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SUMMARY

An explicit form of the plastic matrix for a Mohr-Coulomb material in two dimensions is presented. The
derivation, which assumes elastic—perfectly plastic behaviour is obtained by direct differentiation of a non-
invariant expression for the Mohr-Coulomb yield function. A FORTRAN 77 subroutine is also provided.

INTRODUCTION

Many algorithms for analysing elasto-plastic materials, such as tangent stiffness and constant
stiffness (initial stress methods), require an elasto-plastic matrix which is a function of elastic
properties and the assumed failure and potential functions.! For metal plasticity or undrained
clays, the von Mises criterion is suitable, and this function leads to a rather simple plastic matrix
which is easily formed explicitly.? For frictional materials, however, the plastic matrices have
tended to be formed ‘numerically’ (see, for example, Reference 3). This was because the invariant
form of the Mohr—Coulomb criterion leads to rather unwieldy expressions on differentiation.

The formulation presented here uses a non-invariant form of the Mohr—Coulomb function as
the starting point. This enables the derivatives and the plastic matrix itself to be expressed in fairly
simple algebraic form. Corners are dealt with in the usual way by the introduction of a smoothing
function.

The small penalty for using this non-invariant approach for obtaining the Mohr-Coulomb
derivatives is that care must be taken over the signs of some of the terms.

A brief review of the plastic matrix derivation follows.

GENERAL DERIVATION OF AN ELASTO-PLASTIC MATRIX

Consider an element of material in plane strain or axisymmetry with a stress state acting on it
such that is lies on a yield surface. An increment of strain will generally contain both elastic and
plastic components thus:

de = de* + de? (1)

Classical plasticity theory requires that plastic strain increments should occur normal to the yield
surface F, hence
. aF 5
€’ = A—

e )

where A is a scalar multiplier.
For frictional materials, however, non-associated flow rules must be used to avoid excessive
dilation. In such cases, strain increments occur normal to a potential surface Q where Q # F, hence

90

A= —

de” = A = (3)
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Assuming stress changes are generated by elastic strain component only, then
a0
= L8 —_ -t 4
do=D (de A 60') 4)
For elements already on the yield surface and in the absence of hardening or unloading,

subsequent stress increments may shift the stress state to a different position on the surface, but
not off it. Hence

aFT
a7d0' =0 (5)
aFT g & aQ
T (D de —AD :’;);) =0 (6)
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hence
do = (D? - D¥) de (10)
where
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PLASTIC MATRIX FOR A MOHR-COULOMB MATERIAL

The yield function can be expressed in many different forms (the invariant form is given in
Appendix II), but should have units of stress and preferably the property that it equals zero if a
given stress state lies on the yield surface.

For a ‘compression is —ve’ sign convention, the Mohr—Coulomb yield function may be expressed
thus:

F= \j‘[(a'_,r - 0,)* + 41,% + (o, + 0,) sing — 2c cos¢p (12)

In its simplest form, the plastic potential is algebraically similar to equation (12) except with
the dilation angle y replacing the friction angle ¢, hence:

0= \f[(crx - 0,)? + 47,2 + (o, + @) sing — 2¢ cosyr (13)

Defining

« = arctan

(14)
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and putting

ky=1if |o| = o, ki = -1 if |oo] > |oy] s
k=1 if 7r,=0and k, = -1 if 7, <0
then
sing + k, sine
dF _ | sing — k, sina
Jo 2 k, cosa
0
singr + &, sina
a0 | sing — k, sina
éo | 2 k, cosa
0
where
Ty Oy
Ty F x o, 3 4
o= in plane strain or in axisymmetry
Txy Trz
a, o,

Defining the elastic matrix for use in plane strain or axisymmetry as

nl—v v 0 v
v 1-v O v
Dez——E—— 1-2
(1+v)(1-2») | 0 0 2” 0
v v 0 1-v»

the plastic matrix may now be obtained explicitly by substitution into -equation (11) to give

E
Dp_2u+yx1—maa—2v+sm¢sm¢)A
where R,C, R,C; R,C; R,C,
A— R2C1 R2C2 R2C3 R2C4

R,C, R;C, R5C; R;C,
R,C; RyC, RyCs RLCy
and

C, = sing + k(1 — 2v) sina
C, = sing — k(1 — 2») sine
C; = k(1 — 2v) cosa

C, = 2vsing

R, = singr + k(1 — 2») sina
R, = singr — k(1 — 2v) sina
Ry = ky(1 — 2v) cosa

R, = 2v siny

Note that A is symmetrical if ¢ =  (associated).

CORNERS ON THE YIELD AND POTENTIAL SURFACES
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(15)
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(19)

(20)

eay)

As can be seen from Figure 1, the derivatives of F and Q are indeterminate at the vertices of the
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Fae = Umsin¢ +‘£}; {cos@ — sind sin?? —c cosd} =0
J3

Frc =Omsin@ + /Jz (/3 —5sin@ J-ccosp =0
2 /3

/T2 (/3 + singt )-ccos@ =0
) 3

Fre =0n sin¢> +

Figure 1. Surfaces used at corners of Mohr-Coulomb

hexagonal surface. These vertices correspond to triaxial stress states which occur when the angular
invariant

6 = 30° triaxial compression, |oy| = |05 = |0y
or (22)
6 = —30°, triaxial extension, |oy| = |oy| = |0y

If the above stress states should occur, the plastic matrix of equation (19) is no longer valid and
an alternative approach must be adopted.

A rounding of the corners of Mohr—Coulomb (see, for example, Reference 4) has been used
here. This means that if the angular invariant gets sufficiently close to +30°, the plastic matrix is
formulated according to either the triaxial compression or the triaxial extension cone. These are
obtained by substituting 8 = 30° or —30°, respectively, into the expression for Mohr-Coulomb in
terms of invariants (Figure 1).

The plastic matrices for rounding the corners of Mohr—Coulomb are obtained, as before, from
equation (11) where

Js i
F=o,, sim,-b+‘/7 (\/3 t%r;ib) — ccosd (23)
and
JZ 1
Q = o, sing + \/7 (\/3 e §-1-1—1£) — ccos (24)

Using the chain rule where

9F  9F da,, oF o,

—=———""4 — "% etfc.
do, 9oy, do,  oJ, a0, (25)
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(26)

As before, 80/d0 is identical to dF/da except with s substituted for ¢. The plastic matrix may
now be obtained explicitly to give

E
D? = - A
(1+v)(1-20){ K ysing+2C,CyJ5 (1-2v)} (&)
where A is defined by equation (20) but with columns and rows given as follows:
C1=K¢ +C¢v{(1_ V)Sx’l'y(sy-l_sz)}
C=K,+Co {(1—v)s, +v(s; +s.)}
C3 = C¢(1 - ZV) Txy
C4 — K¢ 4~ C¢, {(1 &= V) Sz + v (Sx -+ Sy)} (28)
Bi=K, + Gl =9 8+ ¥ (8 + s}
Rs = Ky'+ Cu {1l — ¥} &y + # (8 + 8}
Ry=Cy, (1 -2v) 1,
Ry,=K, + Cu{(1 —») s, + v (5, +5,)}
where
K= 222140, K=+

Cd’:i\/(i) (1¢5ig“!’)andc¢=i\/(%)(1¢5i%!’) (29)

The criterion for using the ‘rounded’ version of the plastic matrix is quite arbitrary, but in the
present work the ‘rounded’ version is used if

| sinf | = 049, or | 6| = 29-34°

Having established that | sinf | = 0-49, the sign of § must then be observed in order to determine
the sign in the expressions for Cy and C,, in equation (29). If 8 = 30° then the —ve sign is correct,
but if 6 = — 30° then the +ve sign should be used.

APPENDIX I: THE SUBROUTINE

The subroutine which forms the plastic matrix for a Mohr-Coulomb material taking account of
corners, is listed below. Input to the subroutine involves the following values:

PHI = The friction angle ¢ (in degrees).

PSI = The dilation angle  (in degrees).

E = Young’s modulus E.

\'% = Poisson’s ratio v.

SX = The current stresses o,, o, o, and 7,
SY for plane strain or '
ST o,, 0,, o, and 7,. for axisymmetry.

TXY



528 D. V. GRIFFITHS AND S. M. WILLSON

Output from the subroutine:

PL = The 4 X 4 plastic matrix D”.

SUBROUTINE MOCOPL(PHI,PSI,E,V,SX,SY,TXY,SZ,PL)

THIS SUBROUTINE FORMS THE PLASTIC STRESS/STRAIN MATRIX
FOR A MOHR-COULOMB MATERIAL (PHI,PST IN DEGREES)

(e R er Nar N ar]

REAL ROW (4),cOL(4),PL(4,4)

PI=4.* ATAN(1.)

PHIR=PHI*PI/180.

PSIR=PSI*PI/180.

SNPH=SIN(PHIR)

SNPS=SIN(PSIR)

$Q3=SQRT(3.)

CC=1.-2.*%Y

DX=(2.*SX-5Y-SZ)/3.
DY=(2.*%SY-SZ-SX}/3.
DZ=(2.*SZ-SX-5Y) /3.
D2=SQRT(-DX*DY-DY*DZ-DZ*DX+TXY*TXY)
D3=DX*DY*DZ-DZ*TXY* TXY
TH=-3.*503*D3/(2.*SQRT(D2)**3)
IF(TH.GT.1.)TH=1.
IF(TH.LT.-1.)TH=-1.

TH=ASIN(TH) /3.

SNTHESIN( TH)

IF (ABS(SNTH).GT..49) THEN

5IG=-1.

IF(SNTH.LT.0.)SIG=1.
RPH=SNPH*(1.+V)/3.
RPS=SNPS*(1.+V)/3.
CPS=.25%5Q3/D2*{1.+SIG*SNPS/3.)
CPH=.25%503/D2*(1.+SIG*SNPH,3.)
COL(1)=RPH+CPH*{ (1.-V)*DX+V*(DY+DZ))
COL(2)=RPH-CPH*{ (1.-V)*DY+V*{DZ+DX))
COL(3)=CPH*CC*TXY
COL(4)=RPH-CPH*{(1.-V)*DZ+V*(DX+DY))
ROW(1)=RPS+CPS*{ (1.-V)*DX+V*(DY+DZ))
ROW(2)=RPS+CPS*((1.-V)*DY+V*(DZ+DX))
ROW(3)=CPS*CC*TXY
ROW(4)=RPS+CPS*((1.-V)*DZ+V*{DX+DY))
EE=E/((1.+V)*CC*(RPH*SNPS+2 . *CPH*CPS*D2*D2*CC) )
ELSE

ALP=ATAN(ABS({SX-SY)/{2.*TXY)))
CA=COS(ALP)

SA=SIN(ALP)

DD=CC*SA

si=1.

s2=1.

IF({SX-SY).LT..0)S1=-1
IF(TXY.LT..0)S2=-1.
COL(1)=SNPH+S1*DD

COL(2)=SNPH-S1*DD

COL(3)=52*CC*CA

COL(4)=2.*V*SNPH

ROW(1)=SNPS+S1*DD

ROW(2)=SNPS-S1*DD

ROW(3)=S2*CC*CA

ROW(4)=2.%V*SNPS
EE=E/{2.%(1.+V)*CC*( SNPH*SNPS+CC))

END IF
DO 1 I=1,4
DO 1 J=1,4
1 PL{I,J)=EE*ROW(I)*COL(J)
RETURN
END

APPENDIX II: INVARIANTS

Om = (0n + 0y + @,)/3
I35 = = By ™ 5B — By Bl
Ji= 5,8, 8 — & T2
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Invarianis

1
@ = - arcsin (-—
3 2

where
5. = (2 0, — 0y — 3)I3, Bt
Invariant form of Mohr—Coulomb:

sin@sin

F=o,sin¢ + \/Jz (cosE)—Tqb) ~ccosgp =10
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