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Numerical and analytical observations on long and infinite slopes
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SUMMARY

Interest in the mechanics of landslides has led to renewed evaluation of the infinite slope equations, and
the need for a more general framework for estimating the factor of safety of long and infinite slopes
involving non-homogeneous soil profiles. The paper describes finite element methods that demonstrate
the potential for predicting failure in long slope profiles where the critical mechanism is not necessarily
at the base of the soil layer. The influence of slope angle is also examined in long slopes, leading to
some counter-intuitive conclusions about the impact of slope steepness on the factor of safety. Copyright
© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The paper reviews the familiar infinite slope stability equations and describes the development of
powerful general-purpose finite element programs for computing the factor of safety of long and
infinite slopes. The motivation for this development comes from a renewed interest in the mechanics
of shallow landslides (e.g. [1]) and the need for a more general approach to the analysis of long
slopes allowing soil properties and groundwater conditions to vary with depth. Conventional use
of the infinite slope equations on soils involving both cohesion and friction gives a factor of safety
that assumes a homogeneous soil profile and a critical failure plane running parallel to the ground
surface at the full depth of the soil layer.

Some of the previous work on this subject has focused on shear mechanisms and states of stress
in an infinite slope (e.g. [2]), as well as analysis of 1-D and 2-D strains and displacements (e.g.
[3-5]). More specifically, a finite element approach to long slopes based on limit equilibrium theory
and strain softening behavior has been presented by Runesson and Wiberg [6] and Wiberg [7].
Another group of investigators have studied the influence of groundwater flow and lateral (3-D)
flow fields in relation to landslides (e.g. [8—10]) as well as estimating the influence, using an
infinite slope analysis, of infiltration on surficial slope stability (e.g. [11-13]). More recently, Yang
[14] considered the influence of horizontal acceleration on the seismic stability of landslides via
the infinite slope equations.

For soils with variable soil strength and pore pressure profiles, the infinite slope equations cannot
be used directly to find the factor of safety. Instead, an algorithm is needed that can examine all
potential failure planes until a minimum factor of safety is found. In these cases, the critical failure
plane may not occur at the bottom of the soil layer, but at some intermediate depth.
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The elasto-plastic finite element method has been applied successfully by numerous investigators
. to conventional slope stability analysis using strength reduction (e.g. [15-18]), and shown to offer
several advantages over conventional limit equilibrium techniques. In particular, the method is able
to ‘seek out’ the critical failure surface without user intervention and display deformations. This
paper seeks to exploit the same concepts in the analysis of long and infinite slopes.

2. REVIEW OF THE INFINITE SLOPE EQUATIONS

The infinite slope equations are described in detail in other publications (e.g. [19-22]); however,
to set the scene for the numerical analyses to follow and for consistency of notation we present a
brief review in this section.

The key assumption in an infinite slope analysis is that the slope is very long relative to the
vertical depth (H) of the potential failure surface. When considering force equilibrium of a typical
slice within a long slope as shown in Figure 1, the side forces on each side of the slice can be
considered equal and opposite, hence their magnitude does not need to be known since they cancel
out. Any vertical column of soil within the infinite slope is therefore the same as any other vertical
column, and can be treated as typical of the entire potential sliding mass.

Figure 2(a) shows the general configuration and forces acting on a typical slice of a ¢’ — ¢'soil
of width L, where H and § are the depth and inclination of the potential failure plane, dy is the
depth of the water surface, which in this study is assumed parallel to the ground surface, and yg,,
7, and y' are, respectively, the saturated, moist and buoyant unit weights of the soil, respectively.
Figure 2(b) shows the steady flow net and the expression used to compute the pore pressure at
any depth below the water surface.

From considerations of limiting equilibrium,

o ¢ ((H —dw)y +dwym) tang’
((H —dw) Vgt + duw¥m) O Bsinf (H — du)yga +dwvyy) tanf

is the general equation for the Factor of Safety of an infinite slope with a water surface running
parallel to the ground surface and different soil unit weights above and below the water surface.
If it is conservatively assumed that y,, &y, the equation simplifies to

_ c (Hys— (H —dw)yy,) tan g’
Hygcosfisinf3 HYoar tan 3

(1

FS

2

2.1. Pore pressure parameter ry
An alternative way of defining the pore pressures on the potential failure plane (e.g. [23]) is through
the pore pressure parameter ry defined in general as
u
Fy=— 3
Oy

where gy is the vertical total stress.

typical slice
ground surface

Figure 1. Layout of the infinite slope problem showing a typical slice with equal and opposite side forces.
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(b

Figure 2. (a) Dimensions and forces acting on a typical slice with a water surface and steady seepage
parallel to the ground surface and (b) the steady flow net and the expression used to compute the pore
pressure at any depth below the water surface,

For the case shown in Figure 2(b) with steady seepage parallel to the ground surface, it is easily
shown that

. _(H=dy)y,cos
"
Hygy

4

which after substitution into Equation (2) gives

¢ ry \ tang’
FS= 1— 5
ysa[Hcosﬁsinﬁ+( coszﬁ) tan 8 ®)

It can be noted from Equation (4), that in the case of steady seepage parallel to the ground surface
with the water surface at depth dy,, ry is also a function of the slope angle f.

3. OBSERVATIONS ON THE INFINITE SLOPE EQUATIONS

3.1. Infinite slope charts
A rearrangement of Equation (5) can be obtained by dividing through by tan ¢’ to give

FS ¢’ ru 1
- et (1 ) — (6)
tane’ yHtang’ cosfsinf cos?ff /) tanf§
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Figure 3. Plots of Equation (7) for (a) r,=0; (b) r,=0.25; and (¢} r; =0.5.

where the unit weight y=7, if the soil is assumed to be saturated (r,>0), and y=vy,, if not
(ry=0). Charts for finite slopes have been developed in this form (e.g. [24]) since it conveniently
isolates the slope angle § and highlights the dimensionless group

S=c'/(yHtang") (N

A graphical representation of this equation has been plotted in Figure 3 for r, values set, respec-
tively, to 0.0, 0.25 and 0.5,

The figures highlight a curiosity of the infinite slope equations in which a minimum factor of
safety is observed at a particular value of the slope angle ff=f,. This result may be counter
intuitive, since our experience of ordinary slopes is that the factor of safety always falls as a slope
gets steeper. An explanation of this effect for infinite slopes comes from the fact that as the slope
gets steeper, the length of the potential failure surface available to resist sliding is increasing at a
faster rate than the down-slope component of soil weight trying to cause sliding. This phenomenon
will be considered again later in the paper.

3.2. The critical slope angle B,

The previous section showed that the infinite slope equations lead to a critical slope angle f;, at
which the factor of safety reaches a minimum. For slope angles > S, the factor of safety starts
to rise again. The critical slope angle is easily obtained analytically by finding the minimum of
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Figure 4. Plot of Equation (8) for »,=0 and r,=0.5 indicating the location of the critical slope angle
Poin for different values of ¢’/(yH tan¢’).

the function given in Equation (6). Computer algebra software can facilitate such a calculation to
give the critical slope angle as:

S—ry

L. >
2(S—ru+1)) for S=ry (8)

B min = Arccos (

The function shown in Equation (8) is plotted in Figure 4 for the cases when r, =0 and r,=0.5
It shows that in all cases f,;, >45° with f,;, —45°as §— oo (e.g. undrained clay where ¢’ is
replaced by ¢, =0). In addition, a minimum only exists for S=r, with f,,;,— 90° as §— r,.

4. FINITE ELEMENT ANALYSIS OF INFINITE SLOPES?

The starting point for the infinite and long slope program development was an existing program for
the analysis of finite slopes using the strength reduction approach (e.g. [25]). This is a technique
in which the application of gravity loading is followed by a systematic reduction in soil strength
until failure occurs. This is achieved using a strength reduction factor SRF which is applied to the
frictional and cohesive components of strength in the form

, tan ¢’ ;e
=arctan and cp= 9
The factored soil properties ¢; and c{ are the properties actually used during strength reduction, so
each trial SRF involves a separate finite element analysis. When slope failure occurs, as indicated
by an inability of the algorithm to find an equilibrium stress field that satisfies the Coulomb failure
criterion, coupled with significantly increasing nodal displacements, the factor of safety is given by:

FS~SRF (10)

The interested reader is referred to other references (e.g. [18]) for more detailed information on
the elasto (visco)-plastic and the strength reduction algorithms used in this investigation.

This section will focus on the novel features of the finite element program developed for infinite
slope analysis, which lie primarily in the treatment of boundary conditions and gravity loading.
The constitutive model is elastic-perfectly plastic and calls for six soil parameters as indicated in
Table I. In the current work we have assumed an associated flow rule, so the dilation angle is set
equal to the friction angle (y = ¢) throughout.

A typical mesh for infinite slope analysis consists of a column of 4-node plane strain quadrilateral
elements as shown in Figure 5(a). The elements are all congruent parallelograms, which can be
assigned different soil properties if required,

tA full source code listing of the infinite slope program described in this paper can be obtained from the first
author’s web site at www.mines.edu/~vgriffit/infinite.
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Table I. Six parameter soil model.

Friction angle ¢ or ¢,
Cohesion cor ¢y
Unit weight Ysat OF Vm
Dilation angle y=¢
Young’s modulus E'or E
Poisson’s ratio v or v
Lg7]
¥f2
Ao
3 » 5
%‘V /w
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Figure 5. (a) Typical mesh of five identical four-node quadrilateral elements. The program allows the user

to decide how many elements to include in the column and (b) the uncoupled analysis treats each element

independently with gravity loading applied to the top of each element as shown. Only one element is
needed for homogeneous soil profiles.

In order to reproduce the unique side boundary conditions of a soil slice within an infinite slope,
an approach has been used whereby the elements are ‘uncoupled’ from their neighbors as shown
in Figure 5(b). Although the element at the bottom of the column is the only one that is truly fixed
at its base, this formulation treats all the elements as if they are fixed at their bases, allowing shear
stresses and possible shear failure to occur while preserving equivalent boundary conditions on
the uphill and downhill sides of the column. The element stiffness matrices are integrated in the
usual way (four Gauss-points), however, for purposes of computing stresses, a single stress-point
is considered at the centroid of each element. Figure 5(b) also shows how gravity loads are applied
to this uncoupled system so as to generate self weight stresses at each stress-point. The loads
applied to the top of each element are set equal the total weight of all the elements above and
including the current element. In this way the stress-points are loaded as if they were at the bottom
of each element.

Although each element is uncoupled from its neighbors and develops its own displacements,
once a converged solution has been obtained, the global displacements are then accumulated from
bottom to top, allowing the deformed mesh or the nodal displacement vectors to be plotted. The
ability to predict the factor of safety and deformations is s significant advantage of the finite
element approach over a simple application of the infinite slope equations which implicitly assume
rigid-plastic behavior.
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5. IMPLEMENTATION OF THE INFINITE SLOPE PROGRAM

This section provides some examples of infinite slope analysis in which finite element results are
compared with results from the analytical solutions reviewed previously. Homogeneous soils are
considered first, but the benefits of the finite element approach are emphasized most effectively in
later examples where soil properties are varied with depth. In all cases (effective and total stress
analyses) Young’s modulus and Poisson’s ratio were set to 10°kN/m? and 0.3, respectively, since
they have little influence on the computed factor of safety.

5.1. Total stress analysis: ¢, =0, e, soil
In this case the general Equation (5) simplifies to

Cu
Ffe—oreorore— 11
Ysa H cos fsin 8 ub

The properties used in this example are ¢, =0, ¢, =25kN/m?, y,,, =20kN/m3, with a soil depth
of H=2.5m and slope angle §=30°. Figure 6 shows typical results from a finite element analysis
where the strength reduction factor (SRF) is plotted against the maximum nodal displacement in
the mesh. As the SRF is gradually increased, the nodal displacements suddenly increase when
SRF =1.15, indicating a factor of safety of FS=1.15 in close agreement with Equation (11). This
result was obtained using a single finite element which is all that is needed for a homogeneous
soil layer.

Further comparisons are shown in Figure 7 where the slope angle is varied in the rangel0° <
[ < 80°. The smooth line is from Equation (11) and the plotting points come from the finite element
results. As expected for the case when ¢, =0 (S=00) from equation (8), the minimum factor
of safety occurs at f;, =45°.

5.2 Effective stress analysis:c’' — " soil with a free-surface at mid-depth (dy, =0.5 H)
Assuming saturated soil above and below the water surface, the system is governed by Equation (2):

_ c (H}’sa[ == (H _dw)yw) tan (f)',
Hygy cos fsin Hygy tan f§

FS (12)

The properties used in this example are ¢’ =30°,¢’=10kN/m?, y,,, = 18kN/m?, dyy=2.5m and
H =5m with a slope angle f=25°. In the finite element analysis, the pore pressure at the base of
each element is computed using the formula shown in Figure 2(b) with results shown in Figure 8.
Both finite elements and the analytical solution from Equation (12) give FS=1.19,

Further comparisons are shown in Figure 9 where the slope angle is varied in the range 10° <
f#<80°. The smooth line comes from Equation (12) and the plotting points come from the finite

SRF
0.7 0.9 1 1.3
0.000 ! 3 A
0.005 +
E —&— FE (1 element)
w — — - Equation (11)
0.010 4
0.016 -

Figure 6. Strength reduction factor vs maximum nodal displacement for an infinite slope with of undrained
clay with ¢, =0, ¢, =25kN/m?, ., =20kN/m3, H=2.5m and f=30°.
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Figure 7. Comparison of finite element and analytical solutions for an infinite slope of undrained clay
with ¢, =0, cy=25kN/m?, s =20kN/m?* and H =2.5m over a range of the slope angles .

SRF

0.00

0.05

0.10 1

0.15 —&¢— FE (1 element)

5max

0.20 == — Equation (12)

0.25

0.30 A $ .

0.35 I

Figure 8. Strength Reduction Factor vs maximum nodal displacement for an infinite slope with
&' =30°, ¢’ =10kN/m?, yg = 18kN/m>, dy=2.5m, H=5m and f=25°
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Figure 9. Comparison of finite element and analytical solutions from Equation (13) for an infinite slope
with ¢’ =30°, ¢/ = 10kN/m?, y,,= 18kN/m?, dy=2.5m and H=>5m over a range of the slope angles .

element runs for values of f# at 10° intervals. By differentiation of Equation (12) and equating the
result to zero, the minimum factor of safety can be shown to occur when the slope angle is close
to0 Bin =65°. It may be noted that for the case when the water depth dy, is held constant, the pore
pressure parameter r, from Equation (4) becomes a function of the slope angle f.

5.3. Effective stress analysis: ¢’-¢' soil with pore pressures (ry=0.5)
Assuming saturated soil above and below the water surface, the system is governed by Equation (5).

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth, Geomech. 2011; 35:569-585
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Figure 10. Strength reduction factor vs maximum nodal displacement for an infinite slope with
@' =30°, ¢’ =20kN/m?, y, =19kN/m3, r,=0.5, H =5m and f=25°.
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Figure 11, Comparison of finite element and analytical solutions from Equation (14) for an infinite slope
with ¢'=30°, ¢’ =20kN/m?, y = 19kN/m?, r,=0.5 and H =5m over a range of the slope angles f.

The properties used in this example are ¢'=30°, ¢/=20kN/m?, y,, =19kN/m?, r,=0.5,
H=5m(§=0.365) with a slope angle of #=25°. Figure 10 shows typical results from a finite
element analysis compared with the analytical solution from equation (5) which gives FS=1.03.

Further comparisons are shown in Figure 11 where the slope angle is varied in the range
10° < f# <80°. The smooth line comes from Equation (5) and the plotting points come from the
finite element runs for values of f at 10° intervals. Good agreement between the solutions is
obtained until the steepness of the slope exceeds about 50° when the analytical values of FS
from Equation (5) become very small. The finite element solutions perform poorly in this range
because the factored shear strength values from equations (9) are becoming very high. For example,
when f=60° Equation (5) gives FS=0.153 which would require a factored friction angle of
¢ =arctan(tan30/0.153) =75.2°! It may also be noted in this example that there is no f,;, solution
because S <ry.

5.4. Effective stress analysis: ¢’-¢" soil with parabolically varying ¢’ with depth (r,=0)

Here we introduce a more complex strength distribution by assuming that ¢’increases parabolically
with depth according to

¢ =p+qz* (13)

where p(>0) is the cohesion at the ground surface (z=0), and g (> 0}, is the constant coefficient
of the z? term.

Although this may not be a very realistic soil profile, it introduces for the first time in this paper,
the possibility of failure occurring at locations above the base of the soil column.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2011; 35.569-585
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Figure 12. Variation of FS with z for a soil with ¢'=25° ¢’=4.6+0.75zkN/m?,
p 18kN/m? and f=25°. The plot shows that FS initially falls as z increases but reaches a
minimum when zq =2.48m. For z> 7z FS remains constant and equal to 1.54.

To find the depth of the critical failure plane, substitute Equation (13) into Equation (5) and
replace H by z to give

p+qz*  tang
YmzCosfsinf  tanf

and solve (£(FS)/dz) =0 for zeit to find the critical depth that gives the minimum value of FS.

FS=

(14)

Hence
Z-:rilz‘/E (15)
q
and
2.7 tan ¢’
FS= B g PP (16)

" ypcosfBsinf  tanf
This is in agreement with the observation (e.g. [26]) that the critical failure plane for constant
¢'develops where ¢’/z reaches a minimum.

Consider the case where ¢'=25°, ¢’ =4.6+0.75z2kN/m? (p=4.6, ¢ =0.75), y,, = 18kN/m?
and $=25°. For these properties, Equations (15) and (16) give z¢;iy =2.48 m and FS=1.54, respec-
tively. A column of 10 elements per meter of depth was used to model the parabolic variation of
¢'with z. The variation of FS with z from Equation (14) is shown in Figure 12 together with the
finite element solutions.

This case demonstrates that for soil depths z <zt the critical failure plane occurs at depth z
and the factor of safety is given by Equation (14), while for soil depths 22z the factor of safety
remains fixed at the value given by Equation (16).

An initial and deformed mesh at failure is shown in Figure 13. Although the mesh remains

continuous, the location of the failure plane at the critical depth of zcrit=,/(—;{% =2.48m from

Equation (15) is clearly indicated. In this case, multiple elements in the finite element discretization
of the soil column are needed to ‘capture’ the critical mechanism.

6. FINITE ELEMENT ANALYSIS OF LONG SLOPES

In this section some conventional finite element slope stability analyses have been performed on
long slopes with more realistic boundary uphill and downhill conditions, to assess the range of

Copyright © 2010 John Wiley & Sons, Lid. Int. J. Numer. Anal. Meth. Geomech. 2011; 35:569-585
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Figure 13. (a) Initial mesh of 60, 4-node elements and with H=6m and f=25° for a soil with
@' =25° ¢ =4.6+0.75z2kN/m? andy,, = 18kN/m> and (b) deformed mesh at failure indicating the
formation of a failure plane at an intermediate depth of zg5 =2.48m.

Figure 14. Typical mesh of 8-node quadrilateral element for ‘long slope’ analysis.

validity and conservatism of the infinite slope assumptions. Questions addressed in this section are
as follows: (i) How long must a slope be for it to be considered ‘infinite’? (ii) Is there a critical
slope angle at which the factor of safety reaches a minimum as indicated by the infinite slope
equations (e.g. Figure 3)?

It has been noted previously (e.g. [26]) that the infinite slope assumptions can be expected to
lead to conservative estimates of the factor of safety. This is primarily due to support provided at
the ends of a finite slope that is not accounted for in the infinite slope model.

A typical finite element mesh of 8-noded quadrilateral elements is shown in Figure 14 consisting
of horizontal sections to the left and right, and a long sloping central section. The base of the mesh
is fully fixed and the extreme vertical boundaries to the left and right allow vertical movement
only. Other boundary conditions, for example, allowing the end sections to be sloping, have been
considered by [27]) but are not reported here.

The geometry was set up so that the dimensions and mesh refinement of the various sections
could easily be modified through the data. A very large number of parametric variations are possible

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2011; 35:569-~5385
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in such a study, but in this section, and for consistency with the infinite slope results presented
previously, it was decided that the vertical depth of soil (H) would be held constant while the
slope angle (f) and length (L) were varied. In the analyses that follow, two of the examples
considered in Section 5 are revisited. In each case parametric studies were performed relating to
the dimensionless ‘length ratio’ which was varied in the range 2<L/H <32 and the slope angle
(f), which was varied in the range 10°<8<80°. In all cases the mesh refinement was consistent
and similar to that shown in Figure 14, where the soil depth was modeled using a column of 10
elements.

6.1. Total stress analysis: ¢,=0, ¢y soil

This example is similar to the infinite slope case considered previously in Section 5.1. The
parameters H =2.5m, ¢, =25kN/m?, $=30° and y, =20 kN/m? were held constant while L/H
was gradually increased. As shown in Figure 15, the computed factor of safety converged on the
infinite slope solution of FS=1.15 from Equation (11) for L/H greater than about 16. It may
be noted that the infinite slope solution is always conservative. For example, with L/H =2 the
computed factor of safety was FS=2.86, more than double the infinite slope value.

Typical deformed meshes at failure in Figure 16 show that for shorter slopes, a significant
proportion of the failure mechanism path involves cutting through soil at the top and the bottom
of the slope, leading to higher factors of safety. For longer slopes, the majority of the mechanism
is parallel to the ground surface and runs along the base of the layer, leading to factors of safety
in closer agreement with the infinite slope result.

The influence of the slope angle on the factor of safety for two different length ratios was
considered next with results shown in Figure 17. The infinite slope solution from Equation (11)

a5 | l
3.0 4 1
2.5 .\ ~—@— FE ’

20 - — — . Equation (11)

1.5
1.0

FS

0 10 20 30 40
LH

Figure 15. Influence of length ratio L/H on the computed factor of safety FS for slope with /=2.5m,
B=30°, cy=25kN/m? and y,, =20kN/m>,

i
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Figure 16. Deformed meshes at failure for the cases of L/H =2 and L/H =4 showing how the infinite
slope mechanism becomes more dominant for the longer slope.
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Figure 17. Influence of slope angle § on the computed factor of safety FS for an undrained clay slope
with H=2.5m, ¢, =25kN/m? and y,,,=20kN/m? for two different length ratios.
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Figure 18. Deformed mesh at failure corresponding to a slope with L/H =2 and f=60°
indicating a toe mechanism with FS =1.58.

is also shown in this figure. The long slope with L/H =32 agreed with the infinite slope solution
over the full range of slope angles considered. The ‘short’ slope with L/H =2 gave significantly
higher factors of safety than the long slope at flatter slope angles. Less predictably, the factor of
safety in the short slope analysis also exhibited a minimum at = 60° of about FS =1.58 before
rising again at higher slope angles. All three solutions essentially converged on the same factor of
safety of FS=2.88 for the steepest slope considered (ff=280°).

For most short slopes, the failure mechanism is attracted to the toe of the slope as shown in
Figure 18, which gives the deformed mesh at failure for L/H =2 and f=60°, corresponding to
the minimum FS=1.58. For very steep slopes however, the toe mechanism is no longer dominant
and the critical mechanism changes to a localized failure at the top of the slope as shown by the
displacement vectors in Figure 19 for f=75°, which gave FS=2.20. This type of mechanism is
more reminiscent of a ‘vertical cut’ failure and is not affected by the value of L/H,

6.2. Effective stress analysis: ¢'-¢’ soil with pore pressures (r;=0.5)

This example is similar to the infinite slope case considered in Section 5.3, and the results are
qualitatively similar to those obtained in Section 6.1 for an undrained clay slope.

Parameters given by H=5.0m, ¢’ =30°¢' =20kN/m?, r,=0.5, 7., =19kN/m? and f#=25°
were held constant while L/H was gradually increased. As shown in Figure 20, as the length ratio
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R L

Figure 19. Detail of the nodal displacement vectors at failure at the top of a very steep
slope with §~75° giving FS=2.20.
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Figure 20. Influence of length ratio L/H on the computed factor of safety FS for slope with
&' =30°, ¢’ =20kN/m?, yg = 19kN/m?, r,=0.5, H=5m and f=25°.
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Figure 21. Influence of slope angle § on the computed factor of safety FS for long slopes with
@' =30°, ¢’ =20kN/m?, y,, = 19kN/m?, r,=0.5 and H =5m over a range of the slope angles .

increased, the computed factor of safety converged on the infinite slope solution of F§ =1.03 from
Equation (5). As before, good agreement with the infinite slope result was achieved for L/H > 16.

The influence of the slope angle on the factor of safety for two different length ratios was
considered next with results shown in Figure 21. The infinite slope solution from Equation (3)
is also shown in this figure. The long slope with L/H =32 agreed closely with the infinite
slope solution for relatively flat slopes. For f§>40°; however, while the factor of safety predicted
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by the infinite slope equation continued to fall towards zero, the long slope solution reached a
minimum factor of safety and started to increase. As expected, the shorter slope with L/H =2
gave significantly higher factors of safety at flatter slope angles but as the slope angle increased,
it too reached a minimum value at around §=70° before rising to converge with the longer slope
solution at a factor of safety of about FS=0.83. Clearly from a practical point of view, FS <1
implies an unstable slope that could never exist, but it is the qualitative behavior of these results,
and particularly the minimum in the FS response that is of interest,

7. CONCLUDING REMARKS

The paper has revigited the infinite slope equations and compared analytical results with finite
element solutions for infinite and long slopes. Examples including groundwater modeled through
a free-surface or an ry parameter were also considered. For numerical modeling of the infinite
slope problem, a novel finite element approach was described for modeling the ‘infinite’ boundary
conditions on both sides of a typical soil slice. The benefits and generality of the finite element
approach were particularly emphasized in examples where the soil strength profile varied with
depth and where the location of the critical failure surface was not known a priori. The finite
element solutions also gave a clear indication of the location of the critical failure plane,

The second half of the paper assessed the conservatism of the infinite slope equations by
performing conventional finite element slope stability analyses on long finite slopes with more
realistic uphill and downhill boundary conditions. The analyses confirmed that the infinite slope
equations are always conservative, however the factors of safety predicted by finite element analysis
of long slopes approached the infinite slope solutions for length ratios in the order of L/H > 16.

Additional studies were performed to assess the role of the slope angle f§ on the factor of safety
of long and infinite slopes. These studies confirmed the existence of a minimum factor of safety
corresponding to a critical slope angle fi ... While this phenomenon is predicted by the infinite
slope equations, the minimum was also observed for shorter slopes, suggesting the counter-intuitive
observation that very steep long slopes may actually be ‘safer’ than flatter slopes. Insight into
this phenomenon was provided by the finite element solutions which showed that the mechanism
tended to outcrop at the toe of the slope for flatter slopes, but changed to a ‘vertical cut’-type
mechanism for very steep slopes where the length ratio L/H became irrelevant.

While it inconceivable that engineers would ever rely on the ‘steeper is safer’ effect in constructed
slopes, the phenomenon is certainly of theoretical interest for long slopes, and may give insight
into the optimal angle at which landslides and other natural slope failures are most likely to occur.

NOMENCLATURE

The following symbols are used in this paper:

¢ soil cohesion

c} factored soil cohesion

Cu undrained shear strength

dw depth of the water surface

E’ Young’s modulus

FS factor of safety

FSmin minimum factor of safety

H depth of the soil layer

He critical depth of the failure plane
L width of slice

Ny normal force component
Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer, Anal. Meth. Geomech. 2011; 35:569-585
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p factor used to describe variation of cohesion
with depth

q cohesion at ground surface

fu pore pressure parameter

S dimensionless group, ¢’/(yH tan ¢")

SRF strength reduction factor
shear force component

pore pressure

depth coordinate

weight of slice

slope inclination

Bnin slope angle leading to FS;in
{ buoyant unit weight

=g R

Ym moist (or dry) unit weight
Ysat saturated unit weight
Yo unit weight of water
Omax maximum nodal displacement
0 inclination of seepage to the ground surface
o normal total stress
o’ normal effective stress
Oy vertical total stress
74 developed shear stress
5 shear strength
v Poisson’s ratio
@' soil friction angle
&F factored friction angle
dy undrained friction angle (=0)
W dilation angle
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