(6)

b= ((ZnN;) 55+ EjNidetJ) Ey+ (Z rfNj) 5 Es )
p== i=l

C;:f] = (( ?‘;N{) 5;?_, + E;deet.]) E‘z + (Zr,-N,-) f; .;“jE:; (S)
i=l i=1
¢ = (Zf‘iNf) (35 Ey + B Es) 9
i=1
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and
E A(1-2v)
=—; E,=A(1-v); Ey=iv; E3j=——_""~ 10
A AT nd =) 1 (1—=v) 2 v 3 5 (10)
” i d N; N;
s (028N 92 AN\ _ g 3_) (1)
an 0§ a& dn ar
ar BN, ar 8N,- BN,
Si=—— ——+— — | =detJ [ — 12
’ (an o ot 3?1) ¢ (az) W2

The analytical integration of Eq. 5 is very complex and, thus, computer codes use Gauss-
ian numerical integration to evaluate it. Now, by using Gaussian integration of order 2 x 2, the
following semianalytical expression is obtained:

i 3 { A(E S + ExSy + E3S3) + fi(E 1Sy + E3Ss + E3Sg)
o=

3A§ - f12
A3(E\T + ExTh + EsTs) + fo E\Ty + EoTs + E;Ty)
& 3 3 (13)
3A5— f;
where
Fi = (i +r3)(za — 22) — (21 + 23)(ra — 12) — 2(raza — r422) (14)
H=(+z)rs —r) — (2 +ra)(zs — 21) — 2(r3zy — r123) (15)
1

Az = =[(z2 — z) (11 — r3) + (23 — 21)(r2 — 1)) (16)

8

The functions S; and 7; (i = 1...6) depend on the Cartesian coordinates. These functions were
calculated by using symbolic manipulation and they are used to generate the parent terms (see
Egs. 17-26). For instance, the functions used to generate the term k22 (Eq. 17) in the eight-noded
element are as follows:

1
81 = gl — 1Y (Try 4 2ry 4+ 1) +13)

S, =0
1 2

§; = 9—6(24 =2 (Tr +20r; +rs) +13)
1

Sy = 9—6(?‘4 — 1) (dr 412 +14)

Ss =0
1 2

Sg = %(24 — ) @i+ ra+rg)

T, =

1
T (27 + 773 + 873 + 121314 — 181373 +Tr3 + 6r2(ry + 14 — 73) — 3r2(6r3 + 1)
+ 3ra(4r5 + 2rs vy — 13) + 6r1(2r3 — 1 (3rs + 14) + 14 (=313 + 2r9)))
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T3 (2(2} + 4z3(z3 — 20) — 2224) (11 + 202 +10) +13) + 2((r1 +13)

= 2592
+5rs =)z — 227302 + 2 (=1 = Srp 1 — 1) 2za — 20)22 + 2@ +13)
try+Tr) 22+ QU +13) + Tra +12)25)

-1
Ty= m(m — 1) ((rf + 13+ 1] +77) + Tri(ra +ra) + 2rars — 10rr3 — 1rs(r2 + r4))
Ts =0
]
Ts = ﬁ(z(?’(rz +ra) + 11 +13)(22324 — 2124) + 2(674 — r2)2224

+ 22221 — 223) (1 + 14 + 13+ 3r2) + 8(rs — r2)zizs + (1 + 13 + 4z — 2(rs — r)z.
— 823(rs — 1) — Z3(r1 + 13 + 4rs))

lil. STIFFNESS MATRIX TERMS GENERATION

We consider now the classification of terms presented by Lozada et al. [11] for the eight-noded

element, as shown in Table I:

TABLEI Stiffniess matrix terms classification in eight-noded element.
Degree of
Group Terms Description adjacency
A k1'1 ) ’Cz‘g, r’(3‘3, k4,4, k5_5, kal(j, k7'7, kg's, kg‘g, Parallel DOF at the same node O
k10,10, k11,11 k12,12, k13,13, k14,145 K15,15,
k116
B kiaykass ks, k7.8, k9,10, k11,12, k13,14, K15,16 Orthogonal DOF at the same node 0
C k]_g, k3‘5, kS,‘.", k]l‘,n, kg‘l 1, k1 1,13, k13'15, Parallel DOF at nodes separated by 2
ko,15, k2.4, kas, ks g, ko g, k10,12, k12,14, one node.
k14,16, k10,16
D k2,3, k3‘5, kﬁ,',‘., k2‘7, kw‘; 1s k] 1,145 k14_15, Orthogonal DOF at nodes Separatcd 2
k10,15, ka5, ks, k1.8, k1,4, k12,13, k13,165 by one node
ko165 k9,12
E k],j, k9_13, k3|7, kl 1,15: kg.g, k4.8, kl{},14, klz,lﬁ Parallel DOF at opposite nodes 4
F  kigi konas kag. kinie ka5 k10,13, ka7, k12,15 Orthogonal DOF at opposite nodes 4
G k]lg, k3,9, k3‘11, k5‘1 s k5_13, k',l,]a, k',',]s, Parallel DOF at adjacent nodes 1
k1,15, k3,10, ka 10, k4,12, k6,12, k6,14, K8 14,
kg,16: k2,16
H kl,lOs k3'](), k3_12, kj_lz, k5_14, k7_14, k7’]5, Ol'thOgOI’lﬂl DOF at adjacent nodes 1
k1,16, k2,9, ka,9, ka1, ke,115 k6,135 ks, 13,
ks 15, k2,15
I ki, ka1, k79, ks, ksas, ks, kaaa, Parallel DOF at nodes separated by 3
ki,13, k2,12, kg 12, kg 10, k6,10, k6,16, Ka, 16, two nodes
k4,14, ka,14
) ka1, ks 11, ks 9. ks 9, K15, ka15, K413, Orthogonal DOF at nodes separated 3

k2,13, k1,12, k7,12, k7,104 K510, k5,165 k3,16,
k3 14, k114

by two nodes

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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NODE 3

FIG. 3. Degrees of adjacency for node 3 and DOF in each node.

In the classification above, the symmetry of the stiffness matrix was considered. The eight-
noded element was classified into 10 groups, considering the adjacency between DOF in the
element nodes and the type of DOF (parallel or orthogonal). To illustrate this, Fig. 3 shows the
different degrees of adjacency of node 3 with other nodes.

To generate the stiffness matrix terms, the following simple coordinate transformations are
used, which modify only the node position and not the element geometry (Table IT). The notation
used here is that the symbol <= means “is overwritten by”

Thus, given any term in a group (parent term), the other terms of this group can be obtained
by using the functions S; and T; (generating functions) and coordinate transformations. By
comparing the number of algebraic operations carried out by the generating functions of each
term in a group, it is more efficient to generate each group using several parent terms, as
the number of algebraic operations needed by functions S; and T; are different for each
group.

In what follows, the way the stiffness matrix terms in each group are obtained, using Eq. 13
and the transformation R is shown:

TABLEII. Simple coordinate transformation.

Transformation (Rotation R)

Transformation Terms affected
(r1, z1) <= (r4, z4) fi. fr
(rz2, 22) <= (r1, 21) S1, S2, 83, S4, Ss, Se
(r3, 23) <= (r2, 22) N, 1,713, T4, Ts, Tg

(r49 Z4) = (f},, Z3)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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Group A (parent terms: ky 1, k23, ko g, and kyp10)

kiyn = kg — kss — ki3
kop —> kgg — ke — kaa
koo — kisis = ki3i3 = ki

kio10 = Kisi6 = kiaa — kinp2 (17)

Group B (parent terms: k; » and kg 19)

kip = kog — kes — ka3

koo = kisis —> Kiza = k2 (18)
Group C (parent terms: k; 3, kg, ko,11 and kyg,12)

k1,3 — kl,-,- —> k5_7 —> k3,5
keg — kegq — kog — kag
koyr —> kois — kizis = ks

ko2 = kigi6 = ka6 = Ki214 (19)
Group D (parent terms: k) 4, k1,8, k9,12, and ky415)

kig = kag — ksg — ksg
kig — kes — kas — kas
kg1a = kiois = kisis = Kiua

k15 = kiaiz — kg — ko (20
Group E (parent terms: k; 5, ko, k9,13, and ko 16)

kis = ksz
kag — kug
ko3 —> k11,15

k216 = ko4 (21)
Group F (parent terms: k¢ and ko 14)

kie = ka7 — kas — kg

ko1 = kiz1s — kious — kinie (22)

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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GI‘OL]p G (parent terms: k'.’,lSs k7‘13, kg,lo, and kﬁj[z)

kyas = ksy3 —> ks — ki
k113 = ksii = kg — ks
kato = kg6 — kega — kapo

ke — kajo — k16 — ka4 (23)

Group H (parent terms: kz9, kg,11, £1,10, and ks 13)

koo = kgis = kg3 = kan
ket — koo — kajs — kg3
k1o = k116 = ksjpa — ks

ksia = ko — kg6 — kp1a (24)

Group I (parent terms: ky 1, ks, k2,12, and kg 19)

ki = kg = ksys —> kays
kso — kays — kigz — ko
kaiz — kgio — ko6 —> kaga

koo = ks = koya — kgao (25)

GI‘OHP J (parent terms: kz,] i kg']:;, kl,12= and k1!14)

Koy = kgo — keis —> ka3
koys —> kgii — key — ka5
kijz = kg0 = ksis — kaga

kija — k312 = ksio — kie (26)

Numerical Methods for Partial Differential Equations DOI 10.1002/num



SEMI-ANALYTICAL INTEGRATION OF ELASTIC STIFFNESS MATRIX 1633

where the groups of terms of stiffness matrix are arranged as follows:

A B C D EF G H1 J G HE F C D
A DCFEHG G J I HGTFEDC
A B CDEVF G HI J G HE F
A DCF E HG J I HG F E
A B C DEF G HI J G H
A D CF E HG J I H G
A B C D E F G H I J
A D C F E H G J I
= A B C D E F G H 27)
A D C F E H G
symmetrical A B C D E F
A D C F E
A B C D
A D C
A B
— Au..

In Eq. 13, the coefficient A3 represents the element area. Moreover, if we denote as L; =
filr, oo ora21,. .0, 24) and Ly = folry, ..., 14,21, .., 24) the values of the functions fi and f,
when evaluated on the original coordinates, then by applying the rotations to the finite element,
we obtain:

Ly with one rotation L with one rotation
fi=4—L, withtworotations and f>,=4{—L; withtwo rotations
—L, with three rotations —L; with three rotations

IV. VALIDATION OF SEMIANALYTICAL FORMULATION

In this section, semianalytical results will be compared with those obtained using Gaussian
numerical integration of order 2 x 2. The differences are calculated as follows:

i (85 - S;;;X)Z
Error = 4 (28)
2 j |sij
where sl.'j,., stiffness matrix terms obtained with numerical integration and sfx , stiffness matrix
terms obtained with semi-analytical integration.
Table III displays the differences obtained when evaluating the finite element shown in Fig. 4.
The results are essentially the same with any differences occurring due to machine rounding,.

TABLEIII. Difference between numerical and semianalytical formulations.

a b Difference
10 10 0.158075 x 1077
10 100 0.220665 x 1077
10 1000 0.232560 x 107

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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7 A
Z;+b

z;ta

Zi=a

A\ 4

ri=a ri+a r;+b

FIG. 4. Test finite element dimensions.

V. CPU TIMES

To evaluate the reduction in CPU times, a processor HP NXG120 Centrino 1.86 GHZ with 1 GB
RAM was used. The CPU times by both techniques (Gaussian integration with 2 x 2 points and
semianalytical) are given in Table IV.

Results show that the semianalytical formulation for the stiffness matrix of an axisymmetric
eight-node element is significantly more efficient than numerical integration, leading to CPU
savings about 50%.

VL. CONCLUDING REMARKS

A general methodology using symbolic algebra has been presented for evaluating the stiffness
matrix of an elastic axisymmetric eight-noded finite element. The stiffness matrix terms were
obtained using a semianalytical approach, that followed the steps of a Gaussian integration algo-
rithm symbolically and took full advantage of simple coordinate transformations and symmetry
to populate the matrix. The proposed approach gives exactly the same results as Gaussian integra-
tion with 2 x 2 sampling points, but runs 50% faster. This improvements described in this article
would be even more impressive if dealing with large nonlinear and dynamic FEM analysis, where
regular reformulations of the element stiffness matrices are called for.

Vil. SOFTWARE

Source code of the program described in this article, and others generated with the help
of Computer Algebra Systems can be downloaded from the second author’s web site at
www.mines.edu/~vgriffit/analytical.

TABLEIV. CPU times comparison.

Number of elements Numerical integration (s) Semianalytical integration (s) Saving (%)
10,000 1.67 0.84 49.5
100,000 16.04 8.28 483
1,000,000 161.44 82.51 48.8

Numerical Methods for Partial Differential Equations DOI 10.1002/num
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